Evaluación de las propiedades mecánicas de hidrogeles a base de agarosa, funcionalizados con plasma pobre en plaquetas con potencial uso para la cicatrización de úlceras por presión

Las úlceras por presión (UPP) se producen debido a una presión o cizallamiento constante y excesivo en la piel o tejidos que la componen, lo cual, produce una falta de irrigación que conlleva a lesiones cutáneas que pueden originar infecciones, irritación e incluso necrosis. Los tratamientos actuale...

Full description

Autores:
Acevedo Mendoza, Anderson
Salazar Hernández, Iván Stevens
Silva García, Mariana
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/16884
Acceso en línea:
http://hdl.handle.net/20.500.12749/16884
Palabra clave:
Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Biomedical
Clinical engineering
Hydrogels
Agarose
Pressure ulcers
Platelet poor plasma
Mechanical properties
Protein release
Blood proteins
Blood plasma
Mechanical properties
Polymers
Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Biomédica
Proteínas de la sangre
Plasma sanguíneo
Propiedades mecánicas
Polímeros
Ingeniería clínica
Electrónica médica
Instrumentos y aparatos médicos
Hidrogeles
Agarosa
Ulceras por presión
Plasma pobre en plaquetas
Propiedades mecánicas
Liberación de proteínas
Rights
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UNAB2_1a4aa653b40eced01f7cfbe940c95dc8
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/16884
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Evaluación de las propiedades mecánicas de hidrogeles a base de agarosa, funcionalizados con plasma pobre en plaquetas con potencial uso para la cicatrización de úlceras por presión
dc.title.translated.spa.fl_str_mv Evaluation of the mechanical properties of agarose-based hydrogels, functionalized with platelet-poor plasma with potential use for the healing of pressure ulcers
title Evaluación de las propiedades mecánicas de hidrogeles a base de agarosa, funcionalizados con plasma pobre en plaquetas con potencial uso para la cicatrización de úlceras por presión
spellingShingle Evaluación de las propiedades mecánicas de hidrogeles a base de agarosa, funcionalizados con plasma pobre en plaquetas con potencial uso para la cicatrización de úlceras por presión
Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Biomedical
Clinical engineering
Hydrogels
Agarose
Pressure ulcers
Platelet poor plasma
Mechanical properties
Protein release
Blood proteins
Blood plasma
Mechanical properties
Polymers
Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Biomédica
Proteínas de la sangre
Plasma sanguíneo
Propiedades mecánicas
Polímeros
Ingeniería clínica
Electrónica médica
Instrumentos y aparatos médicos
Hidrogeles
Agarosa
Ulceras por presión
Plasma pobre en plaquetas
Propiedades mecánicas
Liberación de proteínas
title_short Evaluación de las propiedades mecánicas de hidrogeles a base de agarosa, funcionalizados con plasma pobre en plaquetas con potencial uso para la cicatrización de úlceras por presión
title_full Evaluación de las propiedades mecánicas de hidrogeles a base de agarosa, funcionalizados con plasma pobre en plaquetas con potencial uso para la cicatrización de úlceras por presión
title_fullStr Evaluación de las propiedades mecánicas de hidrogeles a base de agarosa, funcionalizados con plasma pobre en plaquetas con potencial uso para la cicatrización de úlceras por presión
title_full_unstemmed Evaluación de las propiedades mecánicas de hidrogeles a base de agarosa, funcionalizados con plasma pobre en plaquetas con potencial uso para la cicatrización de úlceras por presión
title_sort Evaluación de las propiedades mecánicas de hidrogeles a base de agarosa, funcionalizados con plasma pobre en plaquetas con potencial uso para la cicatrización de úlceras por presión
dc.creator.fl_str_mv Acevedo Mendoza, Anderson
Salazar Hernández, Iván Stevens
Silva García, Mariana
dc.contributor.advisor.none.fl_str_mv Becerra Bayona, Silvia Milena
Solarte David, Víctor Alfonso
dc.contributor.author.none.fl_str_mv Acevedo Mendoza, Anderson
Salazar Hernández, Iván Stevens
Silva García, Mariana
dc.contributor.cvlac.spa.fl_str_mv Becerra Bayona, Silvia Milena [0001568861]
Solarte David, Víctor Alfonso [0001329391]
dc.contributor.googlescholar.spa.fl_str_mv Becerra Bayona, Silvia Milena [5wr21EQAAAAJ]
dc.contributor.orcid.spa.fl_str_mv Becerra Bayona, Silvia Milena [0000-0002-4499-5885]
Solarte David, Víctor Alfonso [0000-0002-9856-1484]
dc.contributor.scopus.spa.fl_str_mv Becerra Bayona, Silvia Milena [36522328100]
dc.contributor.scopus.none.fl_str_mv Becerra Bayona, Silvia Milena [36522328100]
dc.contributor.researchgate.spa.fl_str_mv Becerra Bayona, Silvia Milena [Silvia_Becerra-Bayona]
dc.contributor.apolounab.none.fl_str_mv Becerra Bayona, Silvia Milena [silvia-milena-becerra-bayona]
dc.contributor.linkedin.none.fl_str_mv Becerra Bayona, Silvia Milena [silvia-becerra-3174455a]
dc.subject.keywords.spa.fl_str_mv Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Biomedical
Clinical engineering
Hydrogels
Agarose
Pressure ulcers
Platelet poor plasma
Mechanical properties
Protein release
Blood proteins
Blood plasma
Mechanical properties
Polymers
topic Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Biomedical
Clinical engineering
Hydrogels
Agarose
Pressure ulcers
Platelet poor plasma
Mechanical properties
Protein release
Blood proteins
Blood plasma
Mechanical properties
Polymers
Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Biomédica
Proteínas de la sangre
Plasma sanguíneo
Propiedades mecánicas
Polímeros
Ingeniería clínica
Electrónica médica
Instrumentos y aparatos médicos
Hidrogeles
Agarosa
Ulceras por presión
Plasma pobre en plaquetas
Propiedades mecánicas
Liberación de proteínas
dc.subject.lemb.spa.fl_str_mv Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Biomédica
Proteínas de la sangre
Plasma sanguíneo
Propiedades mecánicas
Polímeros
dc.subject.proposal.spa.fl_str_mv Ingeniería clínica
Electrónica médica
Instrumentos y aparatos médicos
Hidrogeles
Agarosa
Ulceras por presión
Plasma pobre en plaquetas
Propiedades mecánicas
Liberación de proteínas
description Las úlceras por presión (UPP) se producen debido a una presión o cizallamiento constante y excesivo en la piel o tejidos que la componen, lo cual, produce una falta de irrigación que conlleva a lesiones cutáneas que pueden originar infecciones, irritación e incluso necrosis. Los tratamientos actuales como los apósitos convencionales o avanzados no cumplen con todos los requisitos para permitir la regeneración del tejido, exhibiendo la necesidad de elaborar un apósito apto para proporcionar un ambiente adecuado para la curación de la herida. Por consiguiente, en este proyecto se fabricaron hidrogeles de agarosa funcionalizados con plasma pobre en plaquetas (PPP), debido a que contiene proteínas que desempeñan un papel importante durante las etapas de hemostasia y coagulación, promoviendo la reparación del tejido epitelial y la cicatrización de heridas. Inicialmente, los hidrogeles se fabricaron usando tres concentraciones de agarosa (1, 1.5 y 2%), y tres concentraciones de PPP (25, 50 y 75%); y para cada formulación se realizó su respectiva muestra control. Las propiedades mecánicas como módulo de elasticidad y compresión se evaluaron mediante pruebas de tensión y compresión, mientras que la dinámica de liberación de proteínas se determinó mediante la cuantificación de proteínas usando una curva de estándar de BSA. Adicionalmente, para determinar la viabilidad celular de los hidrogeles fabricados, se realizó un ensayo preliminar de citotoxicidad con células HT1080. Como resultados, el módulo de elasticidad de los hidrogeles de agarosa con PPP osciló entre 0.0084 MPa y 0.0203 MPa, mientras que el módulo de compresión varió entre 0.0628 MPa y 0.2168 MPa. La dinámica de liberación de proteínas determinó que, a mayores concentraciones de PPP en los hidrogeles fabricados, incrementaba la concentración de proteínas presentes en estos. Finalmente, los resultados del ensayo preliminar de citotoxicidad sugirieron que los hidrogeles de agarosa funcionalizados con PPP que se fabricaron bajo la presente metodología, contribuyen de forma limitada con la viabilidad celular.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-11T16:43:40Z
dc.date.available.none.fl_str_mv 2022-07-11T16:43:40Z
dc.date.issued.none.fl_str_mv 2022
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.local.spa.fl_str_mv Trabajo de Grado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/16884
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UNAB
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unab.edu.co
url http://hdl.handle.net/20.500.12749/16884
identifier_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
reponame:Repositorio Institucional UNAB
repourl:https://repository.unab.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Ahearne, M., Yang, Y., El Haj, A. J., Then, K. Y., & Liu, K. K. (2005). Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications. Journal of the Royal Society Interface, 2(5), 455. https://doi.org/10.1098/RSIF.2005.0065
Alam, K., Hasan, A., Iqbal, M., Umer, J., & Piya, S. (2020). Experimental study on the mechanical properties of biological hydrogels of different concentrations. Technology and Health Care, 28(6), 685–695. https://doi.org/10.3233/THC-191984
Alven, S., & Aderibigbe, B. A. (2020). Chitosan and Cellulose-Based Hydrogels for Wound Management. International Journal of Molecular Sciences 2020, Vol. 21, Page 9656, 21(24), 9656. https://doi.org/10.3390/IJMS21249656
Anitua, E., Prado, R., & Orive, G. (2013). Safety and efficient ex vivo expansion of stem cells using platelet-rich plasma technology. Http://Dx.Doi.Org/10.4155/Tde.13.68, 4(9), 1163–1177. https://doi.org/10.4155/TDE.13.68
Arnold, M. C. (2003). Pressure ulcer prevention and management: the current evidence for care. AACN Clinical Issues, 14(4), 112–117. https://doi.org/10.1097/00044067200311000-00003
Barrientos, S., Stojadinovic, O., Golinko, M. S., Brem, H., & Tomic-Canic, M. (2008). PERSPECTIVE ARTICLE: Growth factors and cytokines in wound healing. Wound Repair and Regeneration, 16(5), 585–601. https://doi.org/10.1111/J.1524475X.2008.00410.X
Bayona Velasco, G. A. (2020). Evaluación de las propiedades mecánicas de hidrogeles biodegradables a base de polietilenglicol diacrilado, con potencial uso en el diseño de matrices para úlceras crónicas. Universidad Autónoma de Bucaramanga UNAB
Borda, L. J., Macquhae, F. E., & Kirsner, R. S. (2016). Wound Dressings: A Comprehensive Review. Current Dermatology Reports 2016 5:4, 5(4), 287–297. https://doi.org/10.1007/S13671-016-0162-5
Cáceres, M., Hidalgo, R., Sanz, A., Martínez, J., Riera, P., & Smith, P. C. (2008). Effect of Platelet-Rich Plasma on Cell Adhesion, Cell Migration, and Myofibroblastic Differentiation in Human Gingival Fibroblasts. Journal of Periodontology, 79(4), 714–720. https://doi.org/10.1902/JOP.2008.070395
Cáceres, M., Martínez, C., Martínez, J., & Smith, P. C. (2012). Effects of platelet-rich and poor plasma on the reparative response of gingival fibroblasts. Clinical Oral Implants Research, 23(9), 1104–1111. https://doi.org/10.1111/J.1600-0501.2011.02274.X
Carter, C. A., Jolly, D. G., Worden, C. E., Hendren, D. G., & Kane, C. J. M. (2003). Platelet-rich plasma gel promotes differentiation and regeneration during equine wound healing. Experimental and Molecular Pathology, 74(3), 244–255. https://doi.org/10.1016/S0014-4800(03)00017-0
Crovetti, G., Martinelli, G., Issi, M., Barone, M., Guizzardi, M., Campanati, B., Moroni, M., & Carabelli, A. (2004). Platelet gel for healing cutaneous chronic wounds. Transfusion and Apheresis Science, 30(2), 145–151. https://doi.org/10.1016/J.TRANSCI.2004.01.004
Dumville, J. C., Stubbs, N., Keogh, S. J., Walker, R. M., Liu, Z., & Research Online, G. (2015). Hydrogel dressings for treating pressure ulcers (Review). https://doi.org/10.1002/14651858.CD011226.pub2
Edsberg, L. E., Black, J. M., Goldberg, M., McNichol, L., Moore, L., & Sieggreen, M. (2016). Revised National Pressure Ulcer Advisory Panel Pressure Injury Staging System: Revised Pressure Injury Staging System. Journal of Wound, Ostomy, and Continence Nursing, 43(6), 585. https://doi.org/10.1097/WON.0000000000000281
Eisenbud, D., Hunter, H., Kessler, L., & Zulkowski, K. (2003). Hydrogel wound dressings: where do we stand in 2003? - PubMed. https://pubmed.ncbi.nlm.nih.gov/14652421/
Esparza-Bohórquez, M., Granados-Oliveros, L. M., & Joya-Guevara, K. (2016). Implementación de la guía de buenas prácticas: valoración del riesgo y prevención de úlceras por presión: experiencia en la Fundación Oftalmológica de Santander (FOSCAL). MedUNAB, 19(2), 115–123. http://hdl.handle.net/20.500.12749/10031
Gaboriau, H. P., & Murakami, C. S. (2001). Skin anatomy and flap physiology. Otolaryngologic Clinics of North America, 34(3), 555–569. https://doi.org/10.1016/S0030-6665(05)70005-0
Gallagher, A. J., Anniadh, A. N., Bruyere, K., Otténio, M., Xie, H., & Gilchrist, M. D. (2012). Dynamic Tensile Properties of Human Skin. IRCOBI Conference.
García Arciniegas M. C., & Ochoa Pineda J. A. (2018, June 1). CARACTERIZACIÓN Y EVALUACIÓN DE CITOTOXICIDAD DE HIDROGELES PARA POTENCIAL USO COMO ADHESIVO ÓSEO. https://repositorio.uniandes.edu.co/bitstream/handle/1992/40092/u806643.pdf?sequen ce=1
González-Consuegra, R. V., Cardona-Mazo, D. M., Murcia-Trujillo, P. A., & Matiz-Vera, G. D. (2014). Prevalencia de úlceras por presión en Colombia: informe preliminar. Revista de La Facultad de Medicina, 62(3), 1–32. https://doi.org/10.15446/REVFACMED.V62N3.43004
Gosline, J., Lillie, M., Carrington, E., Guerette, P., Ortlepp, C., & Savage, K. (2002). Elastic proteins: biological roles and mechanical properties. Philosophical Transactions of the Royal Society B: Biological Sciences, 357(1418), 121–132. https://doi.org/10.1098/RSTB.2001.1022
Grolman, J. M., Singh, M., Mooney, D. J., Eriksson, E., & Nuutila, K. (2019). AntibioticContaining Agarose Hydrogel for Wound and Burn Care. Journal of Burn Care & Research, 40(6), 900–906. https://doi.org/10.1093/JBCR/IRZ113
Hafezi, M., Qin, L., Mahmoodi, P., & Dong, G. (2019). Osmosis effect on protein sustained release of Agarose hydrogel for anti-friction performance. Tribology International, 132, 108–117. https://doi.org/10.1016/J.TRIBOINT.2018.12.013
Hamm, R. L. (2007). Tissue Healing and Pressure Ulcers. Physical Rehabilitation, 733– 776. https://doi.org/10.1016/B978-072160361-2.50031-4
Irastorza-Lorenzo, A., Sánchez-Porras, D., Ortiz-Arrabal, O., Frutos, M. J. de, Esteban, E., Fernández, J., Janer, A., Campos, A., Campos, F., & Alaminos, M. (2021). Evaluation of Marine Agarose Biomaterials for Tissue Engineering Applications. International Journal of Molecular Sciences 2021, Vol. 22, Page 1923, 22(4), 1923. https://doi.org/10.3390/IJMS22041923
Järbrink, K., Ni, G., Sönnergren, H., Schmidtchen, A., Pang, C., Bajpai, R., & Car, J. (2016). Prevalence and incidence of chronic wounds and related complications: a protocol for a systematic review. Systematic Reviews, 5(1), 152. https://doi.org/10.1186/S13643-016-0329-Y
Jiang, S., Li, S. C., Huang, C., Chan, B. P., & Du, Y. (2018). Physical Properties of Implanted Porous Bioscaffolds Regulate Skin Repair: Focusing on Mechanical and Structural Features. Advanced Healthcare Materials, 7(6), 1700894. https://doi.org/10.1002/ADHM.201700894
Jones, V., Grey, J. E., & Harding, K. G. (2006). ABC of wound healing: Wound dressings. BMJ : British Medical Journal, 332(7544), 777. https://doi.org/10.1136/BMJ.332.7544.777
Judith, R., Nithya, M., Rose, C., & Mandal, A. B. (2010). Application of a PDGFcontaining novel gel for cutaneous wound healing. Life Sciences, 87(1–2), 1–8. https://doi.org/10.1016/J.LFS.2010.05.003
Khanarian, N. T., Haney, N. M., Burga, R. A., & Lu, H. H. (2012). A functional agarosehydroxyapatite scaffold for osteochondral interface regeneration. Biomaterials, 33(21), 5247–5258. https://doi.org/10.1016/J.BIOMATERIALS.2012.03.076
Kumar, S., Marrero-Berrios, I., Kabat, M., & Berthiaume, F. (2019). Recent Advances in the Use of Algal Polysaccharides for Skin Wound Healing. Current Pharmaceutical Design, 25(11), 1248. https://doi.org/10.2174/1381612825666190521120051
Litvinov, R. I., & Weisel, J. W. (2016). What Is the Biological and Clinical Relevance of Fibrin? Seminars in Thrombosis and Hemostasis, 42(4), 333. https://doi.org/10.1055/S-0036-1571342
Litvinov, R. I., & Weisel, J. W. (2017). Fibrin mechanical properties and their structural origins. Matrix Biology : Journal of the International Society for Matrix Biology, 60– 61, 110. https://doi.org/10.1016/J.MATBIO.2016.08.003
López-Marcial, G. R., Zeng, A. Y., Osuna, C., Dennis, J., García, J. M., & O’Connell, G. D. (2018). Agarose-Based Hydrogels as Suitable Bioprinting Materials for Tissue Engineering. ACS Biomaterials Science & Engineering, 4(10), 3610–3616. https://doi.org/10.1021/ACSBIOMATERIALS.8B00903
Luo, C. C., Qian, L. X., Li, G. Y., Jiang, Y., Liang, S., & Cao, Y. (2015). Determining the in vivo elastic properties of dermis layer of human skin using the supersonic shear imaging technique and inverse analysis. Medical Physics, 42(7), 4106–4115. https://doi.org/10.1118/1.4922133
Markert, C. D., Guo, X., Skardal, A., Wang, Z., Bharadwaj, S., Zhang, Y., Bonin, K., & Guthold, M. (2013). Characterizing the micro-scale elastic modulus of hydrogels for use in regenerative medicine. Journal of the Mechanical Behavior of Biomedical Materials, 27, 115–127. https://doi.org/10.1016/J.JMBBM.2013.07.008
Marx, R. E. (2004). Platelet-rich plasma: evidence to support its use. Journal of Oral and Maxillofacial Surgery, 62(4), 489–496. https://doi.org/10.1016/J.JOMS.2003.12.003
Matsui, M., & Tabata, Y. (2012). Enhanced angiogenesis by multiple relea platelet-rich plasma contents and basic fibroblast growth factor from gelatin hydrogelsse of. Acta Biomaterialia, 8(5), 1792–1801. https://doi.org/10.1016/J.ACTBIO.2012.01.016
Mervis, J. S., & Phillips, T. J. (2019). Pressure ulcers: Pathophysiology, epidemiology, risk factors, and presentation. Journal of the American Academy of Dermatology, 81(4), 881–890. https://doi.org/10.1016/J.JAAD.2018.12.069
Miguel, S. P., Ribeiro, M. P., Brancal, H., Coutinho, P., & Correia, I. J. (2014). Thermoresponsive chitosan–agarose hydrogel for skin regeneration. Carbohydrate Polymers, 111, 366–373. https://doi.org/10.1016/J.CARBPOL.2014.04.093
Mikesh, L. M., Aramadhaka, L. R., Moskaluk, C., Zigrino, P., Mauch, C., & Fox, J. W. (2013). Proteomic anatomy of human skin. Journal of Proteomics, 84, 190–200. https://doi.org/10.1016/J.JPROT.2013.03.019
Miroshnychenko, O., Chang, W., & Dragoo, J. L. (2016). The Use of Platelet-Rich and Platelet-Poor Plasma to Enhance Differentiation of Skeletal Myoblasts: Implications for the Use of Autologous Blood Products for Muscle Regeneration: Https://Doi.Org/10.1177/0363546516677547, 45(4), 945–953. https://doi.org/10.1177/0363546516677547
Mogoşanu, G. D., & Grumezescu, A. M. (2014). Natural and synthetic polymers for wounds and burns dressing. International Journal of Pharmaceutics, 463(2), 127–136. https://doi.org/10.1016/J.IJPHARM.2013.12.015
Normand, V., Lootens, D. L., Amici, E., Plucknett, K. P., & Aymard, P. (2000). New Insight into Agarose Gel Mechanical Properties. Biomacromolecules, 1(4), 730–738. https://doi.org/10.1021/BM005583J
Park, J. W., Hwang, S. R., & Yoon, I. S. (2017). Advanced Growth Factor Delivery Systems in Wound Management and Skin Regeneration. Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry, 22(8). https://doi.org/10.3390/MOLECULES22081259
Parnell, L. K. S., Ciufi, B., & Gokoo, C. F. (2005). Preliminary use of a hydrogel containing enzymes in the treatment of stage II and stage III pressure ulcers - PubMed. https://pubmed.ncbi.nlm.nih.gov/16234576/
Pedersen, L., & Jemec, G. B. E. (2006). Mechanical properties and barrier function of healthy human skin. Acta Dermato-Venereologica, 86(4), 308–311. https://doi.org/10.2340/00015555-0080
Piccin, A., Di Pierro, A. M., Canzian, L., Primerano, M., Corvetta, D., Negri, G., Mazzoleni, G., Gastl, G., Steurer, M., Gentilini, I., Eisendle, K., & Fontanella, F. (2017). Platelet gel: a new therapeutic tool with great potential. Blood Transfusion, 15(4), 333. https://doi.org/10.2450/2016.0038-16
Pietrzak, W. S., An, Y. H., Kang, Q. K., Demos, H. A., & Ehrens, K. H. (2007). Plateletrich and platelet-poor plasma: Development of an animal model to evaluate hemostatic efficacy. Journal of Craniofacial Surgery, 18(3), 559–567. https://doi.org/10.1097/SCS.0B013E318052FE1F
Pietrzak, W. S., An, Y. H., Kang, Q. K., Demos, H. A., & Ehrens, K. H. (2007). Plateletrich and platelet-poor plasma: Development of an animal model to evaluate hemostatic efficacy. Journal of Craniofacial Surgery, 18(3), 559–567. https://doi.org/10.1097/SCS.0B013E318052FE1F
Remedios Plaza, R. M. G. (2007, February 6). Prevención y tratamiento de las Úlceras por presión. 1699-695X. https://www.redalyc.org/pdf/1696/169617626008.pdf
Shahidi, M., Vatanmakanian, M., Arami, M. K., Sadeghi Shirazi, F., Esmaeili, N., Hydarporian, S., & Jafari, S. (2018). A comparative study between platelet-rich plasma and platelet-poor plasma effects on angiogenesis. Medical Molecular Morphology, 51(1), 21–31. https://doi.org/10.1007/S00795-017-0168-5
Shi, C., Wang, C., Liu, H., Li, Q., Li, R., Zhang, Y., Liu, Y., Shao, Y., & Wang, J. (2020). Selection of Appropriate Wound Dressing for Various Wounds. Frontiers in Bioengineering and Biotechnology, 8, 182. https://doi.org/10.3389/FBIOE.2020.00182
Shook, B., Gonzalez, G. R., Ebmeier, S., Grisotti, G., Zwick, R., & Horsley, V. (2016). The Role of Adipocytes in Tissue Regeneration and Stem Cell Niches. Annual Review of Cell and Developmental Biology, 32, 631. https://doi.org/10.1146/ANNUREVCELLBIO-111315-125426
Sierra Sánchez, F. A., & Brito Lizarazo, C. D. (2021). Caracterización mecánica de hidrogeles de fibrina partir de plasma rico en plaquetas con potencial uso en el diseño de matrices biomiméticas. https://repository.unab.edu.co/bitstream/handle/20.500.12749/13895/2021Tesis_Fredd y_Alexis_Sierra.pdf?sequence=1&isAllowed=y
Silva, V., Marcoleta, A., Silva, V., Flores, D., Aparicio, T., Aburto, I., Latrach, C., & Febré, N. (2018). Prevalence and susceptibility pattern of bacteria isolated from infected chronic wounds in adult patients. Revista Chilena de Infectología, 35(2), 155– 162. https://doi.org/10.4067/S0716-10182018000200155
Silver, F. H., Freeman, J. W., & DeVore, D. (2001). Viscoelastic properties of human skin and processed dermis. Skin Research and Technology, 7(1), 18–23. https://doi.org/10.1034/J.1600-0846.2001.007001018.X
Skórkowska-Telichowska, K., Czemplik, M., Kulma, A., & Szopa, J. (2013). The local treatment and available dressings designed for chronic wounds. Journal of the American Academy of Dermatology, 68(4), e117–e126. https://doi.org/10.1016/J.JAAD.2011.06.028
Suthar, M., Gupta, S., Bukhari, S., & Ponemone, V. (2017). Treatment of chronic nonhealing ulcers using autologous platelet rich plasma: a case series. Journal of Biomedical Science, 24(1). https://doi.org/10.1186/S12929-017-0324-
Tajima, N., Sotome, S., Marukawa, E., Omura, K., & Shinomiya, K. (2007). A threedimensional cell-loading system using autologous plasma loaded into a porous βtricalcium-phosphate block promotes bone formation at extraskeletal sites in rats. Materials Science and Engineering: C, 27(4), 625–632. https://doi.org/10.1016/J.MSEC.2006.05.031
Thieulin, C., Pailler-Mattei, C., Abdouni, A., Djaghloul, M., & Zahouani, H. (2020). Mechanical and topographical anisotropy for human skin: Ageing effect. Journal of the Mechanical Behavior of Biomedical Materials, 103, 103551. https://doi.org/10.1016/J.JMBBM.2019.103551
Vedadghavami, A., Minooei, F., Mohammadi, M. H., Khetani, S., Rezaei Kolahchi, A., Mashayekhan, S., & Sanati-Nezhad, A. (2017). Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomaterialia, 62, 42–63. https://doi.org/10.1016/J.ACTBIO.2017.07.028
Vivcharenko, V., Wojcik, M., Palka, K., & Przekora, A. (2021). Highly Porous and Superabsorbent Biomaterial Made of Marine-Derived Polysaccharides and Ascorbic Acid as an Optimal Dressing for Exuding Wound Management. Materials, 14(5), 1211. https://doi.org/10.3390/MA14051211
Weisel, J. W., & Litvinov, R. I. (2017). Fibrin Formation, Structure and Properties. SubCellular Biochemistry, 82, 405. https://doi.org/10.1007/978-3-319-49674-0_13
William F, S. (n.d.). Fundamentos de la ciencia e ingenieria de materiales william f. smith . Retrieved May 19, 2022, from https://www.academia.edu/40579960/Fundamentos_de_la_ciencia_e_ingenieria_de_m ateriales_william_f._smith
Wong, R., Geyer, S., Weninger, W., Guimberteau, J.-C., & Wong, J. K. (2016). The dynamic anatomy and patterning of skin. Experimental Dermatology, 25(2), 92–98. https://doi.org/10.1111/EXD.12832
Xiong, J. Y., Narayanan, J., Liu, X. Y., Chong, T. K., Chen, S. B., & Chung, T. S. (2005). Topology evolution and gelation mechanism of agarose gel. The Journal of Physical Chemistry. B, 109(12), 5638–5643. https://doi.org/10.1021/JP044473U
Zaratkiewicz, S., Goetcheus, H., & Vance, H. (2020). Unstageable Pressure Injuries: Identification, Treatment, and Outcomes Among Critical Care Patients. Critical Care Nursing Clinics of North America, 32(4), 543–561. https://doi.org/10.1016/J.CNC.2020.08.005
Zarrintaj, P., Manouchehri, S., Ahmadi, Z., Saeb, M. R., Urbanska, A. M., Kaplan, D. L., & Mozafari, M. (2018). Agarose-based biomaterials for tissue engineering. Carbohydrate Polymers, 187, 66–84. https://doi.org/10.1016/J.CARBPOL.2018.01.060
Zeng, Q., Han, Y., Li, H., & Chang, J. (2015). Design of a thermosensitive bioglass/agarose–alginate composite hydrogel for chronic wound healing. Journal of Materials Chemistry B, 3(45), 8856–8864. https://doi.org/10.1039/C5TB01758K
Zhang, J., Zhang, J., Zhang, N., Li, T., Zhou, X., Jia, J., Liang, Y., Sun, X., & Chen, H. (2020). The Effects of Platelet-Rich and Platelet-Poor Plasma on Biological Characteristics of BM-MSCs In Vitro. Analytical Cellular Pathology (Amsterdam), 2020. https://doi.org/10.1155/2020/8546231
Zucca, P., Fernandez-Lafuente, R., & Sanjust, E. (2016). Agarose and Its Derivatives as Supports for Enzyme Immobilization. Molecules 2016, Vol. 21, Page 1577, 21(11), 1577. https://doi.org/10.3390/MOLECULES21111577
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Colombia
dc.coverage.campus.spa.fl_str_mv UNAB Campus Bucaramanga
dc.publisher.grantor.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.spa.fl_str_mv Facultad Ingeniería
dc.publisher.program.spa.fl_str_mv Pregrado Ingeniería Biomédica
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/16884/1/2022_Tesis_Anderson_Acevedo_Mendoza.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/16884/2/2022_Licencia_Anderson_Acevedo_Mendoza.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/16884/3/license.txt
https://repository.unab.edu.co/bitstream/20.500.12749/16884/4/2022_Tesis_Anderson_Acevedo_Mendoza.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/16884/5/2022_Licencia_Anderson_Acevedo_Mendoza.pdf.jpg
bitstream.checksum.fl_str_mv bbe1e08ce3c578696cd2458fe4060042
ee8ab92031624f9ac69e7674419b6004
3755c0cfdb77e29f2b9125d7a45dd316
fee8035d4ef59fa5ec9404bf606abef5
9a88e832a665bbb73739031e96bb9571
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1808410563230826496
spelling Becerra Bayona, Silvia Milenaf59fde3b-924f-4fcc-96e9-5fd6250b2daeSolarte David, Víctor Alfonso54590e96-eda3-4b43-9ffa-14bd35ed7d08Acevedo Mendoza, Andersonf28e6a5e-6a57-4b08-8f96-6cddbf6a0ba5Salazar Hernández, Iván Stevens00b9fdfe-ee57-431b-a0ad-00c599124de0Silva García, Mariana9e47ce5e-5122-4229-8bd8-5ab65e33ffd8Becerra Bayona, Silvia Milena [0001568861]Solarte David, Víctor Alfonso [0001329391]Becerra Bayona, Silvia Milena [5wr21EQAAAAJ]Becerra Bayona, Silvia Milena [0000-0002-4499-5885]Solarte David, Víctor Alfonso [0000-0002-9856-1484]Becerra Bayona, Silvia Milena [36522328100]Becerra Bayona, Silvia Milena [36522328100]Becerra Bayona, Silvia Milena [Silvia_Becerra-Bayona]Becerra Bayona, Silvia Milena [silvia-milena-becerra-bayona]Becerra Bayona, Silvia Milena [silvia-becerra-3174455a]ColombiaUNAB Campus Bucaramanga2022-07-11T16:43:40Z2022-07-11T16:43:40Z2022http://hdl.handle.net/20.500.12749/16884instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coLas úlceras por presión (UPP) se producen debido a una presión o cizallamiento constante y excesivo en la piel o tejidos que la componen, lo cual, produce una falta de irrigación que conlleva a lesiones cutáneas que pueden originar infecciones, irritación e incluso necrosis. Los tratamientos actuales como los apósitos convencionales o avanzados no cumplen con todos los requisitos para permitir la regeneración del tejido, exhibiendo la necesidad de elaborar un apósito apto para proporcionar un ambiente adecuado para la curación de la herida. Por consiguiente, en este proyecto se fabricaron hidrogeles de agarosa funcionalizados con plasma pobre en plaquetas (PPP), debido a que contiene proteínas que desempeñan un papel importante durante las etapas de hemostasia y coagulación, promoviendo la reparación del tejido epitelial y la cicatrización de heridas. Inicialmente, los hidrogeles se fabricaron usando tres concentraciones de agarosa (1, 1.5 y 2%), y tres concentraciones de PPP (25, 50 y 75%); y para cada formulación se realizó su respectiva muestra control. Las propiedades mecánicas como módulo de elasticidad y compresión se evaluaron mediante pruebas de tensión y compresión, mientras que la dinámica de liberación de proteínas se determinó mediante la cuantificación de proteínas usando una curva de estándar de BSA. Adicionalmente, para determinar la viabilidad celular de los hidrogeles fabricados, se realizó un ensayo preliminar de citotoxicidad con células HT1080. Como resultados, el módulo de elasticidad de los hidrogeles de agarosa con PPP osciló entre 0.0084 MPa y 0.0203 MPa, mientras que el módulo de compresión varió entre 0.0628 MPa y 0.2168 MPa. La dinámica de liberación de proteínas determinó que, a mayores concentraciones de PPP en los hidrogeles fabricados, incrementaba la concentración de proteínas presentes en estos. Finalmente, los resultados del ensayo preliminar de citotoxicidad sugirieron que los hidrogeles de agarosa funcionalizados con PPP que se fabricaron bajo la presente metodología, contribuyen de forma limitada con la viabilidad celular.Capítulo 1. Problema u oportunidad ............................................................................................... 9 1.1 Planteamiento del problema ................................................................................................... 9 1.2 Justificación ........................................................................................................................... 11 1.3 Pregunta problema ................................................................................................................ 12 1.4 Objetivo general .................................................................................................................... 13 1.5 Objetivos específicos ............................................................................................................. 13 Capítulo 2. Marco teórico ............................................................................................................... 14 2.1 La piel y sus propiedades mecánicas ................................................................................... 14 2.2 Úlceras por presión (UPP) .................................................................................................... 16 2.2.1 Características fisiopatológicas de las UPP .................................................................. 16 2.2.2 Proceso de cicatrización de una UPP ............................................................................ 17 2.2.3 Prevenciones y tratamientos de las UPP ...................................................................... 19 2.3 Hidrogeles de agarosa ........................................................................................................... 21 2.4 Factores de Crecimiento ....................................................................................................... 25 2.4.1 Plasma rico en plaquetas (PRP) .................................................................................... 25 2.4.2 Plasma pobre en plaquetas (PPP) ................................................................................. 26 2.5 Formación de hidrogeles de fibrina ..................................................................................... 27 Capítulo 3. Estado del arte ............................................................................................................. 30 Capítulo 4. Metodología .................................................................................................................. 33 4.1 Fabricación de hidrogeles de agarosa funcionalizados con PPP ....................................... 33 4.2 Dinámica de liberación de proteínas ................................................................................... 36 4.3 Caracterización mecánica de los hidrogeles ....................................................................... 38 4.4 Ensayo preliminar de Citotoxicidad .................................................................................... 41 4.5 Análisis estadísticos ............................................................................................................... 43 Capítulo 5. Resultados y Análisis de Resultados .......................................................................... 44 5.1 Resultados .............................................................................................................................. 44 5.1.1 Fabricación de hidrogeles a base de agarosa funcionalizados con PPP .................... 44 5.1.2 Caracterización mecánica de los hidrogeles ................................................................ 47 5.1.3. Dinámica de liberación de proteínas ........................................................................... 61 5.1.4. Ensayo preliminar de citotoxicidad ............................................................................. 70 5.2 Análisis de resultados ............................................................................................................ 72 Capítulo 6. Conclusiones y Recomendaciones .............................................................................. 79 Listado de Referencias .................................................................................................................... 81 Anexos .............................................................................................................................................. 88PregradoPressure ulcers (UPP) occur due to constant and excessive pressure or shear on the skin or tissues that compose it, which produces a lack of irrigation that leads to skin lesions that can cause infections, irritation and even necrosis. Current treatments such as conventional or advanced dressings do not meet all the requirements to allow tissue regeneration, exhibiting the need to elaborate a dressing suitable to provide a suitable environment for wound healing. Therefore, in this project, functionalized agarose hydrogels were manufactured with platelet-poor plasma (PPP), because it contains proteins that play an important role during the hemostasis and coagulation stages, promoting the repair of epithelial tissue and wound healing. Initially, the hydrogels were manufactured using three concentrations of agarose (1, 1.5 and 2%), and three concentrations of PPP (25, 50 and 75%); and for each formulation its respective control sample was performed. Mechanical properties such as modulus of elasticity and compression were assessed by stress and compression tests, while protein release dynamics were determined by quantifying proteins using a BSA standard curve. Additionally, to determine the cell viability of the manufactured hydrogels, a preliminary cytotoxicity test was performed with HT1080 cells. As a result, the modulus of elasticity of agarose hydrogels with PPP ranged from 0.0084 MPa to 0.0203 MPa, while the compression modulus ranged from 0.0628 MPa to 0.2168 MPa. The dynamics of protein release determined that, at higher concentrations of PPP in the manufactured hydrogels, the concentration of proteins present in them increased. Finally, the results of the preliminary cytotoxicity test suggested that PPP-functionalized agarose hydrogels manufactured under the present methodology contribute to cell viability in a limited way.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Evaluación de las propiedades mecánicas de hidrogeles a base de agarosa, funcionalizados con plasma pobre en plaquetas con potencial uso para la cicatrización de úlceras por presiónEvaluation of the mechanical properties of agarose-based hydrogels, functionalized with platelet-poor plasma with potential use for the healing of pressure ulcersIngeniero BiomédicoUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaPregrado Ingeniería Biomédicainfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/acceptedVersionhttp://purl.org/redcol/resource_type/TPBiomedical engineeringEngineeringMedical electronicsBiological physicsBioengineeringMedical instruments and apparatusMedicineBiomedicalClinical engineeringHydrogelsAgarosePressure ulcersPlatelet poor plasmaMechanical propertiesProtein releaseBlood proteinsBlood plasmaMechanical propertiesPolymersIngeniería biomédicaIngenieríaBiofísicaBioingenieríaMedicinaBiomédicaProteínas de la sangrePlasma sanguíneoPropiedades mecánicasPolímerosIngeniería clínicaElectrónica médicaInstrumentos y aparatos médicosHidrogelesAgarosaUlceras por presiónPlasma pobre en plaquetasPropiedades mecánicasLiberación de proteínasAhearne, M., Yang, Y., El Haj, A. J., Then, K. Y., & Liu, K. K. (2005). Characterizing the viscoelastic properties of thin hydrogel-based constructs for tissue engineering applications. Journal of the Royal Society Interface, 2(5), 455. https://doi.org/10.1098/RSIF.2005.0065Alam, K., Hasan, A., Iqbal, M., Umer, J., & Piya, S. (2020). Experimental study on the mechanical properties of biological hydrogels of different concentrations. Technology and Health Care, 28(6), 685–695. https://doi.org/10.3233/THC-191984Alven, S., & Aderibigbe, B. A. (2020). Chitosan and Cellulose-Based Hydrogels for Wound Management. International Journal of Molecular Sciences 2020, Vol. 21, Page 9656, 21(24), 9656. https://doi.org/10.3390/IJMS21249656Anitua, E., Prado, R., & Orive, G. (2013). Safety and efficient ex vivo expansion of stem cells using platelet-rich plasma technology. Http://Dx.Doi.Org/10.4155/Tde.13.68, 4(9), 1163–1177. https://doi.org/10.4155/TDE.13.68Arnold, M. C. (2003). Pressure ulcer prevention and management: the current evidence for care. AACN Clinical Issues, 14(4), 112–117. https://doi.org/10.1097/00044067200311000-00003Barrientos, S., Stojadinovic, O., Golinko, M. S., Brem, H., & Tomic-Canic, M. (2008). PERSPECTIVE ARTICLE: Growth factors and cytokines in wound healing. Wound Repair and Regeneration, 16(5), 585–601. https://doi.org/10.1111/J.1524475X.2008.00410.XBayona Velasco, G. A. (2020). Evaluación de las propiedades mecánicas de hidrogeles biodegradables a base de polietilenglicol diacrilado, con potencial uso en el diseño de matrices para úlceras crónicas. Universidad Autónoma de Bucaramanga UNABBorda, L. J., Macquhae, F. E., & Kirsner, R. S. (2016). Wound Dressings: A Comprehensive Review. Current Dermatology Reports 2016 5:4, 5(4), 287–297. https://doi.org/10.1007/S13671-016-0162-5Cáceres, M., Hidalgo, R., Sanz, A., Martínez, J., Riera, P., & Smith, P. C. (2008). Effect of Platelet-Rich Plasma on Cell Adhesion, Cell Migration, and Myofibroblastic Differentiation in Human Gingival Fibroblasts. Journal of Periodontology, 79(4), 714–720. https://doi.org/10.1902/JOP.2008.070395Cáceres, M., Martínez, C., Martínez, J., & Smith, P. C. (2012). Effects of platelet-rich and poor plasma on the reparative response of gingival fibroblasts. Clinical Oral Implants Research, 23(9), 1104–1111. https://doi.org/10.1111/J.1600-0501.2011.02274.XCarter, C. A., Jolly, D. G., Worden, C. E., Hendren, D. G., & Kane, C. J. M. (2003). Platelet-rich plasma gel promotes differentiation and regeneration during equine wound healing. Experimental and Molecular Pathology, 74(3), 244–255. https://doi.org/10.1016/S0014-4800(03)00017-0Crovetti, G., Martinelli, G., Issi, M., Barone, M., Guizzardi, M., Campanati, B., Moroni, M., & Carabelli, A. (2004). Platelet gel for healing cutaneous chronic wounds. Transfusion and Apheresis Science, 30(2), 145–151. https://doi.org/10.1016/J.TRANSCI.2004.01.004Dumville, J. C., Stubbs, N., Keogh, S. J., Walker, R. M., Liu, Z., & Research Online, G. (2015). Hydrogel dressings for treating pressure ulcers (Review). https://doi.org/10.1002/14651858.CD011226.pub2Edsberg, L. E., Black, J. M., Goldberg, M., McNichol, L., Moore, L., & Sieggreen, M. (2016). Revised National Pressure Ulcer Advisory Panel Pressure Injury Staging System: Revised Pressure Injury Staging System. Journal of Wound, Ostomy, and Continence Nursing, 43(6), 585. https://doi.org/10.1097/WON.0000000000000281Eisenbud, D., Hunter, H., Kessler, L., & Zulkowski, K. (2003). Hydrogel wound dressings: where do we stand in 2003? - PubMed. https://pubmed.ncbi.nlm.nih.gov/14652421/Esparza-Bohórquez, M., Granados-Oliveros, L. M., & Joya-Guevara, K. (2016). Implementación de la guía de buenas prácticas: valoración del riesgo y prevención de úlceras por presión: experiencia en la Fundación Oftalmológica de Santander (FOSCAL). MedUNAB, 19(2), 115–123. http://hdl.handle.net/20.500.12749/10031Gaboriau, H. P., & Murakami, C. S. (2001). Skin anatomy and flap physiology. Otolaryngologic Clinics of North America, 34(3), 555–569. https://doi.org/10.1016/S0030-6665(05)70005-0Gallagher, A. J., Anniadh, A. N., Bruyere, K., Otténio, M., Xie, H., & Gilchrist, M. D. (2012). Dynamic Tensile Properties of Human Skin. IRCOBI Conference.García Arciniegas M. C., & Ochoa Pineda J. A. (2018, June 1). CARACTERIZACIÓN Y EVALUACIÓN DE CITOTOXICIDAD DE HIDROGELES PARA POTENCIAL USO COMO ADHESIVO ÓSEO. https://repositorio.uniandes.edu.co/bitstream/handle/1992/40092/u806643.pdf?sequen ce=1González-Consuegra, R. V., Cardona-Mazo, D. M., Murcia-Trujillo, P. A., & Matiz-Vera, G. D. (2014). Prevalencia de úlceras por presión en Colombia: informe preliminar. Revista de La Facultad de Medicina, 62(3), 1–32. https://doi.org/10.15446/REVFACMED.V62N3.43004Gosline, J., Lillie, M., Carrington, E., Guerette, P., Ortlepp, C., & Savage, K. (2002). Elastic proteins: biological roles and mechanical properties. Philosophical Transactions of the Royal Society B: Biological Sciences, 357(1418), 121–132. https://doi.org/10.1098/RSTB.2001.1022Grolman, J. M., Singh, M., Mooney, D. J., Eriksson, E., & Nuutila, K. (2019). AntibioticContaining Agarose Hydrogel for Wound and Burn Care. Journal of Burn Care & Research, 40(6), 900–906. https://doi.org/10.1093/JBCR/IRZ113Hafezi, M., Qin, L., Mahmoodi, P., & Dong, G. (2019). Osmosis effect on protein sustained release of Agarose hydrogel for anti-friction performance. Tribology International, 132, 108–117. https://doi.org/10.1016/J.TRIBOINT.2018.12.013Hamm, R. L. (2007). Tissue Healing and Pressure Ulcers. Physical Rehabilitation, 733– 776. https://doi.org/10.1016/B978-072160361-2.50031-4Irastorza-Lorenzo, A., Sánchez-Porras, D., Ortiz-Arrabal, O., Frutos, M. J. de, Esteban, E., Fernández, J., Janer, A., Campos, A., Campos, F., & Alaminos, M. (2021). Evaluation of Marine Agarose Biomaterials for Tissue Engineering Applications. International Journal of Molecular Sciences 2021, Vol. 22, Page 1923, 22(4), 1923. https://doi.org/10.3390/IJMS22041923Järbrink, K., Ni, G., Sönnergren, H., Schmidtchen, A., Pang, C., Bajpai, R., & Car, J. (2016). Prevalence and incidence of chronic wounds and related complications: a protocol for a systematic review. Systematic Reviews, 5(1), 152. https://doi.org/10.1186/S13643-016-0329-YJiang, S., Li, S. C., Huang, C., Chan, B. P., & Du, Y. (2018). Physical Properties of Implanted Porous Bioscaffolds Regulate Skin Repair: Focusing on Mechanical and Structural Features. Advanced Healthcare Materials, 7(6), 1700894. https://doi.org/10.1002/ADHM.201700894Jones, V., Grey, J. E., & Harding, K. G. (2006). ABC of wound healing: Wound dressings. BMJ : British Medical Journal, 332(7544), 777. https://doi.org/10.1136/BMJ.332.7544.777Judith, R., Nithya, M., Rose, C., & Mandal, A. B. (2010). Application of a PDGFcontaining novel gel for cutaneous wound healing. Life Sciences, 87(1–2), 1–8. https://doi.org/10.1016/J.LFS.2010.05.003Khanarian, N. T., Haney, N. M., Burga, R. A., & Lu, H. H. (2012). A functional agarosehydroxyapatite scaffold for osteochondral interface regeneration. Biomaterials, 33(21), 5247–5258. https://doi.org/10.1016/J.BIOMATERIALS.2012.03.076Kumar, S., Marrero-Berrios, I., Kabat, M., & Berthiaume, F. (2019). Recent Advances in the Use of Algal Polysaccharides for Skin Wound Healing. Current Pharmaceutical Design, 25(11), 1248. https://doi.org/10.2174/1381612825666190521120051Litvinov, R. I., & Weisel, J. W. (2016). What Is the Biological and Clinical Relevance of Fibrin? Seminars in Thrombosis and Hemostasis, 42(4), 333. https://doi.org/10.1055/S-0036-1571342Litvinov, R. I., & Weisel, J. W. (2017). Fibrin mechanical properties and their structural origins. Matrix Biology : Journal of the International Society for Matrix Biology, 60– 61, 110. https://doi.org/10.1016/J.MATBIO.2016.08.003López-Marcial, G. R., Zeng, A. Y., Osuna, C., Dennis, J., García, J. M., & O’Connell, G. D. (2018). Agarose-Based Hydrogels as Suitable Bioprinting Materials for Tissue Engineering. ACS Biomaterials Science & Engineering, 4(10), 3610–3616. https://doi.org/10.1021/ACSBIOMATERIALS.8B00903Luo, C. C., Qian, L. X., Li, G. Y., Jiang, Y., Liang, S., & Cao, Y. (2015). Determining the in vivo elastic properties of dermis layer of human skin using the supersonic shear imaging technique and inverse analysis. Medical Physics, 42(7), 4106–4115. https://doi.org/10.1118/1.4922133Markert, C. D., Guo, X., Skardal, A., Wang, Z., Bharadwaj, S., Zhang, Y., Bonin, K., & Guthold, M. (2013). Characterizing the micro-scale elastic modulus of hydrogels for use in regenerative medicine. Journal of the Mechanical Behavior of Biomedical Materials, 27, 115–127. https://doi.org/10.1016/J.JMBBM.2013.07.008Marx, R. E. (2004). Platelet-rich plasma: evidence to support its use. Journal of Oral and Maxillofacial Surgery, 62(4), 489–496. https://doi.org/10.1016/J.JOMS.2003.12.003Matsui, M., & Tabata, Y. (2012). Enhanced angiogenesis by multiple relea platelet-rich plasma contents and basic fibroblast growth factor from gelatin hydrogelsse of. Acta Biomaterialia, 8(5), 1792–1801. https://doi.org/10.1016/J.ACTBIO.2012.01.016Mervis, J. S., & Phillips, T. J. (2019). Pressure ulcers: Pathophysiology, epidemiology, risk factors, and presentation. Journal of the American Academy of Dermatology, 81(4), 881–890. https://doi.org/10.1016/J.JAAD.2018.12.069Miguel, S. P., Ribeiro, M. P., Brancal, H., Coutinho, P., & Correia, I. J. (2014). Thermoresponsive chitosan–agarose hydrogel for skin regeneration. Carbohydrate Polymers, 111, 366–373. https://doi.org/10.1016/J.CARBPOL.2014.04.093Mikesh, L. M., Aramadhaka, L. R., Moskaluk, C., Zigrino, P., Mauch, C., & Fox, J. W. (2013). Proteomic anatomy of human skin. Journal of Proteomics, 84, 190–200. https://doi.org/10.1016/J.JPROT.2013.03.019Miroshnychenko, O., Chang, W., & Dragoo, J. L. (2016). The Use of Platelet-Rich and Platelet-Poor Plasma to Enhance Differentiation of Skeletal Myoblasts: Implications for the Use of Autologous Blood Products for Muscle Regeneration: Https://Doi.Org/10.1177/0363546516677547, 45(4), 945–953. https://doi.org/10.1177/0363546516677547Mogoşanu, G. D., & Grumezescu, A. M. (2014). Natural and synthetic polymers for wounds and burns dressing. International Journal of Pharmaceutics, 463(2), 127–136. https://doi.org/10.1016/J.IJPHARM.2013.12.015Normand, V., Lootens, D. L., Amici, E., Plucknett, K. P., & Aymard, P. (2000). New Insight into Agarose Gel Mechanical Properties. Biomacromolecules, 1(4), 730–738. https://doi.org/10.1021/BM005583JPark, J. W., Hwang, S. R., & Yoon, I. S. (2017). Advanced Growth Factor Delivery Systems in Wound Management and Skin Regeneration. Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry, 22(8). https://doi.org/10.3390/MOLECULES22081259Parnell, L. K. S., Ciufi, B., & Gokoo, C. F. (2005). Preliminary use of a hydrogel containing enzymes in the treatment of stage II and stage III pressure ulcers - PubMed. https://pubmed.ncbi.nlm.nih.gov/16234576/Pedersen, L., & Jemec, G. B. E. (2006). Mechanical properties and barrier function of healthy human skin. Acta Dermato-Venereologica, 86(4), 308–311. https://doi.org/10.2340/00015555-0080Piccin, A., Di Pierro, A. M., Canzian, L., Primerano, M., Corvetta, D., Negri, G., Mazzoleni, G., Gastl, G., Steurer, M., Gentilini, I., Eisendle, K., & Fontanella, F. (2017). Platelet gel: a new therapeutic tool with great potential. Blood Transfusion, 15(4), 333. https://doi.org/10.2450/2016.0038-16Pietrzak, W. S., An, Y. H., Kang, Q. K., Demos, H. A., & Ehrens, K. H. (2007). Plateletrich and platelet-poor plasma: Development of an animal model to evaluate hemostatic efficacy. Journal of Craniofacial Surgery, 18(3), 559–567. https://doi.org/10.1097/SCS.0B013E318052FE1FPietrzak, W. S., An, Y. H., Kang, Q. K., Demos, H. A., & Ehrens, K. H. (2007). Plateletrich and platelet-poor plasma: Development of an animal model to evaluate hemostatic efficacy. Journal of Craniofacial Surgery, 18(3), 559–567. https://doi.org/10.1097/SCS.0B013E318052FE1FRemedios Plaza, R. M. G. (2007, February 6). Prevención y tratamiento de las Úlceras por presión. 1699-695X. https://www.redalyc.org/pdf/1696/169617626008.pdfShahidi, M., Vatanmakanian, M., Arami, M. K., Sadeghi Shirazi, F., Esmaeili, N., Hydarporian, S., & Jafari, S. (2018). A comparative study between platelet-rich plasma and platelet-poor plasma effects on angiogenesis. Medical Molecular Morphology, 51(1), 21–31. https://doi.org/10.1007/S00795-017-0168-5Shi, C., Wang, C., Liu, H., Li, Q., Li, R., Zhang, Y., Liu, Y., Shao, Y., & Wang, J. (2020). Selection of Appropriate Wound Dressing for Various Wounds. Frontiers in Bioengineering and Biotechnology, 8, 182. https://doi.org/10.3389/FBIOE.2020.00182Shook, B., Gonzalez, G. R., Ebmeier, S., Grisotti, G., Zwick, R., & Horsley, V. (2016). The Role of Adipocytes in Tissue Regeneration and Stem Cell Niches. Annual Review of Cell and Developmental Biology, 32, 631. https://doi.org/10.1146/ANNUREVCELLBIO-111315-125426Sierra Sánchez, F. A., & Brito Lizarazo, C. D. (2021). Caracterización mecánica de hidrogeles de fibrina partir de plasma rico en plaquetas con potencial uso en el diseño de matrices biomiméticas. https://repository.unab.edu.co/bitstream/handle/20.500.12749/13895/2021Tesis_Fredd y_Alexis_Sierra.pdf?sequence=1&isAllowed=ySilva, V., Marcoleta, A., Silva, V., Flores, D., Aparicio, T., Aburto, I., Latrach, C., & Febré, N. (2018). Prevalence and susceptibility pattern of bacteria isolated from infected chronic wounds in adult patients. Revista Chilena de Infectología, 35(2), 155– 162. https://doi.org/10.4067/S0716-10182018000200155Silver, F. H., Freeman, J. W., & DeVore, D. (2001). Viscoelastic properties of human skin and processed dermis. Skin Research and Technology, 7(1), 18–23. https://doi.org/10.1034/J.1600-0846.2001.007001018.XSkórkowska-Telichowska, K., Czemplik, M., Kulma, A., & Szopa, J. (2013). The local treatment and available dressings designed for chronic wounds. Journal of the American Academy of Dermatology, 68(4), e117–e126. https://doi.org/10.1016/J.JAAD.2011.06.028Suthar, M., Gupta, S., Bukhari, S., & Ponemone, V. (2017). Treatment of chronic nonhealing ulcers using autologous platelet rich plasma: a case series. Journal of Biomedical Science, 24(1). https://doi.org/10.1186/S12929-017-0324-Tajima, N., Sotome, S., Marukawa, E., Omura, K., & Shinomiya, K. (2007). A threedimensional cell-loading system using autologous plasma loaded into a porous βtricalcium-phosphate block promotes bone formation at extraskeletal sites in rats. Materials Science and Engineering: C, 27(4), 625–632. https://doi.org/10.1016/J.MSEC.2006.05.031Thieulin, C., Pailler-Mattei, C., Abdouni, A., Djaghloul, M., & Zahouani, H. (2020). Mechanical and topographical anisotropy for human skin: Ageing effect. Journal of the Mechanical Behavior of Biomedical Materials, 103, 103551. https://doi.org/10.1016/J.JMBBM.2019.103551Vedadghavami, A., Minooei, F., Mohammadi, M. H., Khetani, S., Rezaei Kolahchi, A., Mashayekhan, S., & Sanati-Nezhad, A. (2017). Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomaterialia, 62, 42–63. https://doi.org/10.1016/J.ACTBIO.2017.07.028Vivcharenko, V., Wojcik, M., Palka, K., & Przekora, A. (2021). Highly Porous and Superabsorbent Biomaterial Made of Marine-Derived Polysaccharides and Ascorbic Acid as an Optimal Dressing for Exuding Wound Management. Materials, 14(5), 1211. https://doi.org/10.3390/MA14051211Weisel, J. W., & Litvinov, R. I. (2017). Fibrin Formation, Structure and Properties. SubCellular Biochemistry, 82, 405. https://doi.org/10.1007/978-3-319-49674-0_13William F, S. (n.d.). Fundamentos de la ciencia e ingenieria de materiales william f. smith . Retrieved May 19, 2022, from https://www.academia.edu/40579960/Fundamentos_de_la_ciencia_e_ingenieria_de_m ateriales_william_f._smithWong, R., Geyer, S., Weninger, W., Guimberteau, J.-C., & Wong, J. K. (2016). The dynamic anatomy and patterning of skin. Experimental Dermatology, 25(2), 92–98. https://doi.org/10.1111/EXD.12832Xiong, J. Y., Narayanan, J., Liu, X. Y., Chong, T. K., Chen, S. B., & Chung, T. S. (2005). Topology evolution and gelation mechanism of agarose gel. The Journal of Physical Chemistry. B, 109(12), 5638–5643. https://doi.org/10.1021/JP044473UZaratkiewicz, S., Goetcheus, H., & Vance, H. (2020). Unstageable Pressure Injuries: Identification, Treatment, and Outcomes Among Critical Care Patients. Critical Care Nursing Clinics of North America, 32(4), 543–561. https://doi.org/10.1016/J.CNC.2020.08.005Zarrintaj, P., Manouchehri, S., Ahmadi, Z., Saeb, M. R., Urbanska, A. M., Kaplan, D. L., & Mozafari, M. (2018). Agarose-based biomaterials for tissue engineering. Carbohydrate Polymers, 187, 66–84. https://doi.org/10.1016/J.CARBPOL.2018.01.060Zeng, Q., Han, Y., Li, H., & Chang, J. (2015). Design of a thermosensitive bioglass/agarose–alginate composite hydrogel for chronic wound healing. Journal of Materials Chemistry B, 3(45), 8856–8864. https://doi.org/10.1039/C5TB01758KZhang, J., Zhang, J., Zhang, N., Li, T., Zhou, X., Jia, J., Liang, Y., Sun, X., & Chen, H. (2020). The Effects of Platelet-Rich and Platelet-Poor Plasma on Biological Characteristics of BM-MSCs In Vitro. Analytical Cellular Pathology (Amsterdam), 2020. https://doi.org/10.1155/2020/8546231Zucca, P., Fernandez-Lafuente, R., & Sanjust, E. (2016). Agarose and Its Derivatives as Supports for Enzyme Immobilization. Molecules 2016, Vol. 21, Page 1577, 21(11), 1577. https://doi.org/10.3390/MOLECULES21111577ORIGINAL2022_Tesis_Anderson_Acevedo_Mendoza.pdf2022_Tesis_Anderson_Acevedo_Mendoza.pdfTesisapplication/pdf2304793https://repository.unab.edu.co/bitstream/20.500.12749/16884/1/2022_Tesis_Anderson_Acevedo_Mendoza.pdfbbe1e08ce3c578696cd2458fe4060042MD51open access2022_Licencia_Anderson_Acevedo_Mendoza.pdf2022_Licencia_Anderson_Acevedo_Mendoza.pdfLicenciaapplication/pdf1058067https://repository.unab.edu.co/bitstream/20.500.12749/16884/2/2022_Licencia_Anderson_Acevedo_Mendoza.pdfee8ab92031624f9ac69e7674419b6004MD52metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8829https://repository.unab.edu.co/bitstream/20.500.12749/16884/3/license.txt3755c0cfdb77e29f2b9125d7a45dd316MD53open accessTHUMBNAIL2022_Tesis_Anderson_Acevedo_Mendoza.pdf.jpg2022_Tesis_Anderson_Acevedo_Mendoza.pdf.jpgIM Thumbnailimage/jpeg5351https://repository.unab.edu.co/bitstream/20.500.12749/16884/4/2022_Tesis_Anderson_Acevedo_Mendoza.pdf.jpgfee8035d4ef59fa5ec9404bf606abef5MD54open access2022_Licencia_Anderson_Acevedo_Mendoza.pdf.jpg2022_Licencia_Anderson_Acevedo_Mendoza.pdf.jpgIM Thumbnailimage/jpeg11623https://repository.unab.edu.co/bitstream/20.500.12749/16884/5/2022_Licencia_Anderson_Acevedo_Mendoza.pdf.jpg9a88e832a665bbb73739031e96bb9571MD55open access20.500.12749/16884oai:repository.unab.edu.co:20.500.12749/168842023-11-25 03:44:21.121open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbi4gRWwgQVVUT1IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVTkFCIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpFbCBBVVRPUiBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBCdWNhcmFtYW5nYSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24uCg==