Propuesta de modelo predictivo aplicado al rendimiento en nadadores colombianos
La presente investigación se enfocó en el diseño de un modelo predictivo para nadadores a partir de los datos registrados en la Federación Colombiana de Natación (FECNA). La implementación del modelo predictivo se realizó mediante una aplicación web bajo las políticas del software libre. La estimaci...
- Autores:
-
Figueroa Polanco, Paula Andrea
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/3415
- Acceso en línea:
- http://hdl.handle.net/20.500.12749/3415
- Palabra clave:
- Systems Engineering
Free software
Software engineering
Web applications
Research
Predictive model
Swimming
Estimated time
Marks
Ingeniería de sistemas
Software libre
Ingeniería de software
Aplicaciones web
Investigaciones
Modelo predictivo
Natación
Tiempo estimado
Marcas
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
UNAB2_2b69c2a15ea3ebd3120ee2d259036bb8 |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/3415 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Propuesta de modelo predictivo aplicado al rendimiento en nadadores colombianos |
dc.title.translated.eng.fl_str_mv |
Proposed predictive model applied to performance in Colombian swimmers |
title |
Propuesta de modelo predictivo aplicado al rendimiento en nadadores colombianos |
spellingShingle |
Propuesta de modelo predictivo aplicado al rendimiento en nadadores colombianos Systems Engineering Free software Software engineering Web applications Research Predictive model Swimming Estimated time Marks Ingeniería de sistemas Software libre Ingeniería de software Aplicaciones web Investigaciones Modelo predictivo Natación Tiempo estimado Marcas |
title_short |
Propuesta de modelo predictivo aplicado al rendimiento en nadadores colombianos |
title_full |
Propuesta de modelo predictivo aplicado al rendimiento en nadadores colombianos |
title_fullStr |
Propuesta de modelo predictivo aplicado al rendimiento en nadadores colombianos |
title_full_unstemmed |
Propuesta de modelo predictivo aplicado al rendimiento en nadadores colombianos |
title_sort |
Propuesta de modelo predictivo aplicado al rendimiento en nadadores colombianos |
dc.creator.fl_str_mv |
Figueroa Polanco, Paula Andrea |
dc.contributor.advisor.spa.fl_str_mv |
Gaona Cuevas, Carlos Mauricio |
dc.contributor.author.spa.fl_str_mv |
Figueroa Polanco, Paula Andrea |
dc.contributor.cvlac.*.fl_str_mv |
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000249866 |
dc.contributor.googlescholar.*.fl_str_mv |
https://scholar.google.es/citations?hl=es&user=wGaTT4gAAAAJ |
dc.subject.keywords.eng.fl_str_mv |
Systems Engineering Free software Software engineering Web applications Research Predictive model Swimming Estimated time Marks |
topic |
Systems Engineering Free software Software engineering Web applications Research Predictive model Swimming Estimated time Marks Ingeniería de sistemas Software libre Ingeniería de software Aplicaciones web Investigaciones Modelo predictivo Natación Tiempo estimado Marcas |
dc.subject.lemb.spa.fl_str_mv |
Ingeniería de sistemas Software libre Ingeniería de software Aplicaciones web Investigaciones |
dc.subject.proposal.spa.fl_str_mv |
Modelo predictivo Natación Tiempo estimado Marcas |
description |
La presente investigación se enfocó en el diseño de un modelo predictivo para nadadores a partir de los datos registrados en la Federación Colombiana de Natación (FECNA). La implementación del modelo predictivo se realizó mediante una aplicación web bajo las políticas del software libre. La estimación o predicción del tiempo del atleta se desarrolló a través de dos modelos: en el primero se implementa el modelo de regresión lineal a la ecuación de velocidad crítica (Critical Swim Speed - CSS) propuesta por Wakayoshi en el que se estima el tiempo a partir del cálculo de los valores de CSS y la capacidad de natación anaeróbica (Anaerobic Swimming Capacity - ASC). En el segundo modelo se usa la ecuación de resistencia planteada por Riegel para realizar una estimación del tiempo a partir del factor fatiga partiendo del cálculo de dos constantes básicas teniendo en cuenta la relación entre el tiempo y la distancia: Tiempo = b * distanciam. Para medir la precisión del modelo se hizo uso del error porcentual medio absoluto donde se obtiene que los modelos son bastante acertados en sus estimaciones pues los porcentajes de error en ambos están por debajo del 20%. La aplicación web da un reporte de valores estimados que puede ser usados por el atleta para analizar su rendimiento a partir de una distancia objetivo; se realizó con el framework Django y el lenguaje de programación Python y para que la aplicación tuviera interfaces adaptables a cualquier dispositivo se usó el Framework Bootstrap. Por último las pruebas funcionales en la plataforma consistieron en plantear tres escenarios de prueba tomando los datos históricos de la FECNA, se pudo obtener valores donde la estimación del modelo se acercaba en un alto porcentaje a las marcas obtenidas por el atleta. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017-10-20 |
dc.date.accessioned.none.fl_str_mv |
2020-06-26T21:34:41Z |
dc.date.available.none.fl_str_mv |
2020-06-26T21:34:41Z |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.local.spa.fl_str_mv |
Tesis |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/3415 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UNAB |
url |
http://hdl.handle.net/20.500.12749/3415 |
identifier_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB reponame:Repositorio Institucional UNAB |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Figueroa Polanco, Paula Andrea (2017). Propuesta de modelo predictivo aplicado al rendimiento en nadadores colombianos. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB, Universitat Oberta de Catalunya UOC Los modelos matemáticos: un aporte científicotecnológico. (2013). EFDeportes.com Revista Digital, 1-8. Metodologías de desarrollo ágil: Lean Development. (20 de 04 de 2017). Obtenido de http://danielgrifol.es/metodologias-de-desarrollo-agil-lean-development/ Alvarez, M. A. (19 de 11 de 2013). Qué es Python. Recuperado el 08 de 05 de 2016, de http://www.desarrolloweb.com/articulos/1325.php Bisono, T. (23 de 07 de 2014). Preparación para Competencias: Introducción al Taper. Obtenido de http://www.clinicasdenatacionrd.com/el-taper/ Blundell, J. D. (s.f.). Numerical Algorithms for Predicting Sports Results. Recuperado el 06 de 05 de 2016, de http://www.engineering.leeds.ac.uk/e-engineering/documents/JackBlundell.pdf Briega, R. E. (10 de 10 de 2015). Machine Learning con Python. Obtenido de http://relopezbriega.github.io/blog/2015/10/10/machine-learning-con-python/ Chapman, P. C. (2000). CRISP-DM 1.0 Step-by-step data mining guide. SPSS. Coulson, M., & CooperyD., J. (30 de 05 de 2011). alto rendimiento. Obtenido de http://altorendimiento.com/test-velocidad-critica-natacion/ Dobravec, S. (2015). Predicting sports results using latent features: A case study. Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2015 38th International Convention on (págs. 1267 - 1272). Opatija: IEEE. Frias, J. F., Martínez, C., Cruz Blandón, M., & Vargas Rojas, L. F. (2014). Sabio. Recuperado el 09 de 08 de 2016, de http://www.sabiofutbol.com/ Gaía, A. O. (30 de 10 de 2013). http://g-se.com/es/entrenamiento-en-natacion/blog/uso-de-la-velocidad-critica-para-el-entrenamiento-de-la-resistencia-aerobica-en-nadadores-jovenes. Obtenido de Uso de la velocidad crítica para el entrenamiento de la resistencia aeróbica en nadadores jóvenes.: http://g-se.com/es/entrenamiento-en-natacion/blog/uso-de-la-velocidad-critica-para-el-entrenamiento-de-la-resistencia-aerobica-en-nadadores-jovenes Gómez Valiente, S., & Valdés Corría, G. (01 de 2011). Federación Nacional de Natación. Obtenido de http://www.fecna.com/wp-content/uploads/2011/08/La-T%C3%A9cnica-en-la-Nataci%C3%B3n-Competitiva..pdf Gross, M. (02 de 05 de 2014). Conozca 3 tipos de investigación: Descriptiva, Exploratoria y Explicativa. Recuperado el 19 de 04 de 2017, de http://manuelgross.bligoo.com/conozca-3-tipos-de-investigacion-descriptiva-exploratoria-y-explicativa#.WPd3jGnhCUk Guardiola Jiménez, P. (05 de 06 de 2014). Universidad de Murcia. Recuperado el 25 de 07 de 2016, de http://www.um.es/docencia/pguardio/documentos/Tec_logis.pdf Guardiola, F. V. (2013). Sistema de predicción de resultados en eventos deportivos y su aplicación en las apuestas. Leganés. Guazzelli, A. (12 de 07 de 2012). Predicciones sobre el futuro, parte 2: Técnicas de modelado predictivo. Recuperado el 12 de 06 de 2016, de http://www.ibm.com/developerworks/ssa/industry/library/ba-predictive-analytics2/ Holovaty, A., & Kaplan-Moss, J. (2015). El libro de Django 1.8. Django Coftware Corporation. Ingenio Empresa. (07 de 03 de 2016). Medición del error en pronósticos de demanda. Recuperado el 09 de 07 de 2017, de https://ingenioempresa.com/medicion-error-pronostico/ Kyriakides, G., Talattinis, K., & Stephanides, G. (2015). A Hybrid Approach to Predicting Sports Results and an AccuRATE Rating System. Springer India. Letelier, P., & Penadés, M. C. (2016). Métodologías ágiles para el desarrollo de software: eXtreme Programming (XP). Ciencia y Técnica Administrativa, ISSN 1666-1680. Mantilla, G. B. (12 de 02 de 2002). Reglamento de investigación. Recuperado el 19 de 04 de 2017, de http://www.unab.edu.co/sites/default/files/normatividad_Investigaciones_UNAB/Normatividad/Reglamento%20de%20Investigaciones.pdf Martinez, A. (05 de 01 de 2007). AM triothlon. Obtenido de http://www.amtriathlon.com/2007/01/prediccin-del-rendimiento-en-natacin.html#ixzz4dZvqJqxY Martinez, A. E. (21 de 12 de 2012). ADRMARTINEZ. Obtenido de http://ironsommelier.blogspot.com.co/2012/12/curva-de-fatiga-en-carrera.html matchstatistics. (06 de 08 de 2009). matchstatistics.com. Recuperado el 10 de 05 de 2016, de http://matchstatistics.soft32.com/ Molinero, L. M. (01 de 2001). LA REGRESION LOGISTICA. Recuperado el 27 de 07 de 2016, de http://www.seh-lelha.org/rlogis1.htm Morales, A. T., & Lorenzo Calvo, A. (2012). Análisis de los indicadores de rendimiento en las finales europeas de natación en pruebas cortas y en estilo libre. Apunts. Educación Física y Deportes , 97-107. Moreno, S. (21 de 04 de 2012). Tu mejor plan de entrenamiento. Obtenido de http://www.ellocoquecorre.com/2012/04/21/tablas-de-jack-daniels/ Neuralbelt. (2 de 10 de 2011). Soccer Match Predictor 1.6.6. Recuperado el 11 de 05 de 2016, de http://soccer-match-predictor-1.soft32.com/ Ojeda, J. C., & Gómez Fuentes, M. d. (2012). Taxonomía de los modelos y metodologías de. UDUAL, 37-47. Orellana, L. (2008). Análisis de regresión. Obtenido de http://www.dm.uba.ar/materias/estadistica_Q/2011/1/clase%20regresion%20simple.pdf Pauly, D. (1983). Algunos métodos simples para la evaluación de recursos pesqueros tropicales. Algunos métodos simples para la evaluación de recursos pesqueros tropicales, 243-249. RGP, J. (25 de 01 de 2014). Descubre qué es Django, el framework web de moda. Recuperado el 10 de 05 de 2016, de http://computerhoy.com/noticias/internet/descubre-que-es-django-framework-web-moda-8641 Riegel, P. (08 de 1977). Athletic Records and Human Endurance, American Scientist. American Scientist, 285-290. Rodríguez Baños, Á., Berral de la Rosa, C. J., Rodriguez Bies , E. C., Lara Padilla, E., & Berral de la Rosa, F. J. (2009). Aplicación de un modelo matemático al taper en jóvenes nadadores. Archivos de medicina del deporte, 355-363. Rodríguez, D., & Dolado, J. (2007). Redes Bayesianas en la Ingeniería del Software. Recuperado el 28 de 07 de 2016, de http://www.cc.uah.es/drg/b/RodriguezDolado.BBN.2007.pdf Ruiz, A. L., Martínez García, C., Sánchez Pérez, M. J., Sánchez-Cantalejo Castañeda, J., & Sánchez-Cantalejo Ramírez, E. (s.f.). Aprenda a usar R. Recuperado el 08 de 05 de 2016, de http://www.tutorialr.es/es/index.html Sweetenham, B., & Atkinson, J. (2003). Championship Swim Training. Universidad de Cuernavaca. (s.f.). ¡Arma tu ficha bibliográfica! Recuperado el 19 de 04 de 2017, de http://www.cva.itesm.mx/biblioteca/pagina_con_formato_version_oct/principal%20nueva.html Universidad de Granada. (s.f.). Cadenas de Markov. Recuperado el 28 de 07 de 2016, de http://www.ugr.es/~bioestad/_private/cpfund10.pdf Uzoma, A. O., & Nwachukwu , E. (2015). A Hybrid Prediction System for American NFL Results. International Journal of Computer Applications Technology and Research, 42-47. Wakayoshi K., I. K. (2012). Determination and validity of critical velocity as an index of swimming performance in the competitive swimmer. European Journalof Applied Physiologyand Occupational Physiology 64, 153-157. Zingsem, C. G. (24 de 07 de 2015). Velocidad crítica como indicador de rendimiento en natación. Recuperado el 20 de 03 de 2017, de http://www.mitlabmalaga.com/velocidad-critica-como-indicador-de-rendimiento-en-natacion/ |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial-SinDerivadas 2.5 Colombia |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.spa.fl_str_mv |
Bucaramanga (Colombia) |
dc.publisher.grantor.spa.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.publisher.faculty.spa.fl_str_mv |
Facultad Ingeniería |
dc.publisher.program.spa.fl_str_mv |
Maestría en Software Libre |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/3415/1/2017_Tesis_Figueroa_Polanco_Paula_Andrea.pdf https://repository.unab.edu.co/bitstream/20.500.12749/3415/2/2017_Articulo_Figueroa_Polanco_Paula_Andrea.pdf https://repository.unab.edu.co/bitstream/20.500.12749/3415/3/Anexos.zip https://repository.unab.edu.co/bitstream/20.500.12749/3415/4/2017_Licencia_Figueroa_Polanco_Paula_Andrea.pdf https://repository.unab.edu.co/bitstream/20.500.12749/3415/5/2017_Tesis_Figueroa_Polanco_Paula_Andrea.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/3415/6/2017_Articulo_Figueroa_Polanco_Paula_Andrea.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/3415/7/2017_Licencia_Figueroa_Polanco_Paula_Andrea.pdf.jpg |
bitstream.checksum.fl_str_mv |
a7b8e2f4f4ab8dfa72d5b49331658c32 170fbd438964f098eb29a5e5171ff733 f7665181483c122246f078009c740ae8 5a90e9227c0dee47a98ed9e1b2e80809 fc3c6b068cc053ef80014b38a377f1b6 1c7488f58485731cca914ed46ddf90c3 88857842cb9f55ceb2f7f4cb6ceee01b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1814277370957266944 |
spelling |
Gaona Cuevas, Carlos MauricioFigueroa Polanco, Paula Andreahttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000249866https://scholar.google.es/citations?hl=es&user=wGaTT4gAAAAJ2020-06-26T21:34:41Z2020-06-26T21:34:41Z2017-10-20http://hdl.handle.net/20.500.12749/3415instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABLa presente investigación se enfocó en el diseño de un modelo predictivo para nadadores a partir de los datos registrados en la Federación Colombiana de Natación (FECNA). La implementación del modelo predictivo se realizó mediante una aplicación web bajo las políticas del software libre. La estimación o predicción del tiempo del atleta se desarrolló a través de dos modelos: en el primero se implementa el modelo de regresión lineal a la ecuación de velocidad crítica (Critical Swim Speed - CSS) propuesta por Wakayoshi en el que se estima el tiempo a partir del cálculo de los valores de CSS y la capacidad de natación anaeróbica (Anaerobic Swimming Capacity - ASC). En el segundo modelo se usa la ecuación de resistencia planteada por Riegel para realizar una estimación del tiempo a partir del factor fatiga partiendo del cálculo de dos constantes básicas teniendo en cuenta la relación entre el tiempo y la distancia: Tiempo = b * distanciam. Para medir la precisión del modelo se hizo uso del error porcentual medio absoluto donde se obtiene que los modelos son bastante acertados en sus estimaciones pues los porcentajes de error en ambos están por debajo del 20%. La aplicación web da un reporte de valores estimados que puede ser usados por el atleta para analizar su rendimiento a partir de una distancia objetivo; se realizó con el framework Django y el lenguaje de programación Python y para que la aplicación tuviera interfaces adaptables a cualquier dispositivo se usó el Framework Bootstrap. Por último las pruebas funcionales en la plataforma consistieron en plantear tres escenarios de prueba tomando los datos históricos de la FECNA, se pudo obtener valores donde la estimación del modelo se acercaba en un alto porcentaje a las marcas obtenidas por el atleta.Universitat Oberta de Catalunya UOCRESUMEN 1 INTRODUCCIÓN 2 1. ASPECTOS GENERALES 4 1.1. PLANTEAMIENTO DEL PROBLEMA Y JUSTIFICACIÓN 4 1.1.1. FORMULACIÓN DEL PROBLEMA CENTRAL 4 1.1.2. FORMULACIÓN DE PROBLEMAS COMPLEMENTARIOS 4 1.1.3. PLANTEAMIENTO DEL PROBLEMA 4 1.1.4. JUSTIFICACIÓN 6 1.2. DELIMITACIÓN 6 1.2.1. TEMPORAL Y GEOGRÁFICA 6 1.2.2. CONCEPTUAL 7 1.3. OBJETIVOS 7 1.3.1. OBJETIVO GENERAL 7 1.3.2. OBJETIVOS ESPECÍFICOS 8 2. MARCO TEÓRICO 9 2.1. ANTECEDENTES 9 2.2. MEDICIÓN DEL RENDIMIENTO EN LA NATACIÓN 10 2.2.1. LA VELOCIDAD CRÍTICA COMO INDICADOR DE RENDIMIENTO 10 2.2.2. EL FACTOR FATIGA EN LA ECUACIÓN DE RESISTENCIA 12 2.2.3. RITMOS ESTIMADOS POR NIVEL 13 2.3. DATOS, MODELOS PREDICTIVOS, DISEÑO Y TÉCNICAS 14 2.3.1. ANÁLISIS Y TRATAMIENTO DE DATOS 14 2.3.2. MODELOS PREDICTIVOS 15 2.3.3. MODELOS DE REGRESIÓN LINEAL SIMPLE 16 2.4. SOFTWARE Y MODELOS DE PREDICCIÓN EXISTENTES APLICADOS A DEPORTES 17 2.4.1. APLICACIÓN DE UN MODELO MATEMÁTICO AL TAPER EN JÓVENES NADADORES 17 2.4.2. NUMERICAL ALGORITHMS FOR PREDICTING SPORTS RESULTS 18 2.4.3. A HYBRID PREDICTION SYSTEM FOR AMERICAN NFL RESULTS 19 2.4.4. SISTEMA DE PREDICCIÓN DE RESULTADOS EN EVENTOS DEPORTIVOS Y SU APLICACIÓN EN LAS APUESTAS 19 3. ESTRATEGIA METODOLÓGICA 21 3.1. MÉTODO DE INVESTIGACIÓN 21 3.2. DESCRIPCIÓN DE LA METODOLOGÍA 21 3.2.1. PRIMERA FASE: GENERACIÓN DE LA PROPUESTA 22 3.2.2. SEGUNDA FASE: RECOPILACIÓN, ANÁLISIS Y COMPRENSIÓN DE LOS DATOS 23 3.2.3. TERCERA FASE: DISEÑO DEL MODELO 24 3.2.4. CUARTA FASE: IMPLEMENTACIÓN Y DESPLIEGUE 24 4. RESULTADOS DE LA INVESTIGACIÓN 26 4.1. PRIMERA FASE: GENERACIÓN DE LA PROPUESTA 26 4.2. SEGUNDA FASE: RECOPILACIÓN, DESCRIPCIÓN, EXPLORACIÓN Y PREPARACIÓN DE LOS DATOS 26 4.2.1. RECOPILACIÓN Y DESCRIPCIÓN DE LOS DATOS 26 4.2.2. EXPLORACIÓN DE LOS DATOS 27 4.3. TERCERA FASE: SELECCIÓN DE LA TÉCNICA DE MODELADO 29 4.3.1. ANÁLISIS DE DATOS CON R. 29 4.3.2. DISEÑO DEL MODELO 34 4.3.3. EVALUACIÓN DEL MODELO 36 4.4. CUARTA FASE: IMPLEMENTACIÓN DEL MODELO 40 4.4.1. DEFINICIÓN DE REQUERIMIENTOS 40 4.4.2. DISEÑO DE PROTOTIPO 43 4.4.3. IMPLEMENTACIÓN 45 4.4.3.1. SELECCIÓN DE TECNOLOGÍAS: 45 4.4.3.2. DISEÑO DE BASE DE DATOS 46 4.4.3.3. DISEÑO DE PLANTILLAS O TEMPLATES 47 4.4.3.4. DISEÑO DE VISTAS 51 4.4.3.5. PRUEBAS FUNCIONALES 55 5. CONCLUSIONES 59 6. RECOMENDACIONES Y TRABAJOS FUTUROS 61 REFERENCIAS Y BIBLIOGRAFÍA 62 ANEXOS 67MaestríaThe present research focused on the design of a predictive model for athletes in the swimming area based on distance and time recorded data in the Colombian Swimming Federation (FECNA). The implementation of the predictive model was done through a web application under the policies of the free software and license of Creative Commons with the purpose of offering a tool that could be usable and improved for swimmers and their trainers. The estimation or prediction of the athlete's time was developed through two models; in the first one, the linear regression model is applied to the critical velocity equation (CSS) proposed by Wakayoshi, which estimates the time from the calculation of the CSS values and the anaerobic swimming capacity (Anaerobic Swimming Capacity - ASC). In the second model we use the resistance equation proposed by Riegel to estimate the time from the fatigue factor. In this case the calculation of two basic constants was made taking into account the relation between time and distance: Time = b * distance, b and m are specific constants for each sport. The web application gives a report of estimated values that can be used by the athlete to analyze their performance from a target distance; it was done with the Django framework and the Python programming language. In order for the application to have adaptable interfaces to any device, the Bootstrap JavaScript Framework was used, and in addition a PostgreSQL database was created for the storage of the information. Finally, tests were developed with the registered historical data of the swimmers and it was possible to obtain values where the estimation of the model approached in a high percentage to the marks obtained by the athlete, where the model of FF returns better results when they have great Volumes of data while that of CSS fits small samples.application/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-SinDerivadas 2.5 ColombiaPropuesta de modelo predictivo aplicado al rendimiento en nadadores colombianosProposed predictive model applied to performance in Colombian swimmersMagíster en Software LibreBucaramanga (Colombia)Universidad Autónoma de Bucaramanga UNABFacultad IngenieríaMaestría en Software Libreinfo:eu-repo/semantics/masterThesisTesishttp://purl.org/redcol/resource_type/TMSystems EngineeringFree softwareSoftware engineeringWeb applicationsResearchPredictive modelSwimmingEstimated timeMarksIngeniería de sistemasSoftware libreIngeniería de softwareAplicaciones webInvestigacionesModelo predictivoNataciónTiempo estimadoMarcasFigueroa Polanco, Paula Andrea (2017). Propuesta de modelo predictivo aplicado al rendimiento en nadadores colombianos. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB, Universitat Oberta de Catalunya UOCLos modelos matemáticos: un aporte científicotecnológico. (2013). EFDeportes.com Revista Digital, 1-8.Metodologías de desarrollo ágil: Lean Development. (20 de 04 de 2017). Obtenido de http://danielgrifol.es/metodologias-de-desarrollo-agil-lean-development/Alvarez, M. A. (19 de 11 de 2013). Qué es Python. Recuperado el 08 de 05 de 2016, de http://www.desarrolloweb.com/articulos/1325.phpBisono, T. (23 de 07 de 2014). Preparación para Competencias: Introducción al Taper. Obtenido de http://www.clinicasdenatacionrd.com/el-taper/Blundell, J. D. (s.f.). Numerical Algorithms for Predicting Sports Results. Recuperado el 06 de 05 de 2016, de http://www.engineering.leeds.ac.uk/e-engineering/documents/JackBlundell.pdfBriega, R. E. (10 de 10 de 2015). Machine Learning con Python. Obtenido de http://relopezbriega.github.io/blog/2015/10/10/machine-learning-con-python/Chapman, P. C. (2000). CRISP-DM 1.0 Step-by-step data mining guide. SPSS.Coulson, M., & CooperyD., J. (30 de 05 de 2011). alto rendimiento. Obtenido de http://altorendimiento.com/test-velocidad-critica-natacion/Dobravec, S. (2015). Predicting sports results using latent features: A case study. Information and Communication Technology, Electronics and Microelectronics (MIPRO), 2015 38th International Convention on (págs. 1267 - 1272). Opatija: IEEE.Frias, J. F., Martínez, C., Cruz Blandón, M., & Vargas Rojas, L. F. (2014). Sabio. Recuperado el 09 de 08 de 2016, de http://www.sabiofutbol.com/Gaía, A. O. (30 de 10 de 2013). http://g-se.com/es/entrenamiento-en-natacion/blog/uso-de-la-velocidad-critica-para-el-entrenamiento-de-la-resistencia-aerobica-en-nadadores-jovenes. Obtenido de Uso de la velocidad crítica para el entrenamiento de la resistencia aeróbica en nadadores jóvenes.: http://g-se.com/es/entrenamiento-en-natacion/blog/uso-de-la-velocidad-critica-para-el-entrenamiento-de-la-resistencia-aerobica-en-nadadores-jovenesGómez Valiente, S., & Valdés Corría, G. (01 de 2011). Federación Nacional de Natación. Obtenido de http://www.fecna.com/wp-content/uploads/2011/08/La-T%C3%A9cnica-en-la-Nataci%C3%B3n-Competitiva..pdfGross, M. (02 de 05 de 2014). Conozca 3 tipos de investigación: Descriptiva, Exploratoria y Explicativa. Recuperado el 19 de 04 de 2017, de http://manuelgross.bligoo.com/conozca-3-tipos-de-investigacion-descriptiva-exploratoria-y-explicativa#.WPd3jGnhCUkGuardiola Jiménez, P. (05 de 06 de 2014). Universidad de Murcia. Recuperado el 25 de 07 de 2016, de http://www.um.es/docencia/pguardio/documentos/Tec_logis.pdfGuardiola, F. V. (2013). Sistema de predicción de resultados en eventos deportivos y su aplicación en las apuestas. Leganés.Guazzelli, A. (12 de 07 de 2012). Predicciones sobre el futuro, parte 2: Técnicas de modelado predictivo. Recuperado el 12 de 06 de 2016, de http://www.ibm.com/developerworks/ssa/industry/library/ba-predictive-analytics2/Holovaty, A., & Kaplan-Moss, J. (2015). El libro de Django 1.8. Django Coftware Corporation.Ingenio Empresa. (07 de 03 de 2016). Medición del error en pronósticos de demanda. Recuperado el 09 de 07 de 2017, de https://ingenioempresa.com/medicion-error-pronostico/Kyriakides, G., Talattinis, K., & Stephanides, G. (2015). A Hybrid Approach to Predicting Sports Results and an AccuRATE Rating System. Springer India.Letelier, P., & Penadés, M. C. (2016). Métodologías ágiles para el desarrollo de software: eXtreme Programming (XP). Ciencia y Técnica Administrativa, ISSN 1666-1680.Mantilla, G. B. (12 de 02 de 2002). Reglamento de investigación. Recuperado el 19 de 04 de 2017, de http://www.unab.edu.co/sites/default/files/normatividad_Investigaciones_UNAB/Normatividad/Reglamento%20de%20Investigaciones.pdfMartinez, A. (05 de 01 de 2007). AM triothlon. Obtenido de http://www.amtriathlon.com/2007/01/prediccin-del-rendimiento-en-natacin.html#ixzz4dZvqJqxYMartinez, A. E. (21 de 12 de 2012). ADRMARTINEZ. Obtenido de http://ironsommelier.blogspot.com.co/2012/12/curva-de-fatiga-en-carrera.htmlmatchstatistics. (06 de 08 de 2009). matchstatistics.com. Recuperado el 10 de 05 de 2016, de http://matchstatistics.soft32.com/Molinero, L. M. (01 de 2001). LA REGRESION LOGISTICA. Recuperado el 27 de 07 de 2016, de http://www.seh-lelha.org/rlogis1.htmMorales, A. T., & Lorenzo Calvo, A. (2012). Análisis de los indicadores de rendimiento en las finales europeas de natación en pruebas cortas y en estilo libre. Apunts. Educación Física y Deportes , 97-107.Moreno, S. (21 de 04 de 2012). Tu mejor plan de entrenamiento. Obtenido de http://www.ellocoquecorre.com/2012/04/21/tablas-de-jack-daniels/Neuralbelt. (2 de 10 de 2011). Soccer Match Predictor 1.6.6. Recuperado el 11 de 05 de 2016, de http://soccer-match-predictor-1.soft32.com/Ojeda, J. C., & Gómez Fuentes, M. d. (2012). Taxonomía de los modelos y metodologías de. UDUAL, 37-47.Orellana, L. (2008). Análisis de regresión. Obtenido de http://www.dm.uba.ar/materias/estadistica_Q/2011/1/clase%20regresion%20simple.pdfPauly, D. (1983). Algunos métodos simples para la evaluación de recursos pesqueros tropicales. Algunos métodos simples para la evaluación de recursos pesqueros tropicales, 243-249.RGP, J. (25 de 01 de 2014). Descubre qué es Django, el framework web de moda. Recuperado el 10 de 05 de 2016, de http://computerhoy.com/noticias/internet/descubre-que-es-django-framework-web-moda-8641Riegel, P. (08 de 1977). Athletic Records and Human Endurance, American Scientist. American Scientist, 285-290.Rodríguez Baños, Á., Berral de la Rosa, C. J., Rodriguez Bies , E. C., Lara Padilla, E., & Berral de la Rosa, F. J. (2009). Aplicación de un modelo matemático al taper en jóvenes nadadores. Archivos de medicina del deporte, 355-363.Rodríguez, D., & Dolado, J. (2007). Redes Bayesianas en la Ingeniería del Software. Recuperado el 28 de 07 de 2016, de http://www.cc.uah.es/drg/b/RodriguezDolado.BBN.2007.pdfRuiz, A. L., Martínez García, C., Sánchez Pérez, M. J., Sánchez-Cantalejo Castañeda, J., & Sánchez-Cantalejo Ramírez, E. (s.f.). Aprenda a usar R. Recuperado el 08 de 05 de 2016, de http://www.tutorialr.es/es/index.htmlSweetenham, B., & Atkinson, J. (2003). Championship Swim Training.Universidad de Cuernavaca. (s.f.). ¡Arma tu ficha bibliográfica! Recuperado el 19 de 04 de 2017, de http://www.cva.itesm.mx/biblioteca/pagina_con_formato_version_oct/principal%20nueva.htmlUniversidad de Granada. (s.f.). Cadenas de Markov. Recuperado el 28 de 07 de 2016, de http://www.ugr.es/~bioestad/_private/cpfund10.pdfUzoma, A. O., & Nwachukwu , E. (2015). A Hybrid Prediction System for American NFL Results. International Journal of Computer Applications Technology and Research, 42-47.Wakayoshi K., I. K. (2012). Determination and validity of critical velocity as an index of swimming performance in the competitive swimmer. European Journalof Applied Physiologyand Occupational Physiology 64, 153-157.Zingsem, C. G. (24 de 07 de 2015). Velocidad crítica como indicador de rendimiento en natación. Recuperado el 20 de 03 de 2017, de http://www.mitlabmalaga.com/velocidad-critica-como-indicador-de-rendimiento-en-natacion/ORIGINAL2017_Tesis_Figueroa_Polanco_Paula_Andrea.pdf2017_Tesis_Figueroa_Polanco_Paula_Andrea.pdfTesisapplication/pdf1606652https://repository.unab.edu.co/bitstream/20.500.12749/3415/1/2017_Tesis_Figueroa_Polanco_Paula_Andrea.pdfa7b8e2f4f4ab8dfa72d5b49331658c32MD51open access2017_Articulo_Figueroa_Polanco_Paula_Andrea.pdf2017_Articulo_Figueroa_Polanco_Paula_Andrea.pdfArtículoapplication/pdf426586https://repository.unab.edu.co/bitstream/20.500.12749/3415/2/2017_Articulo_Figueroa_Polanco_Paula_Andrea.pdf170fbd438964f098eb29a5e5171ff733MD52open accessAnexos.zipAnexos.zipAnexosapplication/octet-stream7511857https://repository.unab.edu.co/bitstream/20.500.12749/3415/3/Anexos.zipf7665181483c122246f078009c740ae8MD53open access2017_Licencia_Figueroa_Polanco_Paula_Andrea.pdf2017_Licencia_Figueroa_Polanco_Paula_Andrea.pdfLicenciaapplication/pdf516948https://repository.unab.edu.co/bitstream/20.500.12749/3415/4/2017_Licencia_Figueroa_Polanco_Paula_Andrea.pdf5a90e9227c0dee47a98ed9e1b2e80809MD54metadata only accessTHUMBNAIL2017_Tesis_Figueroa_Polanco_Paula_Andrea.pdf.jpg2017_Tesis_Figueroa_Polanco_Paula_Andrea.pdf.jpgIM Thumbnailimage/jpeg4454https://repository.unab.edu.co/bitstream/20.500.12749/3415/5/2017_Tesis_Figueroa_Polanco_Paula_Andrea.pdf.jpgfc3c6b068cc053ef80014b38a377f1b6MD55open access2017_Articulo_Figueroa_Polanco_Paula_Andrea.pdf.jpg2017_Articulo_Figueroa_Polanco_Paula_Andrea.pdf.jpgIM Thumbnailimage/jpeg11781https://repository.unab.edu.co/bitstream/20.500.12749/3415/6/2017_Articulo_Figueroa_Polanco_Paula_Andrea.pdf.jpg1c7488f58485731cca914ed46ddf90c3MD56open access2017_Licencia_Figueroa_Polanco_Paula_Andrea.pdf.jpg2017_Licencia_Figueroa_Polanco_Paula_Andrea.pdf.jpgIM Thumbnailimage/jpeg9556https://repository.unab.edu.co/bitstream/20.500.12749/3415/7/2017_Licencia_Figueroa_Polanco_Paula_Andrea.pdf.jpg88857842cb9f55ceb2f7f4cb6ceee01bMD57open access20.500.12749/3415oai:repository.unab.edu.co:20.500.12749/34152021-11-04 22:19:17.496open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.co |