Efecto del compuesto ácido poliláctico/policaprolactona y la geometría en stents biodegradables impresos 3D para el tratamiento de aterosclerosis
En la actualidad la implantación de stents convencionales para el tratamiento de la aterosclerosis plantea diversos desafíos en el ámbito médico, debido a los efectos adversos que pueden surgir tras la implantación. Esto ha impulsado la búsqueda de alternativas más seguras, como los stents biodegrad...
- Autores:
-
Barrientos Contreras, Ana María
Manjarres Campo, Shanny Esther
Serrano Jaimes, María Victoria
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2025
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/28412
- Acceso en línea:
- http://hdl.handle.net/20.500.12749/28412
- Palabra clave:
- Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Biomedical
Clinical engineering
Biomaterials
Biocompatibility
Bioprinting
Degradation
Mechanical properties
Polymers
Biodegradability
Polylactic acid
Biodegradable plastics
Three-dimensional printing
Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Biomédica
Ácido poliláctico
Plásticos biodegradables
Impresión 3D
Biomateriales
Biocompatibilidad
Ingeniería biomédica
Ingeniería
Bioingeniería
Medicina
Biomédica
Bioimpresión
Degradación
Propiedades mecánicas
Biofísica
Biodegradabilidad
Polímeros
- Rights
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
UNAB2_26449582ec744e5ea51630596472e664 |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/28412 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Efecto del compuesto ácido poliláctico/policaprolactona y la geometría en stents biodegradables impresos 3D para el tratamiento de aterosclerosis |
dc.title.translated.spa.fl_str_mv |
Effect of Polylactic Acid/Polycaprolactone composite and geometry on 3D printed biodegradable stents for atherosclerosis treatment |
title |
Efecto del compuesto ácido poliláctico/policaprolactona y la geometría en stents biodegradables impresos 3D para el tratamiento de aterosclerosis |
spellingShingle |
Efecto del compuesto ácido poliláctico/policaprolactona y la geometría en stents biodegradables impresos 3D para el tratamiento de aterosclerosis Biomedical engineering Engineering Medical electronics Biological physics Bioengineering Medical instruments and apparatus Medicine Biomedical Clinical engineering Biomaterials Biocompatibility Bioprinting Degradation Mechanical properties Polymers Biodegradability Polylactic acid Biodegradable plastics Three-dimensional printing Ingeniería biomédica Ingeniería Biofísica Bioingeniería Medicina Biomédica Ácido poliláctico Plásticos biodegradables Impresión 3D Biomateriales Biocompatibilidad Ingeniería biomédica Ingeniería Bioingeniería Medicina Biomédica Bioimpresión Degradación Propiedades mecánicas Biofísica Biodegradabilidad Polímeros |
title_short |
Efecto del compuesto ácido poliláctico/policaprolactona y la geometría en stents biodegradables impresos 3D para el tratamiento de aterosclerosis |
title_full |
Efecto del compuesto ácido poliláctico/policaprolactona y la geometría en stents biodegradables impresos 3D para el tratamiento de aterosclerosis |
title_fullStr |
Efecto del compuesto ácido poliláctico/policaprolactona y la geometría en stents biodegradables impresos 3D para el tratamiento de aterosclerosis |
title_full_unstemmed |
Efecto del compuesto ácido poliláctico/policaprolactona y la geometría en stents biodegradables impresos 3D para el tratamiento de aterosclerosis |
title_sort |
Efecto del compuesto ácido poliláctico/policaprolactona y la geometría en stents biodegradables impresos 3D para el tratamiento de aterosclerosis |
dc.creator.fl_str_mv |
Barrientos Contreras, Ana María Manjarres Campo, Shanny Esther Serrano Jaimes, María Victoria |
dc.contributor.advisor.none.fl_str_mv |
Escobar Jaramillo, Mateo Solarte David, Víctor Alfonso |
dc.contributor.author.none.fl_str_mv |
Barrientos Contreras, Ana María Manjarres Campo, Shanny Esther Serrano Jaimes, María Victoria |
dc.contributor.cvlac.spa.fl_str_mv |
Escobar Jaramillo, Mateo [0001468933] Solarte David, Víctor Alfonso [1329391] |
dc.contributor.googlescholar.spa.fl_str_mv |
Escobar Jaramillo, Mateo [es&oi=ao] |
dc.contributor.orcid.spa.fl_str_mv |
Solarte David, Víctor Alfonso [0000-0002-9856-1484] |
dc.contributor.apolounab.spa.fl_str_mv |
Escobar Jaramillo, Mateo [mateo-escobar-jaramillo] Solarte David, Víctor Alfonso [víctor-alfonso-solarte-david] |
dc.subject.keywords.spa.fl_str_mv |
Biomedical engineering Engineering Medical electronics Biological physics Bioengineering Medical instruments and apparatus Medicine Biomedical Clinical engineering Biomaterials Biocompatibility Bioprinting Degradation Mechanical properties Polymers Biodegradability Polylactic acid Biodegradable plastics Three-dimensional printing |
topic |
Biomedical engineering Engineering Medical electronics Biological physics Bioengineering Medical instruments and apparatus Medicine Biomedical Clinical engineering Biomaterials Biocompatibility Bioprinting Degradation Mechanical properties Polymers Biodegradability Polylactic acid Biodegradable plastics Three-dimensional printing Ingeniería biomédica Ingeniería Biofísica Bioingeniería Medicina Biomédica Ácido poliláctico Plásticos biodegradables Impresión 3D Biomateriales Biocompatibilidad Ingeniería biomédica Ingeniería Bioingeniería Medicina Biomédica Bioimpresión Degradación Propiedades mecánicas Biofísica Biodegradabilidad Polímeros |
dc.subject.lemb.spa.fl_str_mv |
Ingeniería biomédica Ingeniería Biofísica Bioingeniería Medicina Biomédica Ácido poliláctico Plásticos biodegradables Impresión 3D |
dc.subject.proposal.spa.fl_str_mv |
Biomateriales Biocompatibilidad Ingeniería biomédica Ingeniería Bioingeniería Medicina Biomédica Bioimpresión Degradación Propiedades mecánicas Biofísica Biodegradabilidad Polímeros |
description |
En la actualidad la implantación de stents convencionales para el tratamiento de la aterosclerosis plantea diversos desafíos en el ámbito médico, debido a los efectos adversos que pueden surgir tras la implantación. Esto ha impulsado la búsqueda de alternativas más seguras, como los stents biodegradables fabricados con polímeros reabsorbibles, en los que tanto el material como la geometría de las celdas desempeñan un papel importante. Este proyecto tiene como objetivo analizar el efecto de la relación de ácido poliláctico (PLA) y policaprolactona (PCL) en el comportamiento mecánico y el tiempo de degradación de stents impresos en 3D. Para ello, se diseñaron y fabricaron stents con diferentes concentraciones de estos materiales: PLA 100%, PLA 75% PCL 25%, PLA 50% PCL 50%, PLA 25% PCL 75%, y PCL 100%. Estos fueron fabricados teniendo en cuenta la geometría de celda Elixir, la cual fue la que presentó un desempeño destacable durante simulaciones de elementos finitos en comparación a otros diseños conocidos. Las propiedades mecánicas de los stents impresos 3D se analizaron a través de ensayos de tracción, mientras que el proceso de degradación se estudió mediante el cambio de masa y pH en condiciones controladas. |
publishDate |
2025 |
dc.date.accessioned.none.fl_str_mv |
2025-02-20T16:41:36Z |
dc.date.available.none.fl_str_mv |
2025-02-20T16:41:36Z |
dc.date.issued.none.fl_str_mv |
2025-01-23 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.local.spa.fl_str_mv |
Trabajo de Grado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/28412 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UNAB |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.unab.edu.co |
url |
http://hdl.handle.net/20.500.12749/28412 |
identifier_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB reponame:Repositorio Institucional UNAB repourl:https://repository.unab.edu.co |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abbott. (2016). About AbsorbTM. Ahuja, R., Kumari, N., Srivastava, A., Bhati, P., Vashisth, P., Yadav, P. K., Jacob, T., Narang, R., & Bhatnagar, N. (2020). Biocompatibility analysis of PLA based candidate materials for cardiovascular stents in a rat subcutaneous implant model. Acta Histochemica, 122(7), 151615. https://doi.org/10.1016/j.acthis.2020.151615 American Heart Association. (2023). What is atherosclerosis? www.heart.org. https://www.heart.org/en/health-topics/cholesterol/about-cholesterol/atherosclerosis American Society for Testing and Materials (ASTM). (2017). D2990-17. West Conshohocken, Estados Unidos: American Society for Testing and Materials (ASTM). American Society for Testing and Materials (ASTM). (2014). D638-14. West Conshohocken, Estados Unidos: American Society for Testing and Materials (ASTM). American Society for Testing and Materials (ASTM). (2017). F2902-16. West Conshohocken, Estados Unidos: American Society for Testing and Materials (ASTM). Atakok, G., Kam, M., & Koc, H. B. (2022). Tensile, three-point bending and impact strength of 3D printed parts using PLA and recycled PLA filaments: A statistical investigation. Journal of Materials Research and Technology, 18, 1542–1554. https://doi.org/10.1016/j.jmrt.2022.03.013 Benedetta Tomberli, Alessio Mattesini, Giorgio Iacopo Baldereschi, & Carlo Di Mario. (2019). Breve historia de los stents coronarios. Camasão, D. B., & Mantovani, D. (2021). The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A critical review. Materials Today Bio, 10, 100106. https://doi.org/10.1016/j.mtbio.2021.100106 Cardiovascular diseases (CVDs). (2021). World Health Organization (WHO). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) Carvalho, J. R., Conde, G., Antonioli, M. L., Dias, P. P., Vasconcelos, R. O., Taboga, S. R., Ferraz, G. C. (2020). Biocompatibility and biodegradation of poly (lactic acid) (PLA) and an immiscible PLA/poly(ε-caprolactone) (PCL) blend compatibilized by poly(ε-caprolactone-b-tetrahydrofuran) implanted in horses. Polymer Journal, 52, 629-643. doi: https://doi-org.aure.unab.edu.co/10.1038/s41428-020-0308-y Chapa, C., & Díaz, J. (2020). Estudio de Degradación Hidrolítica en Función de la Relación en Masa del Composito Ácido Poliláctico (PLA)-Nanotubos de Carbono Multipared (MWCNT). Memorias Del Congreso Nacional De Ingeniería Biomédica, 7(1), 272–278. Recuperado a partir de https://memoriascnib.mx/index.php/memorias/article/view/773 Chen, C., Xiong, Y., Jiang, W., Wang, Y., Wang, Z., & Chen, Y. (2020). Experimental and Numerical Simulation of Biodegradable Stents with Different Strut Geometries. Cardiovascular Engineering and Technology, 11(1), 36–46. https://doi.org/10.1007/s13239-019-00433-2 Cloyd, J. (2023, 5 de diciembre). Inflammation and heart disease: A functional medicine approach to prevention and treatment. Rupa Health. https://www.rupahealth.com/post/inflammation-and-heart-disease-a-functional-medicine-approach-to-prevention-and-treatment Congreso de la República de Colombia. (1982). Ley 23 de 1982. Bogotá, Colombia: Congreso de la República de Colombia. Congreso de la República de Colombia. (1993). Ley 44 de 1993. Bogotá, Colombia: Congreso de la República de Colombia. Departamento de Biología Funcional y Ciencias de la Salud, Universidad de Vigo. (2023, 29 de abril). Órganos animales. Sistema cardiovascular. Atlas de histología Vegetal y Animal. https://mmegias.webs.uvigo.es Donik, Ž., Nečemer, B., Vesenjak, M., Glodež, S., & Kramberger, J. (2021). Computational Analysis of Mechanical Performance for Composite Polymer Biodegradable Stents. Materials, 14(20), 6016. https://doi.org/10.3390/ma14206016 Donik, Ž., Nečemer, B., Glodež, S., & Kramberger, J. (2022). Finite element analysis of the mechanical performance of a two-layer polymer composite stent structure. Engineering Failure Analysis, 137, 106267. https://doi.org/10.1016/j.engfailanal.2022.106267 Fdez-Obanza Windscheid, E. (2021). El sistema cardiovascular. Sociedade Galega de Cardioloxía. https://www.sogacar.com/el-sistema-cardiovascular/ Ferri Azor, JM., Fenollar Gimeno, OÁ., Jorda-Vilaplana, A., García Sanoguera, D., Balart Gimeno, RA. (2016). Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/polycaprolactone blends. Polymer International. 65(4):453-463. doi:10.1002/pi.5079. Filiciotto, L., & Rothenberg, G. (2020). Biodegradable plastics: Standards, policies, and impacts. ChemSusChem. https://doi.org/10.1002/cssc.202002044 Fontana, L., Minetola, P., Iuliano, L., Rifuggiato, S., Khandpur, M. S., & Stiuso, V. (2022). An investigation of the influence of 3d printing parameters on the tensile strength of PLA material. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.02.078 Fu, J., Su, Y., Qin, Y.-X., Zheng, Y., Wang, Y., & Zhu, D. (2020). Evolution of metallic cardiovascular stent materials: A comparative study among stainless steel, magnesium, and zinc. Biomaterials, 230, 119641. https://doi.org/10.1016/j.biomaterials.2019.119641 Fundación Española del Corazón. (2023). Stent coronario. Salud Cardiovascular - Fundación Española del Corazón. https://fundaciondelcorazon.com/informacion-para-pacientes/tratamientos/stent.html Girrbach, F., Petroff, D., Schulz, S., Hempel, G., Lange, M., Klotz, C., Scherz, S., Giannella-Neto, A., Beda, A., Jardim-Neto, A., Stolzenburg, J.-U., Reske, A. W., Wrigge, H., & Simon, P. (2020). Individualized positive end-expiratory pressure guided by electrical impedance tomography for robot-assisted laparoscopic radical prostatectomy: A prospective, randomized controlled clinical trial. British Journal of Anaesthesia, 125(3), 373–382. https://doi.org/10.1016/j.bja.2020.05.041 Guerra Villacis, J. S., Rachid, S., Narváez Muño, C. P., & Torres Arias, M. (2021). Biopolímeros: Aplicaciones de andamios en medicina regenerativa. Anatomía Digital, 4(3), 6–33. https://doi.org/10.33262/anatomiadigital.v4i3.1754 Guo, Q., Ye, J., Lu, H., Quan, G., Wang, Z., Zhao, Y., & Xie, Y. M. (2024). Design and validation of 3D self-supporting structures and printing paths for multi-axis additive manufacturing. Additive Manufacturing, 104563. https://doi.org/10.1016/j.addma.2024.104563 Gupta, K. K., Ali, S., & Sanghera, R. S. (2018). Pharmacological options in atherosclerosis: A review of the existing evidence. Cardiology and Therapy, 8(1), 5–20. https://doi.org/10.1007/s40119-018-0123-0 Haq, R. H. A., Rahman, M. N. A., Ariffin, A. M. T., Hassan, M. F., Yunos, M. Z., & Adzila, S. (2017). Characterization and Mechanical Analysis of PCL/PLA composites for FDM feedstock filament. IOP Conference Series: Materials Science and Engineering, 226, 012038. https://doi.org/10.1088/1757-899x/226/1/012038 Hashemzadeh, S., Bina, F., Mirkamali Khounsari, H., & Hashemzadeh, S. (2024). Nanotechnology in the development of cardiac stents. Journal of Drug Delivery Science and Technology, 95, 105596. https://doi.org/10.1016/j.jddst.2024.105596 He Cheng, Wang Liang, Chen Guo, & Wang Gang. (2019). Preparation method of 3d printed degradable vascular stent (patent 110115648). Hoffman, M. (2022, 5 de noviembre). Treatments for advanced atherosclerosis. WebMD. https://www.webmd.com/cholesterol-management/treatments-for-advanced-atherosclerosis Hua, W., Shi, W., Mitchell, K., Raymond, L., Coulter, R., Zhao, D., & Jin, Y. (2022). 3D Printing of Biodegradable Polymer Vascular Stents: A Review. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 1(2), 100020. https://doi.org/10.1016/j.cjmeam.2022.100020 Huazhco Lliguicota, S.M. Macancela Allaico, B.D. (2023) “Factores de riesgo de enfermedad cardiovascular. Revisión sistemática”. Universidad Católica de Cuenca. Ibrahim, M. S., Elsisy, M., Nghiem, K., Mohamed, A. F., Kum, C., Cho, J., Chun, Y. (2023). Comprehensive mechanical performance characteristics of newly developed ultra-thin coronary stents. Biomedical Engineering Advances. Kapoor, A., Jepson, N., Bressloff, N. W., Loh, P. H., Ray, T., & Beier, S. (2023). The road to the ideal stent: A review of stent design optimization methods, findings, and opportunities. Materials & Design, 112556. https://doi.org/10.1016/j.matdes.2023.112556 Khalaj Amnieh, S., Mashayekhi, M., Shahnooshi, E., Tavafoghi, M., & Mosaddegh, P. (2021). Biodegradable performance of PLA stents affected by geometrical parameters: The risk of fracture and fragment separation. Journal of Biomechanics, 122, 110489. https://doi.org/10.1016/j.jbiomech.2021.110489 Khatami, M., Doniavi, A., Abazari, A. M., & Fotouhi, M. (2024). Enhancing flexibility and strength-to-weight ratio of polymeric stents: A new variable-thickness design approach. Journal of the Mechanical Behavior of Biomedical Materials, 150, 106262. https://doi.org/10.1016/j.jmbbm.2023.106262 Leal, B. B. J., Wakabayashi, N., Oyama, K., Kamiya, H., Braghirolli, D. I., & Pranke, P. (2021a). Vascular tissue engineering: Polymers and methodologies for small caliber vascular grafts. Frontiers in Cardiovascular Medicine, 7. https://doi.org/10.3389/fcvm.2020.592361 Liu, S., Yu, J., Li, H., Wang, K., Wu, G., Wang, B., Liu, M., Zhang, Y., Wang, P., Zhang, J., Wu, J., Jing, Y., Li, F., & Zhang, M. (2020). Controllable Drug Release Behavior of Polylactic Acid (PLA) Surgical Suture Coating with Ciprofloxacin (CPFX)-Polycaprolactone (PCL)/Polyglycolide (PGA). Polymers, 12(2). https://doi.org/10.3390/polym12020288 Lu, J., Hu, X., Yuan, T., Cao, J., Zhao, Y., Xiong, C., Zhao, J. (2022). 3D-Printed Poly (P-Dioxanone) Stent for Endovascular Application: In Vitro Evaluations. Polymers, 14(9), 1755. https://doi.org/10.3390/polym14091755 Lu, H., Shinzawa, H., & Kazarian, S. G. (2020). Intermolecular interactions in the polymer blends under high-pressure co2 studied using two-dimensional correlation analysis and two-dimensional disrelation mapping. Applied Spectroscopy, 000370282097847. https://doi.org/10.1177/0003702820978473 Madias, N. E. (1986). Lactic acidosis. Kidney International, 29(3), 752-774. https:/doi.org/10.11038/ki.1986.62 Mayo Clinic. (2021, 8 de octubre). Angioplastia coronaria y stents. https://www.mayoclinic.org/es/tests-procedures/coronary-angioplasty/about/pac-20384761 Ministerio de Salud de Colombia. (1993). Resolución 8430 de 1993. Bogotá, Colombia: Ministerio de Salud de Colombia. Ministerio de la Protección Social de Colombia. (2005). Decreto 4725 de 2005. Bogotá, Colombia: Ministerio de la Protección Social. Ministerio de Salud y Protección Social. (2014). Decreto 351 de 2014. Bogotá, Colombia: Ministerio de Salud y Protección social. Ministerio de Salud y Protección Social. (2018). Decreto 1036 de 2018. Bogotá, Colombia: Ministerio de Salud y Protección social. Montaseri, Z., Abolmaali, S. S., Tamaddon, A. M., & Farvadi, F. (2023). Composite silk fibroin hydrogel scaffolds for cartilage tissue regeneration. Journal of Drug Delivery Science and Technology, 79, 104018. https://doi.org/10.1016/j.jddst.2022.104018 Negaresh, M., Javadi, A., & Garmabi, H. (2024). Poly (lactic acid)/ poly(ε-caprolactone) blends: The effect of nanocalcium carbonate and glycidyl methacrylate on interfacial characteristics. Frontiers in Materials, 11. https://doi.org/10.3389/fmats.2024.1377340 Ostafinska, A., Fortelny, I., Nevoralova, M., Hodan, J., Kredatusova, J., & Slouf, M. (2015). Synergistic effects in mechanical properties of PLA/PCL blends with optimized composition, processing, and morphology. RSC Advances, 5(120), 98971–98982. https://doi.org/10.1039/c5ra21178f Palomares Ruiz, J., Rodriguez Madrigal, M., Castro Lugo, J., Ramirez Treviño, A., & Rodriguez Soto, A. (2015). Modelación y simulación de la arteria aorta a partir de datos clínicos utilizando un modelo fraccional viscoelástico y el método del elemento finito. Revista Mexicana de Ingeniería Biomédica, 36(3), 207–219. https://doi.org/10.17488/rmib.36.3.1 Pan, C., Han, Y., & Lu, J. (2021). Structural design of vascular stents: A review. Micromachines, 12(7), 770. https://doi.org/10.3390/mi12070770 Pereira-Lobato, C., Echeverry-Rendón, M., Fernández-Blázquez, J. P., Llorca, J., & González, C. (2024). PLA/PCL composites manufactured from commingled yarns for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 106819. https://doi.org/10.1016/j.jmbbm.2024.106819 Posada, J. C., & Montes-Florez, E. (2021). Revisión: Materiales poliméricos biodegradables y su aplicación en diferentes sectores industriales. Informador Técnico, 86(1), 96. https://doi.org/10.23850/22565035.3417 Puentes Tapia, M. (2020). Propiedades, métodos de síntesis y aplicaciones de la policaprolactona. Universidad de los Andes. Qiu, T. Y., Zhao, L. G., & Song, M. (2019). A Computational Study of Mechanical Performance of Bioresorbable Polymeric Stents with Design Variations. Cardiovascular Engineering and Technology, 10(1), 46–60. https://doi.org/10.1007/s13239-018-00397-9 Rana, M. M., & Melancon, M. P. (2022). Emerging Polymer Materials in Trackable Endovascular Embolization and Cell Delivery: From Hype to Hope. Biomimetics (Basel, Switzerland), 7(2). https://doi.org/10.3390/biomimetics7020077 Ranakoti, L., Gangil, B., Mishra, S. K., Singh, T., Sharma, S., Ilyas, R. A., & El-Khatib, S. (2022). Critical review on polylactic acid: Properties, structure, processing, biocomposites, and nanocomposites. Materials, 15(12), 4312. https://doi.org/10.3390/ma15124312 Rodríguez Alba, E., Bernal Dubón, A. E., Gaitán López, H. E., Kim Godoy, C. A., Salguero Mérida, J. B., Toledo Hernández, E. M., Martínez Richa, A. (2021). La Ciencia de los Polímeros Biodegradables. Jóvenes en la ciencia, (10). http://repositorio.ugto.mx/handle/20.500.12059/6021 Rodriguez González, C. I., Gonzalez Rey, G., Villa Martínez, F. A., & Herrera Pérez, G. A. (2019). Ensayo de tracción según Norma ISO 597-2 para probetas fabricadas con ácido poliláctico mediante técnicas aditivas. Capital Intelectual, 8 - 11. Rogošić, M., Mencer, H. J., & Gomzi, Z. (1996). Polydispersity index and molecular weight distributions of polymers. European Polymer Journal, 32(11), 1337–1344. https://doi.org/10.1016/S0014-3057(96)00091-2 Sousa, A. M., Amaro, A. M., & Piedade, A. P. (2024). Structural design optimization through finite element analysis of additive manufactured bioresorbable polymeric stents. Materials Today Chemistry, 36, 101972. https://doi.org/10.1016/j.mtchem.2024.101972 Selvakumar, P. P., Rafuse, M. S., Johnson, R., & Tan, W. (2022). Applying principles of regenerative medicine to vascular stent development. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/fbioe.2022.826807 Shen, Y., Yu, X., Cui, J., Yu, F., Liu, M., Chen, Y., Wu, J., Sun, B., & Mo, X. (2022). Development of biodegradable polymeric stents for the treatment of cardiovascular diseases. Biomolecules, 12(9), 1245. https://doi.org/10.3390/biom12091245 Sociedad Latinoamericana de Cardiología Intervencionista. (2022). Resultado a 3 años luego de ATC con técnica de 2 stents vs Provisional stent por bifurcaciones complejas [Imagen]. SOLACI. https://solaci.org/2022/07/12/resultado-a-3-anos-luego-de-atc-con-tecnica-de-2-stents-vs-provisional-stent-por-bifurcaciones-complejas/ Stanford Medicine Children's Health. (s.f.). Atherosclerosis. https://www.stanfordchildrens.org/es/topic/default?id=atherosclerosis-85-P03320 Sun Dajun, Li Yezhou & Yin Dexin. (2019). CARDIOVASCULAR STENT (Patent 109876198). The International Organization for Standardization (ISO. (2019). ISO 35001:2019. The International Organization for Standardization (ISO). The International Organization for Standardization (ISO). (2010). ISO 10993-13. The International Organization for Standardization. The National Heart, Lung, and Blood Institute. (2022, 13 de mayo). ¿Qué es la aterosclerosis? NHLBI, NIH. https://www.nhlbi.nih.gov/es/salud/aterosclerosis Tidwell, K., Harriet, S., Barot, V., Bauer, A., Vaughan, M. B., & Hossan, M. R. (2021). Design and Analysis of a Biodegradable Polycaprolactone Flow Diverting Stent for Brain Aneurysms. Bioengineering, 8(11), 183. https://doi.org/10.3390/bioengineering8110183 Torki, M. M., Hassanajili, S., & Jalisi, M. M. (2020). Design optimizations of PLA stent structure by FEM and investigating its function in a simulated plaque artery. Mathematics and Computers in Simulation, 169, 103–116. https://doi.org/10.1016/j.matcom.2019.09.011 Tong, X., Zhang, Z., Fu, K., Li, Y., Cao, B., Wang, W., & Chen, B. (2023). Achieving high mechanical properties of biodegradable vascular stents by four-axis 3D printing system and heat treatment. Materials Letters, 341, 134261. https://doi.org/10.1016/j.matlet.2023.134261 Velasco, E. G., & Revelo, D. A. (2019). 3D printing: the new industrial revolution. I+ T+ C- Research, Technology and Science, 1(13), 60–71. Retrieved from https://revistas.unicomfacauca.edu.co/ojs/index.php/itc/article/view/itc2019_pag_60_71 Wachirahuttapong, S., Thongpin, C., & Sombatsompop, N. (2016). Effect of PCL and compatibility contents on the morphology, crystallization and mechanical properties of PLA/PCL blends. Energy Procedia, 89, 198–206. https://doi.org/10.1016/j.egypro.2016.05.026 Wen, Y., Li, Y., Yang, R., Chen, Y., Shen, Y., Liu, Y., Liu, X., Zhang, B., & Li, H. (2024). Biofunctional coatings and drug-coated stents for restenosis therapy. Materials Today Bio, 101259. https://doi.org/10.1016/j.mtbio.2024.101259 Zaaba, N. F., & Jaafar, M. (2020). A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation. Polymer Engineering & Science, 60(9), 2061–2075. https://doi.org/10.1002/pen.25511 Zong, J., He, Q., Liu, Y., Qiu, M., Wu, J., & Hu, B. (2022). Advances in the development of biodegradable coronary stents: A translational perspective. Materials Today Bio, 100368. https://doi.org/10.1016/j.mtbio.2022.100368 |
dc.relation.uriapolo.spa.fl_str_mv |
https://apolo.unab.edu.co/en/persons/mateo-escobar-jaramillo |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.creativecommons.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) Atribución-NoComercial-SinDerivadas 2.5 Colombia http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.spatial.spa.fl_str_mv |
Colombia |
dc.coverage.campus.spa.fl_str_mv |
UNAB Campus Bucaramanga |
dc.publisher.grantor.spa.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.publisher.faculty.spa.fl_str_mv |
Facultad Ingeniería |
dc.publisher.program.spa.fl_str_mv |
Pregrado Ingeniería Biomédica |
dc.publisher.programid.none.fl_str_mv |
IBM-1788 |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/28412/1/Tesis.pdf https://repository.unab.edu.co/bitstream/20.500.12749/28412/7/Licencia.pdf https://repository.unab.edu.co/bitstream/20.500.12749/28412/6/license.txt https://repository.unab.edu.co/bitstream/20.500.12749/28412/8/Tesis.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/28412/9/Licencia.pdf.jpg |
bitstream.checksum.fl_str_mv |
73b4cd488f4c01849045d470a7284027 84a770428a08eba6f04edbeb633fa413 3755c0cfdb77e29f2b9125d7a45dd316 dfa9233be83c1f9c97adc8a49395b066 87913060cc2bb1f2dbf93897611af529 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1828219962105266176 |
spelling |
Escobar Jaramillo, Mateo31eabdd6-4590-4974-871d-59ac3ef11d25Solarte David, Víctor Alfonso54590e96-eda3-4b43-9ffa-14bd35ed7d08Barrientos Contreras, Ana Maríafaae02e2-d5e9-4125-9b26-6afece2e44f8Manjarres Campo, Shanny Esther3b56e7de-404e-4019-abd1-4d6ec79d6648Serrano Jaimes, María Victoria46ca0f5b-213a-499c-a4ee-43ff71012221Escobar Jaramillo, Mateo [0001468933]Solarte David, Víctor Alfonso [1329391]Escobar Jaramillo, Mateo [es&oi=ao]Solarte David, Víctor Alfonso [0000-0002-9856-1484]Escobar Jaramillo, Mateo [mateo-escobar-jaramillo]Solarte David, Víctor Alfonso [víctor-alfonso-solarte-david]ColombiaUNAB Campus Bucaramanga2025-02-20T16:41:36Z2025-02-20T16:41:36Z2025-01-23http://hdl.handle.net/20.500.12749/28412instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coEn la actualidad la implantación de stents convencionales para el tratamiento de la aterosclerosis plantea diversos desafíos en el ámbito médico, debido a los efectos adversos que pueden surgir tras la implantación. Esto ha impulsado la búsqueda de alternativas más seguras, como los stents biodegradables fabricados con polímeros reabsorbibles, en los que tanto el material como la geometría de las celdas desempeñan un papel importante. Este proyecto tiene como objetivo analizar el efecto de la relación de ácido poliláctico (PLA) y policaprolactona (PCL) en el comportamiento mecánico y el tiempo de degradación de stents impresos en 3D. Para ello, se diseñaron y fabricaron stents con diferentes concentraciones de estos materiales: PLA 100%, PLA 75% PCL 25%, PLA 50% PCL 50%, PLA 25% PCL 75%, y PCL 100%. Estos fueron fabricados teniendo en cuenta la geometría de celda Elixir, la cual fue la que presentó un desempeño destacable durante simulaciones de elementos finitos en comparación a otros diseños conocidos. Las propiedades mecánicas de los stents impresos 3D se analizaron a través de ensayos de tracción, mientras que el proceso de degradación se estudió mediante el cambio de masa y pH en condiciones controladas.CAPITULO I ........................................................................................................................17 Aspectos Generales...............................................................................................................17 Descripción del problema.......................................................................................................... 17 Justificación............................................................................................................................... 18 Pregunta problema..................................................................................................................... 19 Objetivos................................................................................................................................... 20 Objetivo General.................................................................................................................... 20 Objetivos Específicos............................................................................................................ 20 Limitaciones y delimitaciones................................................................................................... 20 CAPITULO II.......................................................................................................................22 Marco Teórico, Marco Legal y Estado del Arte....................................................................22 Marco Teórico ........................................................................................................................... 22 Generalidades del Sistema Cardiovascular............................................................................ 22 Stents ..................................................................................................................................... 25 Impresión 3D ......................................................................................................................... 26 Polímeros biodegradables...................................................................................................... 28 PLA y PCL en aplicaciones cardiovasculares ....................................................................... 29 Marco Legal .............................................................................................................................. 30 Normas Nacionales................................................................................................................ 31 Ley 23 de 1982................................................................................................................... 31 Resolución 8430 de 1993................................................................................................... 31 Decreto 4725 de 2005 ........................................................................................................ 31 Decreto 351 de 2014 .......................................................................................................... 32 Decreto 1036 de 2018 ........................................................................................................ 32 Normas Internacionales......................................................................................................... 32 Norma internacional ISO 10993-13................................................................................... 32 Norma internacional ISO 35001-19................................................................................... 32 Norma internacional ASTM D638-14 ............................................................................... 33 Norma internacional ASTM F2902-16 .............................................................................. 33 Norma internacional ASTM D2990-17 ............................................................................. 33 Estado del Arte .......................................................................................................................... 34 CAPITULO III......................................................................................................................36 Metodología ..........................................................................................................................36 Materiales.................................................................................................................................. 36 Métodos..................................................................................................................................... 36 Selección de geometría a replicar.......................................................................................... 36 Revisión de literatura ......................................................................................................... 36 Replicado de los diseños preseleccionados por medio de software CAD ......................... 37 Aplicación del análisis de elementos finitos en los diseños replicados............................. 39 Determinación de la geometría con el mejor comportamiento mecánico.......................... 40 Creación de pellets................................................................................................................. 41 Fabricación de pellets ........................................................................................................ 41 Caracterización dimensional de los pellets........................................................................ 42 Fabricación de mallas de stents............................................................................................. 42 Aplicación de pruebas mecánicas en los stents..................................................................... 43 Aplicación de pruebas de degradación en los stents.............................................................. 45 Análisis estadístico.................................................................................................................... 46 CAPITULO IV......................................................................................................................49 Resultados y Discusión.........................................................................................................49 Selección de geometría a replicar.......................................................................................... 49 Revisión de literatura ......................................................................................................... 49 Replicado de los diseños preseleccionados por medio de software CAD ......................... 49 Aplicación del análisis de elementos finitos en los diseños replicados............................. 51 Determinación de la geometría con el mejor comportamiento mecánico.......................... 59 Creación de pellets ................................................................................................................ 59 Fabricación de pellets ........................................................................................................ 59 Fabricación de stents.......................................................................................................... 62 Aplicación de pruebas mecánicas en los stents impresos...................................................... 64 Aplicación de ensayos de degradación en los stents impresos.............................................. 68 Ensayos de degradación mediante la evaluación del cambio de masa .............................. 68 Ensayos de degradación mediante la evaluación del cambio de pH.................................. 71 Análisis estadístico ................................................................................................................ 73 Análisis Descriptivo........................................................................................................... 73 Análisis ANOVA................................................................................................................ 77 CAPITULO V.......................................................................................................................81 Conclusiones y recomendaciones.........................................................................................81 Bibliografía ...........................................................................................................................84PregradoCurrently, the implantation of conventional stents for the treatment of atherosclerosis has several challenges in the medical field, due to the adverse effects that can arise after implantation. This has prompted the search for safer alternatives, such as biodegradable stents made of resorbable polymers, in which both the material and the geometry of the cells play an important role. This project aims to analyze the effect of the ratio of polylactic acid (PLA) and polycaprolactone (PCL) on the mechanical behavior and degradation time of 3D printed stents. For this purpose, stents were designed and fabricated with different concentrations of these materials: PLA 100%, PLA 75% PCL 25%, PLA 50% PCL 50%, PLA 25% PCL 75%, and PCL 100%. These were fabricated considering the Elixir cell geometry, which was the one that presented outstanding performance during finite element simulations compared to other known designs. The mechanical properties of the 3D printed stents were analyzed through tensile tests, while the degradation process was studied by mass and pH change under controlled conditions.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Efecto del compuesto ácido poliláctico/policaprolactona y la geometría en stents biodegradables impresos 3D para el tratamiento de aterosclerosisEffect of Polylactic Acid/Polycaprolactone composite and geometry on 3D printed biodegradable stents for atherosclerosis treatmentIngeniero BiomédicoUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaPregrado Ingeniería BiomédicaIBM-1788info:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/acceptedVersionhttp://purl.org/redcol/resource_type/TPBiomedical engineeringEngineeringMedical electronicsBiological physicsBioengineeringMedical instruments and apparatusMedicineBiomedicalClinical engineeringBiomaterialsBiocompatibilityBioprintingDegradationMechanical propertiesPolymersBiodegradabilityPolylactic acidBiodegradable plasticsThree-dimensional printingIngeniería biomédicaIngenieríaBiofísicaBioingenieríaMedicinaBiomédicaÁcido polilácticoPlásticos biodegradablesImpresión 3DBiomaterialesBiocompatibilidadIngeniería biomédicaIngenieríaBioingenieríaMedicinaBiomédicaBioimpresiónDegradaciónPropiedades mecánicasBiofísicaBiodegradabilidadPolímerosAbbott. (2016). About AbsorbTM.Ahuja, R., Kumari, N., Srivastava, A., Bhati, P., Vashisth, P., Yadav, P. K., Jacob, T., Narang, R., & Bhatnagar, N. (2020). Biocompatibility analysis of PLA based candidate materials for cardiovascular stents in a rat subcutaneous implant model. Acta Histochemica, 122(7), 151615. https://doi.org/10.1016/j.acthis.2020.151615American Heart Association. (2023). What is atherosclerosis? www.heart.org. https://www.heart.org/en/health-topics/cholesterol/about-cholesterol/atherosclerosisAmerican Society for Testing and Materials (ASTM). (2017). D2990-17. West Conshohocken, Estados Unidos: American Society for Testing and Materials (ASTM).American Society for Testing and Materials (ASTM). (2014). D638-14. West Conshohocken, Estados Unidos: American Society for Testing and Materials (ASTM).American Society for Testing and Materials (ASTM). (2017). F2902-16. West Conshohocken, Estados Unidos: American Society for Testing and Materials (ASTM).Atakok, G., Kam, M., & Koc, H. B. (2022). Tensile, three-point bending and impact strength of 3D printed parts using PLA and recycled PLA filaments: A statistical investigation. Journal of Materials Research and Technology, 18, 1542–1554. https://doi.org/10.1016/j.jmrt.2022.03.013Benedetta Tomberli, Alessio Mattesini, Giorgio Iacopo Baldereschi, & Carlo Di Mario. (2019). Breve historia de los stents coronarios.Camasão, D. B., & Mantovani, D. (2021). The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A critical review. Materials Today Bio, 10, 100106. https://doi.org/10.1016/j.mtbio.2021.100106Cardiovascular diseases (CVDs). (2021). World Health Organization (WHO). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)Carvalho, J. R., Conde, G., Antonioli, M. L., Dias, P. P., Vasconcelos, R. O., Taboga, S. R., Ferraz, G. C. (2020). Biocompatibility and biodegradation of poly (lactic acid) (PLA) and an immiscible PLA/poly(ε-caprolactone) (PCL) blend compatibilized by poly(ε-caprolactone-b-tetrahydrofuran) implanted in horses. Polymer Journal, 52, 629-643. doi: https://doi-org.aure.unab.edu.co/10.1038/s41428-020-0308-yChapa, C., & Díaz, J. (2020). Estudio de Degradación Hidrolítica en Función de la Relación en Masa del Composito Ácido Poliláctico (PLA)-Nanotubos de Carbono Multipared (MWCNT). Memorias Del Congreso Nacional De Ingeniería Biomédica, 7(1), 272–278. Recuperado a partir de https://memoriascnib.mx/index.php/memorias/article/view/773Chen, C., Xiong, Y., Jiang, W., Wang, Y., Wang, Z., & Chen, Y. (2020). Experimental and Numerical Simulation of Biodegradable Stents with Different Strut Geometries. Cardiovascular Engineering and Technology, 11(1), 36–46. https://doi.org/10.1007/s13239-019-00433-2Cloyd, J. (2023, 5 de diciembre). Inflammation and heart disease: A functional medicine approach to prevention and treatment. Rupa Health. https://www.rupahealth.com/post/inflammation-and-heart-disease-a-functional-medicine-approach-to-prevention-and-treatmentCongreso de la República de Colombia. (1982). Ley 23 de 1982. Bogotá, Colombia: Congreso de la República de Colombia.Congreso de la República de Colombia. (1993). Ley 44 de 1993. Bogotá, Colombia: Congreso de la República de Colombia.Departamento de Biología Funcional y Ciencias de la Salud, Universidad de Vigo. (2023, 29 de abril). Órganos animales. Sistema cardiovascular. Atlas de histología Vegetal y Animal. https://mmegias.webs.uvigo.esDonik, Ž., Nečemer, B., Vesenjak, M., Glodež, S., & Kramberger, J. (2021). Computational Analysis of Mechanical Performance for Composite Polymer Biodegradable Stents. Materials, 14(20), 6016. https://doi.org/10.3390/ma14206016Donik, Ž., Nečemer, B., Glodež, S., & Kramberger, J. (2022). Finite element analysis of the mechanical performance of a two-layer polymer composite stent structure. Engineering Failure Analysis, 137, 106267. https://doi.org/10.1016/j.engfailanal.2022.106267Fdez-Obanza Windscheid, E. (2021). El sistema cardiovascular. Sociedade Galega de Cardioloxía. https://www.sogacar.com/el-sistema-cardiovascular/Ferri Azor, JM., Fenollar Gimeno, OÁ., Jorda-Vilaplana, A., García Sanoguera, D., Balart Gimeno, RA. (2016). Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/polycaprolactone blends. Polymer International. 65(4):453-463. doi:10.1002/pi.5079.Filiciotto, L., & Rothenberg, G. (2020). Biodegradable plastics: Standards, policies, and impacts. ChemSusChem. https://doi.org/10.1002/cssc.202002044Fontana, L., Minetola, P., Iuliano, L., Rifuggiato, S., Khandpur, M. S., & Stiuso, V. (2022). An investigation of the influence of 3d printing parameters on the tensile strength of PLA material. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.02.078Fu, J., Su, Y., Qin, Y.-X., Zheng, Y., Wang, Y., & Zhu, D. (2020). Evolution of metallic cardiovascular stent materials: A comparative study among stainless steel, magnesium, and zinc. Biomaterials, 230, 119641. https://doi.org/10.1016/j.biomaterials.2019.119641Fundación Española del Corazón. (2023). Stent coronario. Salud Cardiovascular - Fundación Española del Corazón. https://fundaciondelcorazon.com/informacion-para-pacientes/tratamientos/stent.htmlGirrbach, F., Petroff, D., Schulz, S., Hempel, G., Lange, M., Klotz, C., Scherz, S., Giannella-Neto, A., Beda, A., Jardim-Neto, A., Stolzenburg, J.-U., Reske, A. W., Wrigge, H., & Simon, P. (2020). Individualized positive end-expiratory pressure guided by electrical impedance tomography for robot-assisted laparoscopic radical prostatectomy: A prospective, randomized controlled clinical trial. British Journal of Anaesthesia, 125(3), 373–382. https://doi.org/10.1016/j.bja.2020.05.041Guerra Villacis, J. S., Rachid, S., Narváez Muño, C. P., & Torres Arias, M. (2021). Biopolímeros: Aplicaciones de andamios en medicina regenerativa. Anatomía Digital, 4(3), 6–33. https://doi.org/10.33262/anatomiadigital.v4i3.1754Guo, Q., Ye, J., Lu, H., Quan, G., Wang, Z., Zhao, Y., & Xie, Y. M. (2024). Design and validation of 3D self-supporting structures and printing paths for multi-axis additive manufacturing. Additive Manufacturing, 104563. https://doi.org/10.1016/j.addma.2024.104563Gupta, K. K., Ali, S., & Sanghera, R. S. (2018). Pharmacological options in atherosclerosis: A review of the existing evidence. Cardiology and Therapy, 8(1), 5–20. https://doi.org/10.1007/s40119-018-0123-0Haq, R. H. A., Rahman, M. N. A., Ariffin, A. M. T., Hassan, M. F., Yunos, M. Z., & Adzila, S. (2017). Characterization and Mechanical Analysis of PCL/PLA composites for FDM feedstock filament. IOP Conference Series: Materials Science and Engineering, 226, 012038. https://doi.org/10.1088/1757-899x/226/1/012038Hashemzadeh, S., Bina, F., Mirkamali Khounsari, H., & Hashemzadeh, S. (2024). Nanotechnology in the development of cardiac stents. Journal of Drug Delivery Science and Technology, 95, 105596. https://doi.org/10.1016/j.jddst.2024.105596He Cheng, Wang Liang, Chen Guo, & Wang Gang. (2019). Preparation method of 3d printed degradable vascular stent (patent 110115648).Hoffman, M. (2022, 5 de noviembre). Treatments for advanced atherosclerosis. WebMD. https://www.webmd.com/cholesterol-management/treatments-for-advanced-atherosclerosisHua, W., Shi, W., Mitchell, K., Raymond, L., Coulter, R., Zhao, D., & Jin, Y. (2022). 3D Printing of Biodegradable Polymer Vascular Stents: A Review. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 1(2), 100020. https://doi.org/10.1016/j.cjmeam.2022.100020Huazhco Lliguicota, S.M. Macancela Allaico, B.D. (2023) “Factores de riesgo de enfermedad cardiovascular. Revisión sistemática”. Universidad Católica de Cuenca.Ibrahim, M. S., Elsisy, M., Nghiem, K., Mohamed, A. F., Kum, C., Cho, J., Chun, Y. (2023). Comprehensive mechanical performance characteristics of newly developed ultra-thin coronary stents. Biomedical Engineering Advances.Kapoor, A., Jepson, N., Bressloff, N. W., Loh, P. H., Ray, T., & Beier, S. (2023). The road to the ideal stent: A review of stent design optimization methods, findings, and opportunities. Materials & Design, 112556. https://doi.org/10.1016/j.matdes.2023.112556Khalaj Amnieh, S., Mashayekhi, M., Shahnooshi, E., Tavafoghi, M., & Mosaddegh, P. (2021). Biodegradable performance of PLA stents affected by geometrical parameters: The risk of fracture and fragment separation. Journal of Biomechanics, 122, 110489. https://doi.org/10.1016/j.jbiomech.2021.110489Khatami, M., Doniavi, A., Abazari, A. M., & Fotouhi, M. (2024). Enhancing flexibility and strength-to-weight ratio of polymeric stents: A new variable-thickness design approach. Journal of the Mechanical Behavior of Biomedical Materials, 150, 106262. https://doi.org/10.1016/j.jmbbm.2023.106262Leal, B. B. J., Wakabayashi, N., Oyama, K., Kamiya, H., Braghirolli, D. I., & Pranke, P. (2021a). Vascular tissue engineering: Polymers and methodologies for small caliber vascular grafts. Frontiers in Cardiovascular Medicine, 7. https://doi.org/10.3389/fcvm.2020.592361Liu, S., Yu, J., Li, H., Wang, K., Wu, G., Wang, B., Liu, M., Zhang, Y., Wang, P., Zhang, J., Wu, J., Jing, Y., Li, F., & Zhang, M. (2020). Controllable Drug Release Behavior of Polylactic Acid (PLA) Surgical Suture Coating with Ciprofloxacin (CPFX)-Polycaprolactone (PCL)/Polyglycolide (PGA). Polymers, 12(2). https://doi.org/10.3390/polym12020288Lu, J., Hu, X., Yuan, T., Cao, J., Zhao, Y., Xiong, C., Zhao, J. (2022). 3D-Printed Poly (P-Dioxanone) Stent for Endovascular Application: In Vitro Evaluations. Polymers, 14(9), 1755. https://doi.org/10.3390/polym14091755Lu, H., Shinzawa, H., & Kazarian, S. G. (2020). Intermolecular interactions in the polymer blends under high-pressure co2 studied using two-dimensional correlation analysis and two-dimensional disrelation mapping. Applied Spectroscopy, 000370282097847. https://doi.org/10.1177/0003702820978473Madias, N. E. (1986). Lactic acidosis. Kidney International, 29(3), 752-774. https:/doi.org/10.11038/ki.1986.62Mayo Clinic. (2021, 8 de octubre). Angioplastia coronaria y stents. https://www.mayoclinic.org/es/tests-procedures/coronary-angioplasty/about/pac-20384761Ministerio de Salud de Colombia. (1993). Resolución 8430 de 1993. Bogotá, Colombia: Ministerio de Salud de Colombia.Ministerio de la Protección Social de Colombia. (2005). Decreto 4725 de 2005. Bogotá, Colombia: Ministerio de la Protección Social.Ministerio de Salud y Protección Social. (2014). Decreto 351 de 2014. Bogotá, Colombia: Ministerio de Salud y Protección social.Ministerio de Salud y Protección Social. (2018). Decreto 1036 de 2018. Bogotá, Colombia: Ministerio de Salud y Protección social.Montaseri, Z., Abolmaali, S. S., Tamaddon, A. M., & Farvadi, F. (2023). Composite silk fibroin hydrogel scaffolds for cartilage tissue regeneration. Journal of Drug Delivery Science and Technology, 79, 104018. https://doi.org/10.1016/j.jddst.2022.104018Negaresh, M., Javadi, A., & Garmabi, H. (2024). Poly (lactic acid)/ poly(ε-caprolactone) blends: The effect of nanocalcium carbonate and glycidyl methacrylate on interfacial characteristics. Frontiers in Materials, 11. https://doi.org/10.3389/fmats.2024.1377340Ostafinska, A., Fortelny, I., Nevoralova, M., Hodan, J., Kredatusova, J., & Slouf, M. (2015). Synergistic effects in mechanical properties of PLA/PCL blends with optimized composition, processing, and morphology. RSC Advances, 5(120), 98971–98982. https://doi.org/10.1039/c5ra21178fPalomares Ruiz, J., Rodriguez Madrigal, M., Castro Lugo, J., Ramirez Treviño, A., & Rodriguez Soto, A. (2015). Modelación y simulación de la arteria aorta a partir de datos clínicos utilizando un modelo fraccional viscoelástico y el método del elemento finito. Revista Mexicana de Ingeniería Biomédica, 36(3), 207–219. https://doi.org/10.17488/rmib.36.3.1Pan, C., Han, Y., & Lu, J. (2021). Structural design of vascular stents: A review. Micromachines, 12(7), 770. https://doi.org/10.3390/mi12070770Pereira-Lobato, C., Echeverry-Rendón, M., Fernández-Blázquez, J. P., Llorca, J., & González, C. (2024). PLA/PCL composites manufactured from commingled yarns for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials, 106819. https://doi.org/10.1016/j.jmbbm.2024.106819Posada, J. C., & Montes-Florez, E. (2021). Revisión: Materiales poliméricos biodegradables y su aplicación en diferentes sectores industriales. Informador Técnico, 86(1), 96. https://doi.org/10.23850/22565035.3417Puentes Tapia, M. (2020). Propiedades, métodos de síntesis y aplicaciones de la policaprolactona. Universidad de los Andes.Qiu, T. Y., Zhao, L. G., & Song, M. (2019). A Computational Study of Mechanical Performance of Bioresorbable Polymeric Stents with Design Variations. Cardiovascular Engineering and Technology, 10(1), 46–60. https://doi.org/10.1007/s13239-018-00397-9Rana, M. M., & Melancon, M. P. (2022). Emerging Polymer Materials in Trackable Endovascular Embolization and Cell Delivery: From Hype to Hope. Biomimetics (Basel, Switzerland), 7(2). https://doi.org/10.3390/biomimetics7020077Ranakoti, L., Gangil, B., Mishra, S. K., Singh, T., Sharma, S., Ilyas, R. A., & El-Khatib, S. (2022). Critical review on polylactic acid: Properties, structure, processing, biocomposites, and nanocomposites. Materials, 15(12), 4312. https://doi.org/10.3390/ma15124312Rodríguez Alba, E., Bernal Dubón, A. E., Gaitán López, H. E., Kim Godoy, C. A., Salguero Mérida, J. B., Toledo Hernández, E. M., Martínez Richa, A. (2021). La Ciencia de los Polímeros Biodegradables. Jóvenes en la ciencia, (10). http://repositorio.ugto.mx/handle/20.500.12059/6021Rodriguez González, C. I., Gonzalez Rey, G., Villa Martínez, F. A., & Herrera Pérez, G. A. (2019). Ensayo de tracción según Norma ISO 597-2 para probetas fabricadas con ácido poliláctico mediante técnicas aditivas. Capital Intelectual, 8 - 11.Rogošić, M., Mencer, H. J., & Gomzi, Z. (1996). Polydispersity index and molecular weight distributions of polymers. European Polymer Journal, 32(11), 1337–1344. https://doi.org/10.1016/S0014-3057(96)00091-2Sousa, A. M., Amaro, A. M., & Piedade, A. P. (2024). Structural design optimization through finite element analysis of additive manufactured bioresorbable polymeric stents. Materials Today Chemistry, 36, 101972. https://doi.org/10.1016/j.mtchem.2024.101972Selvakumar, P. P., Rafuse, M. S., Johnson, R., & Tan, W. (2022). Applying principles of regenerative medicine to vascular stent development. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/fbioe.2022.826807Shen, Y., Yu, X., Cui, J., Yu, F., Liu, M., Chen, Y., Wu, J., Sun, B., & Mo, X. (2022). Development of biodegradable polymeric stents for the treatment of cardiovascular diseases. Biomolecules, 12(9), 1245. https://doi.org/10.3390/biom12091245Sociedad Latinoamericana de Cardiología Intervencionista. (2022). Resultado a 3 años luego de ATC con técnica de 2 stents vs Provisional stent por bifurcaciones complejas [Imagen]. SOLACI. https://solaci.org/2022/07/12/resultado-a-3-anos-luego-de-atc-con-tecnica-de-2-stents-vs-provisional-stent-por-bifurcaciones-complejas/Stanford Medicine Children's Health. (s.f.). Atherosclerosis. https://www.stanfordchildrens.org/es/topic/default?id=atherosclerosis-85-P03320Sun Dajun, Li Yezhou & Yin Dexin. (2019). CARDIOVASCULAR STENT (Patent 109876198).The International Organization for Standardization (ISO. (2019). ISO 35001:2019. The International Organization for Standardization (ISO).The International Organization for Standardization (ISO). (2010). ISO 10993-13. The International Organization for Standardization.The National Heart, Lung, and Blood Institute. (2022, 13 de mayo). ¿Qué es la aterosclerosis? NHLBI, NIH. https://www.nhlbi.nih.gov/es/salud/aterosclerosisTidwell, K., Harriet, S., Barot, V., Bauer, A., Vaughan, M. B., & Hossan, M. R. (2021). Design and Analysis of a Biodegradable Polycaprolactone Flow Diverting Stent for Brain Aneurysms. Bioengineering, 8(11), 183. https://doi.org/10.3390/bioengineering8110183Torki, M. M., Hassanajili, S., & Jalisi, M. M. (2020). Design optimizations of PLA stent structure by FEM and investigating its function in a simulated plaque artery. Mathematics and Computers in Simulation, 169, 103–116. https://doi.org/10.1016/j.matcom.2019.09.011Tong, X., Zhang, Z., Fu, K., Li, Y., Cao, B., Wang, W., & Chen, B. (2023). Achieving high mechanical properties of biodegradable vascular stents by four-axis 3D printing system and heat treatment. Materials Letters, 341, 134261. https://doi.org/10.1016/j.matlet.2023.134261Velasco, E. G., & Revelo, D. A. (2019). 3D printing: the new industrial revolution. I+ T+ C- Research, Technology and Science, 1(13), 60–71. Retrieved from https://revistas.unicomfacauca.edu.co/ojs/index.php/itc/article/view/itc2019_pag_60_71Wachirahuttapong, S., Thongpin, C., & Sombatsompop, N. (2016). Effect of PCL and compatibility contents on the morphology, crystallization and mechanical properties of PLA/PCL blends. Energy Procedia, 89, 198–206. https://doi.org/10.1016/j.egypro.2016.05.026Wen, Y., Li, Y., Yang, R., Chen, Y., Shen, Y., Liu, Y., Liu, X., Zhang, B., & Li, H. (2024). Biofunctional coatings and drug-coated stents for restenosis therapy. Materials Today Bio, 101259. https://doi.org/10.1016/j.mtbio.2024.101259Zaaba, N. F., & Jaafar, M. (2020). A review on degradation mechanisms of polylactic acid: Hydrolytic, photodegradative, microbial, and enzymatic degradation. Polymer Engineering & Science, 60(9), 2061–2075. https://doi.org/10.1002/pen.25511Zong, J., He, Q., Liu, Y., Qiu, M., Wu, J., & Hu, B. (2022). Advances in the development of biodegradable coronary stents: A translational perspective. Materials Today Bio, 100368. https://doi.org/10.1016/j.mtbio.2022.100368https://apolo.unab.edu.co/en/persons/mateo-escobar-jaramilloORIGINALTesis.pdfTesis.pdfTesisapplication/pdf5766899https://repository.unab.edu.co/bitstream/20.500.12749/28412/1/Tesis.pdf73b4cd488f4c01849045d470a7284027MD51open accessLicencia.pdfLicencia.pdfLicenciaapplication/pdf659427https://repository.unab.edu.co/bitstream/20.500.12749/28412/7/Licencia.pdf84a770428a08eba6f04edbeb633fa413MD57metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8829https://repository.unab.edu.co/bitstream/20.500.12749/28412/6/license.txt3755c0cfdb77e29f2b9125d7a45dd316MD56open accessTHUMBNAILTesis.pdf.jpgTesis.pdf.jpgIM Thumbnailimage/jpeg4989https://repository.unab.edu.co/bitstream/20.500.12749/28412/8/Tesis.pdf.jpgdfa9233be83c1f9c97adc8a49395b066MD58open accessLicencia.pdf.jpgLicencia.pdf.jpgIM Thumbnailimage/jpeg12993https://repository.unab.edu.co/bitstream/20.500.12749/28412/9/Licencia.pdf.jpg87913060cc2bb1f2dbf93897611af529MD59metadata only access20.500.12749/28412oai:repository.unab.edu.co:20.500.12749/284122025-02-20 22:01:49.332open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbi4gRWwgQVVUT1IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVTkFCIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpFbCBBVVRPUiBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBCdWNhcmFtYW5nYSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24uCg== |