Validación clínica del sistema de inteligencia artificial deepsars en la Fundación Oftalmológica de Santander - Foscal y Fundación Fosunab

Introducción: El COVID-19, causado por el SARS-CoV-2, tiene un espectro clínico que varía desde asintomático hasta grave, con diagnóstico principalmente a través de RT-PCR, aunque esta prueba no siempre es accesible ni rápida. Por ello, la tomografía computarizada (TC) de tórax se ha convertido en u...

Full description

Autores:
Santacruz Carmen, Sebastian
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/26615
Acceso en línea:
http://hdl.handle.net/20.500.12749/26615
Palabra clave:
Artificial intelligence
Medical sciences
Radiology
Diagnostic imaging
Development scientific and technology
Medical X-ray
Imaging systems in medicine
Public health
Ciencias médicas
Radiología
Diagnóstico para imágenes
Desarrollo científico y tecnológico
Radiografía médica
Sistemas de imágenes en medicina
Salud pública
Inteligencia artificial
Covid-19
Rights
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UNAB2_17ca2becbaa46da6f7091c2a70b5e592
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/26615
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Validación clínica del sistema de inteligencia artificial deepsars en la Fundación Oftalmológica de Santander - Foscal y Fundación Fosunab
dc.title.translated.spa.fl_str_mv Clinical validation of the deepsars artificial intelligence system at the Santander Ophthalmological Foundation - Foscal and Fosunab Foundation
title Validación clínica del sistema de inteligencia artificial deepsars en la Fundación Oftalmológica de Santander - Foscal y Fundación Fosunab
spellingShingle Validación clínica del sistema de inteligencia artificial deepsars en la Fundación Oftalmológica de Santander - Foscal y Fundación Fosunab
Artificial intelligence
Medical sciences
Radiology
Diagnostic imaging
Development scientific and technology
Medical X-ray
Imaging systems in medicine
Public health
Ciencias médicas
Radiología
Diagnóstico para imágenes
Desarrollo científico y tecnológico
Radiografía médica
Sistemas de imágenes en medicina
Salud pública
Inteligencia artificial
Covid-19
title_short Validación clínica del sistema de inteligencia artificial deepsars en la Fundación Oftalmológica de Santander - Foscal y Fundación Fosunab
title_full Validación clínica del sistema de inteligencia artificial deepsars en la Fundación Oftalmológica de Santander - Foscal y Fundación Fosunab
title_fullStr Validación clínica del sistema de inteligencia artificial deepsars en la Fundación Oftalmológica de Santander - Foscal y Fundación Fosunab
title_full_unstemmed Validación clínica del sistema de inteligencia artificial deepsars en la Fundación Oftalmológica de Santander - Foscal y Fundación Fosunab
title_sort Validación clínica del sistema de inteligencia artificial deepsars en la Fundación Oftalmológica de Santander - Foscal y Fundación Fosunab
dc.creator.fl_str_mv Santacruz Carmen, Sebastian
dc.contributor.advisor.none.fl_str_mv Mantilla García, Daniel Eduardo
Valenzuela Santos, Diana María
Vásquez Cardona, Lina María
dc.contributor.author.none.fl_str_mv Santacruz Carmen, Sebastian
dc.contributor.cvlac.spa.fl_str_mv Mantilla García, Daniel Eduardo [0001437130]
Valenzuela Santos, Diana María [0001764194]
Vásquez Cardona, Lina María [0001764229]
dc.contributor.googlescholar.spa.fl_str_mv Mantilla García, Daniel Eduardo [es&oi=ao]
Valenzuela Santos, Diana María [es&oi=ao]
Vásquez Cardona, Lina María [es&oi=ao]
dc.contributor.orcid.spa.fl_str_mv Mantilla García, Daniel Eduardo [0000-0003-1532-2101]
Valenzuela Santos, Diana María [0000-0002-5664-9154]
Vásquez Cardona, Lina María [0000-0002-4809-5825]
dc.contributor.apolounab.spa.fl_str_mv Mantilla García, Daniel Eduardo [daniel-eduardo-mantilla-garcía]
dc.subject.keywords.spa.fl_str_mv Artificial intelligence
Medical sciences
Radiology
Diagnostic imaging
Development scientific and technology
Medical X-ray
Imaging systems in medicine
Public health
topic Artificial intelligence
Medical sciences
Radiology
Diagnostic imaging
Development scientific and technology
Medical X-ray
Imaging systems in medicine
Public health
Ciencias médicas
Radiología
Diagnóstico para imágenes
Desarrollo científico y tecnológico
Radiografía médica
Sistemas de imágenes en medicina
Salud pública
Inteligencia artificial
Covid-19
dc.subject.lemb.spa.fl_str_mv Ciencias médicas
Radiología
Diagnóstico para imágenes
Desarrollo científico y tecnológico
Radiografía médica
Sistemas de imágenes en medicina
Salud pública
dc.subject.proposal.spa.fl_str_mv Inteligencia artificial
Covid-19
description Introducción: El COVID-19, causado por el SARS-CoV-2, tiene un espectro clínico que varía desde asintomático hasta grave, con diagnóstico principalmente a través de RT-PCR, aunque esta prueba no siempre es accesible ni rápida. Por ello, la tomografía computarizada (TC) de tórax se ha convertido en una herramienta importante para detectar el virus debido a su afectación del parénquima pulmonar. Con el avance de la inteligencia artificial (IA), se han desarrollado modelos para analizar imágenes radiológicas, como DeepSARS, un sistema diseñado en 2020 para identificar y monitorear casos de COVID-19 y riesgo de síndrome de dificultad respiratoria aguda. Este estudio tiene como objetivo validar la eficacia de DeepSARS en la identificación de estas condiciones mediante TC de tórax y resultados de RT-PCR. Metodología: Este estudio de evaluación de prueba diagnóstica analizó la base de datos de DeepSARS, recopilando datos de tomografías de tórax y resultados de RT-PCR de pacientes sospechosos de COVID-19 atendidos en FOSCAL y FOSUNAB entre octubre de 2020 y agosto de 2021. Se incluyeron tanto pacientes con resultados positivos como aquellos sin COVID-19 confirmados por al menos dos pruebas RT-PCR negativas. Se excluyeron las TC que no pudieron ser evaluadas en DeepSARS. Dos radiólogos revisaron las tomografías de manera independiente, clasificando la presencia de COVID-19 y la severidad pulmonar. El software DeepSARS se utilizó para determinar la presencia y gravedad de COVID-19, así como la probabilidad de síndrome de dificultad respiratoria aguda. El análisis estadístico evaluó el desempeño del software mediante medidas como la sensibilidad, especificidad y la concordancia entre hallazgos clínicos e imagenológicos. Resultados: Se incluyeron 57 pacientes sospechosos de COVID-19, de los cuales el 50.8% eran hombres, con una edad promedio de 67.7 años. Las comorbilidades más comunes fueron hipertensión (53.5%) y diabetes (26.7%). La mitad de los pacientes tuvo una prueba positiva para COVID-19. Los hallazgos radiológicos más frecuentes incluyeron opacidades en vidrio esmerilado (74.14%) y consolidaciones (62%). En cuanto a la evaluación con la plataforma DeepSARS, se detectaron imágenes sugestivas de COVID-19 en el 50% de los pacientes, siendo los hallazgos moderados y avanzados los más comunes. Los análisis estadísticos mostraron una buena concordancia entre las radiólogas en la mayoría de los hallazgos imagenológicos, aunque el puntaje CT score difería significativamente entre ellas. No se encontraron diferencias significativas en la capacidad de DeepSARS para discriminar entre pacientes con y sin COVID-19. Discusión: Durante la pandemia de COVID-19, la inteligencia artificial emergió como una herramienta prometedora para la detección temprana y clasificación de neumonía por COVID-19 mediante imágenes radiológicas. Este estudio validó la herramienta de inteligencia artificial DeepSARS para la detección de COVID-19 mediante tomografía computarizada, usando una muestra de 57 pacientes. Aunque la herramienta mostró una adecuada concordancia en hallazgos típicos de COVID-19, como opacidades en vidrio esmerilado y consolidación, su capacidad discriminatoria fue limitada, con un AUC de 0.538. Los hallazgos imagenológicos fueron consistentes con estudios previos en algunos aspectos, pero también revelaron diferencias. Las discrepancias podrían deberse a la necesidad de bases de datos más grandes y a problemas en la validación y reporte de modelos de IA en la literatura. Conclusión: La implementación de la inteligencia artificial en el diagnóstico de COVID-19 debe ser acompañada por una validación interna y externa rigurosa y ajuste continuo para garantizar su efectividad clínica. Los resultados de este estudio subrayan la necesidad de integrar datos más amplios y variados, para mejorar la detección temprana y la gestión de la enfermedad, que siempre deben ir acompañadas de un seguimiento médico.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-18T20:01:13Z
dc.date.available.none.fl_str_mv 2024-09-18T20:01:13Z
dc.date.issued.none.fl_str_mv 2024-09-18
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.local.spa.fl_str_mv Tesis
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/26615
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UNAB
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unab.edu.co
url http://hdl.handle.net/20.500.12749/26615
identifier_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
reponame:Repositorio Institucional UNAB
repourl:https://repository.unab.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Islam, K. U., & Iqbal, J. (2020). An Update on Molecular Diagnostics for COVID-19. Frontiers in cellular and infection microbiology, 10, 560616. https://doi.org/10.3389/fcimb.2020.560616. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7683783/
Zu, Z. Y., Jiang, M. D., Xu, P. P., Chen, W., Ni, Q. Q., Lu, G. M., & Zhang, L. J. (2020). Coronavirus Disease 2019 (COVID-19): A Perspective from China. Radiology, 296(2), E15–E25. https://doi.org/10.1148/radiol.2020200490. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7233368/
Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & Aerts, H. (2018). Artificial intelligence in radiology. Nature reviews. Cancer, 18(8), 500–510. https://doi.org/10.1038/s41568-018-0016-5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6268174/
Ozsahin, I., Sekeroglu, B., Musa, M. S., Mustapha, M. T., & Uzun Ozsahin, D. (2020). Review on Diagnosis of COVID-19 from Chest CT Images Using Artificial Intelligence. Computational and mathematical methods in medicine, 2020, 9756518. https://doi.org/10.1155/2020/9756518. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519983/
Kim, D. W., Jang, H. Y., Kim, K. W., Shin, Y., & Park, S. H. (2019). Design Characteristics of Studies Reporting the Performance of Artificial Intelligence Algorithms for Diagnostic Analysis of Medical Images: Results from Recently Published Papers. Korean journal of radiology, 20(3), 405–410. https://doi.org/10.3348/kjr.2019.0025. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6389801/
Asselah, T., Durantel, D., Pasmant, E., Lau, G., & Schinazi, R. F. (2021). COVID-19: Discovery, diagnostics and drug development. Journal of hepatology, 74(1), 168–184. https://doi.org/10.1016/j.jhep.2020.09.031. ncbi.nlm.nih.gov/pmc/articles/PMC7543767/
Samudrala, P. K., Kumar, P., Choudhary, K., Thakur, N., Wadekar, G. S., Dayaramani, R., Agrawal, M., & Alexander, A. (2020). Virology, pathogenesis, diagnosis and in-line treatment of COVID-19. European journal of pharmacology, 883, 173375. https://doi.org/10.1016/j.ejphar.2020.173375. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366121/
Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;109(February):18–21.
Organización mundial de la salud. Alocución de apertura del Director General de la OMS en la rueda de prensa sobre la COVID-19 celebrada el 11 de marzo de 2020. Available from: https://www.who.int/es/dg/speeches/detail/who- 52 director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
Instituto Nacional de Salud. Coronavirus en Colombia. Consultado 22 de febrero de 2021. Disponible en: https://www.ins.gov.co/Noticias/Paginas/Coronavirus.aspx
Li, M., Lei, P., Zeng, B., Li, Z., Yu, P., Fan, B., Wang, C., Li, Z., Zhou, J., Hu, S., & Liu, H. (2020). Coronavirus Disease (COVID-19): Spectrum of CT Findings and Temporal Progression of the Disease. Academic radiology, 27(5), 603–608. https://doi.org/10.1016/j.acra.2020.03.003. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156150/
Imaging BS of T. **UPDATED**VERSION 2 BSTI COVID-19 GUIDANCE FOR THE REPORTING RADIOLOGIST [Internet]. Consultada: 22 de febrero de 2021. Available from: https://www.bsti.org.uk/standards-clinical-guidelines/clinical-guidelines/bsti-covid-19-guidance-for-the-reporting-radiologis.
Feng Pan, Tianhe Ye, Peng Sun, et al. Time Course of Lung Changes at Chest CT during Recovery from Coronavirus Disease 2019 (COVID-19). Radiology. 2020;295(3):715-21. DOI:https://doi.org/10.1148/radiol.2020200370. https://pubs.rsna.org/doi/10.1148/radiol.2020200370
Francone, M., Iafrate, F., Masci, G. M., Coco, S., Cilia, F., Manganaro, L., Panebianco, V., Andreoli, C., Colaiacomo, M. C., Zingaropoli, M. A., Ciardi, M. R., Mastroianni, C. M., Pugliese, F., Alessandri, F., Turriziani, O., Ricci, P., & Catalano, C. (2020). Chest CT score in COVID-19 patients: correlation with disease severity and short-term prognosis. European radiology, 30(12), 6808–6817. https://doi.org/10.1007/s00330-020-07033-y. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334627/
Tabatabaei SMH, Rahimi H, Moghaddas F, Rajebi H. Predictive value of CT in the short-term mortality of Coronavirus Disease 2019 (COVID-19) pneumonia in nonelderly patients: A case-control study. Eur J Radiol. 2020;132:109298. doi:10.1016/j.ejrad.2020.109298 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7505070/.
Hosny A, Parman C, Quackenbush J, Schwartz L, Aerts H. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18(8):500-510. doi: 10.1038/s41568-018-0016-5. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6268174/
Rubin D. L. (2019). Artificial Intelligence in Imaging: The Radiologist's Role. Journal of the American College of Radiology : JACR, 16(9 Pt B), 1309–1317. https://doi.org/10.1016/j.jacr.2019.05.036 Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733578/
Kim, D. W., Jang, H. Y., Kim, K. W., Shin, Y., & Park, S. H. (2019). Design Characteristics of Studies Reporting the Performance of Artificial Intelligence 53 Algorithms for Diagnostic Analysis of Medical Images: Results from Recently Published Papers. Korean journal of radiology, 20(3), 405–410. https://doi.org/10.3348/kjr.2019.0025. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6389801/
Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin. 2019 Mar;69(2):127-157. doi: 10.3322/caac.21552. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403009/
Geras KJ, Mann RM, Moy L. Artificial Intelligence for Mammography and Digital Breast Tomosynthesis: Current Concepts and Future Perspectives. Radiology. 2019 Nov;293(2):246-259. doi: 10.1148/radiol.2019182627. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822772/
Duong MT, Rauschecker AM, Rudie JD, Chen PH, Cook TS, et al. Artificial intelligence for precision education in radiology. Br J Radiol. 2019 Nov;92(1103):20190389. doi: 10.1259/bjr.20190389. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6849670/
handelman GS, Kok HK, Chandra RV, Razavi AH, Lee MJ, Asadi.eDoctor: machine learning and the future of medicine. Journal of Internal Medecine. 2018. https://doi.org/10.1111/joim.12822. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1111/joim.12822
Razavian N, Knoll F, Geras KJ. Artificial Intelligence Explained for Nonexperts. Semin Musculoskelet Radiol. 2020 Feb;24(1):3-11. doi: 10.1055/s-0039-3401041. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7393604/
Koteluk O, Wartecki A, Mazurek S, Kołodziejczak I, Mackiewicz A. How Do Machines Learn? Artificial Intelligence as a New Era in Medicine. J Pers Med. 2021 Jan 7;11(1):32. doi: 10.3390/jpm11010032. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7825660/
E. Klang (2018). Deep learning and medical imaging. Journal of thoracic disease, 10(3), 1325–1328. https://doi.org/10.21037/jtd.2018.02.76
National Lung Screening Trial Research Team, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, Gareen IF, Gatsonis C, Marcus PM, Sicks JD. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011 Aug 4;365(5):395-409. doi: 10.1056/NEJMoa1102873. Epub 2011 Jun 29. PMID: 21714641; PMCID: PMC4356534. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356534/
Ardila, D., Kiraly, A.P., Bharadwaj, S. et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med 25, 954–961 (2019). https://doi.org/10.1038/s41591-019-0447-x
Chae KJ, Jin GY, Ko SB, Wang Y, Zhang H, Choi EJ, Choi H. Deep Learning for the Classification of Small (≤2 cm) Pulmonary Nodules on CT Imaging: A Preliminary Study. Acad Radiol. 2020 Apr;27(4):e55-e63. doi: 10.1016/j.acra.2019.05.018. Epub 2019 Nov 25. PMID: 31780395. https://pubmed.ncbi.nlm.nih.gov/31780395/
Wang S, Shi J, Ye Z, Dong D, Yu D, Zhou M, Liu Y, Gevaert O, Wang K, Zhu Y, Zhou H, Liu Z, Tian J. Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning. Eur Respir J. 2019 Mar 28;53(3):1800986. doi: 10.1183/13993003.00986-2018. PMID: 30635290; PMCID: PMC6437603. https://pubmed.ncbi.nlm.nih.gov/30635290/
González G, Ash SY, Vegas-Sánchez-Ferrero G, Onieva Onieva J, Rahaghi FN, Ross JC, et al. Disease Staging and Prognosis in Smokers Using Deep Learning in Chest Computed Tomography. Am J Respir Crit Care Med. 2018 Jan 15;197(2):193-203. doi: 10.1164/rccm.201705-0860OC. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5768902/
Humphries SM, Notary AM, Centeno JP, Strand MJ, Crapo JD, Silverman EK, Lynch DA; Genetic Epidemiology of COPD (COPDGene) Investigators. Deep Learning Enables Automatic Classification of Emphysema Pattern at CT. Radiology. 2020 Feb;294(2):434-444. doi: 10.1148/radiol.2019191022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996603/
Yue, Z., Ma, L., & Zhang, R. (2020). Comparison and Validation of Deep Learning Models for the Diagnosis of Pneumonia. Computational intelligence and neuroscience, 2020, 8876798. https://doi.org/10.1155/2020/8876798. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7520009/
Stephen, O., Sain, M., Maduh, U. J., & Jeong, D. U. (2019). An Efficient Deep Learning Approach to Pneumonia Classification in Healthcare. Journal of healthcare engineering, 2019, 4180949. https://doi.org/10.1155/2019/4180949. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458916/
Chumbita, M., Cillóniz, C., Puerta-Alcalde, P., Moreno-García, E., Sanjuan, G., Garcia-Pouton, N., Soriano, A., Torres, A., & Garcia-Vidal, C. (2020). Can Artificial Intelligence Improve the Management of Pneumonia. Journal of clinical medicine, 9(1), 248. https://doi.org/10.3390/jcm9010248 Disponible en: Can Artificial Intelligence Improve the Management of Pneumonia (nih.gov)
Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., Bai, J., Lu, Y., Fang, Z., Song, Q., Cao, K., Liu, D., Wang, G., Xu, Q., Fang, X., Zhang, S., Xia, J., & Xia, J. (2020). Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy. Radiology, 296(2), E65–E71. https://doi.org/10.1148/radiol.2020200905
Dong D, Tang Z, Wang S, Hui H, Gong L, Lu Y, Xue Z, Liao H, Chen F, Yang F, Jin R, Wang K, Liu Z, Wei J, Mu W, Zhang H, Jiang J, Tian J, Li H. The Role of Imaging in the Detection and Management of COVID-19: A Review. IEEE Rev Biomed Eng. 2021;14:16-29. doi: 10.1109/RBME.2020.2990959. Epub 2021 Jan 22. PMID: 32356760.
Wang S, Zha Y, Li W, et al. A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis. Eur Respir J 2020; 56: 2000775 [https://doi.org/10.1183/13993003.00775-2020].
DeCoVNet: Zheng C, Deng X, Fu Q, et al. . Deep learning-based detection for COVID-19 from chest CT using weak label. medRxiv 2020; preprint [10.1101/2020.03.12.20027185].
Suri JS, Agarwal S, Gupta SK, Puvvula A, Biswas M, Saba L, et al. A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence. Comput Biol Med. 2021 Mar;130:104210. doi: 10.1016/j.compbiomed.2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7813499/
Belfiore MP, Urraro F, Grassi R, Giacobbe G, Patelli G, Cappabianca S, Reginelli A. Artificial intelligence to codify lung CT in Covid-19 patients. Radiol Med. 2020 May;125(5):500-504. doi: 10.1007/s11547-020-01195-x. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7197034/
Liu F, Zhang Q, Huang C, Shi C, Wang L, Shi N, Fang C, Shan F, Mei X, Shi J, Song F, Yang Z, et al. CT quantification of pneumonia lesions in early days predicts progression to severe illness in a cohort of COVID-19 patients. Theranostics. 2020 Apr 27;10(12):5613-5622. doi: 10.7150/thno.45985. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7196293/
Liu F, Zhang Q, Huang C, Shi C, Wang L, Shi N, Fang C, Shan F, Mei X, Shi J, Song F, Yang Z, et al. CT quantification of pneumonia lesions in early days predicts progression to severe illness in a cohort of COVID-19 patients. Theranostics. 2020 Apr 27;10(12):5613-5622. doi: 10.7150/thno.45985. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7196293/
Agarwal, M., Saba, L., Gupta, S. K., Carriero, A., Falaschi, Z., Paschè, A., Danna, P., El-Baz, A., Naidu, S., & Suri, J. S. (2021). A Novel Block Imaging Technique Using Nine Artificial Intelligence Models for COVID-19 Disease Classification, Characterization and Severity Measurement in Lung Computed Tomography Scans on an Italian Cohort. Journal of medical systems, 45(3), 28. https://doi.org/10.1007/s10916-021-01707-w
Lessmann, N., Sánchez, C. I., Beenen, L., Boulogne, L. H., Brink, M., Calli, E., Charbonnier, J. P., Dofferhoff, T., van Everdingen, W. M., Gerke, P. K., Geurts, B., Gietema, H. A., Groeneveld, M., van Harten, L., Hendrix, N., Hendrix, W., Huisman, H. J., Išgum, I., Jacobs, C., Kluge, R., … van Ginneken, B. (2021). Automated Assessment of COVID-19 Reporting and Data System and Chest CT Severity Scores in Patients Suspected of Having COVID-19 Using Artificial Intelligence. Radiology, 298(1), E18–E28. https://doi.org/10.1148/radiol.2020202439
Wang, F., Kream, R. M., & Stefano, G. B. (2020). Long-Term Respiratory and Neurological Sequelae of COVID-19. Medical science monitor : international medical journal of experimental and clinical research, 26, e928996. https://doi.org/10.12659/MSM.928996
Willi, S., Lüthold, R., Hunt, A., Hänggi, N. V., Sejdiu, D., Scaff, C., Bender, N., Staub, K., & Schlagenhauf, P. (2021). COVID-19 sequelae in adults aged less than 50 years: A systematic review. Travel medicine and infectious disease, 40, 101995. https://doi.org/10.1016/j.tmaid.2021.101995
Rogliani, P., Calzetta, L., Coppola, A., Puxeddu, E., Sergiacomi, G., D'Amato, D., & Orlacchio, A. (2020). Are there pulmonary sequelae in patients recovering from COVID-19?. Respiratory research, 21(1), 286. https://doi.org/10.1186/s12931-020-01550-6
Zou, J. N., Sun, L., Wang, B. R., Zou, Y., Xu, S., Ding, Y. J., Shen, L. J., Huang, W. C., Jiang, X. J., & Chen, S. M. (2021). The characteristics and evolution of pulmonary fibrosis in COVID-19 patients as assessed by AI-assisted chest HRCT. PloS one, 16(3), e0248957. https://doi.org/10.1371/journal.pone.0248957
Lessmann, N., Sánchez, C. I., Beenen, L., Boulogne, L. H., Brink, M., Calli, E., Charbonnier, J. P., Dofferhoff, T., van Everdingen, W. M., Gerke, P. K., Geurts, B., Gietema, H. A., Groeneveld, M., van Harten, L., Hendrix, N., Hendrix, W., Huisman, H. J., Išgum, I., Jacobs, C., Kluge, R., … van Ginneken, B. (2021). Automated Assessment of COVID-19 Reporting and Data System and Chest CT Severity Scores in Patients Suspected of Having COVID-19 Using Artificial Intelligence. Radiology, 298(1), E18–E28. https://doi.org/10.1148/radiol.2020202439
Wang, M., Xia, C., Huang, L., Xu, S., Qin, C., Liu, J., Cao, Y., Yu, P., Zhu, T., Zhu, H., Wu, C., Zhang, R., Chen, X., Wang, J., Du, G., Zhang, C., Wang, S., Chen, K., Liu, Z., Xia, L., … Wang, W. (2020). Deep learning-based triage and analysis of lesion burden for COVID-19: a retrospective study with external validation. The Lancet. Digital health, 2(10), e506–e515. https://doi.org/10.1016/S2589-7500(20)30199-0
Quiroz, J. C., Feng, Y. Z., Cheng, Z. Y., Rezazadegan, D., Chen, P. K., Lin, Q. T., Qian, L., Liu, X. F., Berkovsky, S., Coiera, E., Song, L., Qiu, X., Liu, S., & Cai, X. R. (2021). Development and Validation of a Machine Learning Approach for Automated Severity Assessment of COVID-19 Based on Clinical and Imaging Data: Retrospective Study. JMIR medical informatics, 9(2), e24572. https://doi.org/10.2196/24572
Lu-shan Xiao, Pu Li, Fenglong Sun, et al. Development and Validation of a Deep Learning-Based Model Using Computed Tomography Imaging for Predicting Disease Severity of Coronavirus Disease 2019. Bioeng. Biotechnol., 31 July 2020 | https://doi.org/10.3389/fbioe.2020.00898
Shuai Wang, Bo Kang, Jinlu Ma, et al. A deep learning algorithm using CT images to screen for Corona virus disease (COVID-19). European Radiology
Wang Q, Ma J, Zhang L, Xie L. Diagnostic performance of corona virus disease 2019 chest computer tomography image recognition based on deep learning: Systematic review and meta-analysis. Medicine [Internet]. 2022 Oct 21;101(42):e31346. Available from: https://doi.org/10.1097/md.0000000000031346
Rodriguez DR, Pinzón ÁM, Rubio C, Pinilla DI, Niño MJ, Díaz MA, et al. Clinical characteristics and mortality associated with COVID-19 at high altitude: a 57 cohort of 5161 patients in Bogotá, Colombia. International Journal of Emergency Medicine [Internet]. 2022 May 21;15(1). Available from: https://doi.org/10.1186/s12245-022-00426-4
Ramírez CC, Mantilla AJL, Gómez LAP, Vargas VO, Paz MP, Esparza VF, et al. General Hospitalization and Intensive Care Unit-Related Factors of COVID-19 patients in Northeastern Colombia: baseline characteristics of a cohort study. Cureus [Internet]. 2023 Aug 21; Available from: https://doi.org/10.7759/cureus.43888
Zarifian A, Nour MG, Rezayat AA, Oskooei RR, Abbasi B, Sadeghi R. Chest CT findings of coronavirus disease 2019 (COVID-19): A comprehensive meta-analysis of 9907 confirmed patients. Clinical Imaging [Internet]. 2021 Feb 1;70:101–10. Available from: https://doi.org/10.1016/j.clinimag.2020.10.035
Ghayda RA, Lee KH, Kim JS, Lee S, Hong SH, Kim KS, et al. Chest CT abnormalities in COVID-19: a systematic review. International Journal of Medical Sciences [Internet]. 2021 Jan 1;18(15):3395–402. Available from: https://doi.org/10.7150/ijms.50568
Elmokadem AH, Mounir AM, Ramadan ZA, Elsedeiq M, Saleh GA. Comparison of chest CT severity scoring systems for COVID-19. European Radiology [Internet]. 2022 Jan 15;32(5):3501–12. Available from: https://doi.org/10.1007/s00330-021-08432-5
Sharif PM, Nematizadeh M, Saghazadeh M, Saghazadeh A, Rezaei N. Computed tomography scan in COVID-19: a systematic review and meta-analysis. Polish Journal of Radiology [Internet]. 2022 Jan 1;87(1):1–23. Available from: https://doi.org/10.5114/pjr.2022.112613
Simpson S, Kay FU, Abbara S, Bhalla S, Chung JH, Chung M, et al. Radiological Society of North America Expert Consensus Statement on Reporting Chest CT findings related to COVID-19. Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA - secondary publication. Journal of Thoracic Imaging [Internet]. 2020 Apr 21;35(4):219–27. Available from: https://doi.org/10.1097/rti.0000000000000524
Da Nam B, Hong H, Yoon SH. Diagnostic performance of standardized typical CT findings for COVID-19: a systematic review and meta-analysis. Insights Into Imaging [Internet]. 2023 May 24;14(1). Available from: https://doi.org/10.1186/s13244-023-01429-2
Chen J, See KC. Artificial Intelligence for COVID-19: Rapid review. Journal of Medical Internet Research [Internet]. 2020 Oct 27;22(10):e21476. Available from: https://doi.org/10.2196/21476
Jia LL, Zhao JX, Pan NN, Shi LY, Zhao LP, Tian JH, et al. Artificial intelligence model on chest imaging to diagnose COVID-19 and other pneumonias: A systematic review and meta-analysis. European Journal of Radiology Open [Internet]. 2022 Jan 1;9:100438. Available from: https://doi.org/10.1016/j.ejro.2022.100438
Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, et al. Prediction models for diagnosis and prognosis of covid-19: systematic review 58 and critical appraisal. BMJ [Internet]. 2020 Apr 7;m1328. Available from: https://doi.org/10.1136/bmj.m1328
Shillan D, Sterne J a. C, Champneys A, Gibbison B. Use of machine learning to analyse routinely collected intensive care unit data: a systematic review. Critical Care [Internet]. 2019 Aug 22;23(1). Available from: https://doi.org/10.1186/s13054-019-2564-9
Bradshaw TJ, Huemann Z, Hu J, Rahmim A. A Guide to Cross-Validation for Artificial intelligence in Medical Imaging. Radiology Artificial Intelligence [Internet]. 2023 Jul 1;5(4). Available from: https://doi.org/10.1148/ryai.220232
dc.relation.uriapolo.spa.fl_str_mv https://apolo.unab.edu.co/en/persons/daniel-eduardo-mantilla-garc%C3%ADa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Floridablanca (Santander, Colombia)
dc.coverage.temporal.spa.fl_str_mv 14 de octubre de 2020 al 31 de agosto de 2021
dc.coverage.campus.spa.fl_str_mv UNAB Campus Bucaramanga
dc.publisher.grantor.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.spa.fl_str_mv Facultad Ciencias de la Salud
dc.publisher.program.spa.fl_str_mv Especialización en Radiología e Imágenes Diagnósticas
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/26615/1/Deepsars%20FINAL.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/26615/5/Licencia.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/26615/4/license.txt
https://repository.unab.edu.co/bitstream/20.500.12749/26615/6/Deepsars%20FINAL.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/26615/7/Licencia.pdf.jpg
bitstream.checksum.fl_str_mv 148daca74605b2574fedff0d47c9ab9b
8d3dac8a0311863cfc05653a7f836dfd
3755c0cfdb77e29f2b9125d7a45dd316
e2c3757b2f6bf1340360cb72532b229f
759808bd25e9aab08f0fc9bc1ca248f9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1814278055555760128
spelling Mantilla García, Daniel Eduardo02f2cc58-14df-4196-a68a-08dc2290cdc0Valenzuela Santos, Diana María62000588-b5e1-4d66-a021-e60d12a0da5aVásquez Cardona, Lina Maríaba32873c-5ff2-4de0-8c63-6eb0ddb4335cSantacruz Carmen, Sebastian978b24c7-f38b-48f0-a0cc-886d58fb6898Mantilla García, Daniel Eduardo [0001437130]Valenzuela Santos, Diana María [0001764194]Vásquez Cardona, Lina María [0001764229]Mantilla García, Daniel Eduardo [es&oi=ao]Valenzuela Santos, Diana María [es&oi=ao]Vásquez Cardona, Lina María [es&oi=ao]Mantilla García, Daniel Eduardo [0000-0003-1532-2101]Valenzuela Santos, Diana María [0000-0002-5664-9154]Vásquez Cardona, Lina María [0000-0002-4809-5825]Mantilla García, Daniel Eduardo [daniel-eduardo-mantilla-garcía]Floridablanca (Santander, Colombia)14 de octubre de 2020 al 31 de agosto de 2021UNAB Campus Bucaramanga2024-09-18T20:01:13Z2024-09-18T20:01:13Z2024-09-18http://hdl.handle.net/20.500.12749/26615instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coIntroducción: El COVID-19, causado por el SARS-CoV-2, tiene un espectro clínico que varía desde asintomático hasta grave, con diagnóstico principalmente a través de RT-PCR, aunque esta prueba no siempre es accesible ni rápida. Por ello, la tomografía computarizada (TC) de tórax se ha convertido en una herramienta importante para detectar el virus debido a su afectación del parénquima pulmonar. Con el avance de la inteligencia artificial (IA), se han desarrollado modelos para analizar imágenes radiológicas, como DeepSARS, un sistema diseñado en 2020 para identificar y monitorear casos de COVID-19 y riesgo de síndrome de dificultad respiratoria aguda. Este estudio tiene como objetivo validar la eficacia de DeepSARS en la identificación de estas condiciones mediante TC de tórax y resultados de RT-PCR. Metodología: Este estudio de evaluación de prueba diagnóstica analizó la base de datos de DeepSARS, recopilando datos de tomografías de tórax y resultados de RT-PCR de pacientes sospechosos de COVID-19 atendidos en FOSCAL y FOSUNAB entre octubre de 2020 y agosto de 2021. Se incluyeron tanto pacientes con resultados positivos como aquellos sin COVID-19 confirmados por al menos dos pruebas RT-PCR negativas. Se excluyeron las TC que no pudieron ser evaluadas en DeepSARS. Dos radiólogos revisaron las tomografías de manera independiente, clasificando la presencia de COVID-19 y la severidad pulmonar. El software DeepSARS se utilizó para determinar la presencia y gravedad de COVID-19, así como la probabilidad de síndrome de dificultad respiratoria aguda. El análisis estadístico evaluó el desempeño del software mediante medidas como la sensibilidad, especificidad y la concordancia entre hallazgos clínicos e imagenológicos. Resultados: Se incluyeron 57 pacientes sospechosos de COVID-19, de los cuales el 50.8% eran hombres, con una edad promedio de 67.7 años. Las comorbilidades más comunes fueron hipertensión (53.5%) y diabetes (26.7%). La mitad de los pacientes tuvo una prueba positiva para COVID-19. Los hallazgos radiológicos más frecuentes incluyeron opacidades en vidrio esmerilado (74.14%) y consolidaciones (62%). En cuanto a la evaluación con la plataforma DeepSARS, se detectaron imágenes sugestivas de COVID-19 en el 50% de los pacientes, siendo los hallazgos moderados y avanzados los más comunes. Los análisis estadísticos mostraron una buena concordancia entre las radiólogas en la mayoría de los hallazgos imagenológicos, aunque el puntaje CT score difería significativamente entre ellas. No se encontraron diferencias significativas en la capacidad de DeepSARS para discriminar entre pacientes con y sin COVID-19. Discusión: Durante la pandemia de COVID-19, la inteligencia artificial emergió como una herramienta prometedora para la detección temprana y clasificación de neumonía por COVID-19 mediante imágenes radiológicas. Este estudio validó la herramienta de inteligencia artificial DeepSARS para la detección de COVID-19 mediante tomografía computarizada, usando una muestra de 57 pacientes. Aunque la herramienta mostró una adecuada concordancia en hallazgos típicos de COVID-19, como opacidades en vidrio esmerilado y consolidación, su capacidad discriminatoria fue limitada, con un AUC de 0.538. Los hallazgos imagenológicos fueron consistentes con estudios previos en algunos aspectos, pero también revelaron diferencias. Las discrepancias podrían deberse a la necesidad de bases de datos más grandes y a problemas en la validación y reporte de modelos de IA en la literatura. Conclusión: La implementación de la inteligencia artificial en el diagnóstico de COVID-19 debe ser acompañada por una validación interna y externa rigurosa y ajuste continuo para garantizar su efectividad clínica. Los resultados de este estudio subrayan la necesidad de integrar datos más amplios y variados, para mejorar la detección temprana y la gestión de la enfermedad, que siempre deben ir acompañadas de un seguimiento médico.RESUMEN DEL PROYECTO 3 1. PLANTEAMIENTO DEL PROBLEMA 5 2.MARCO TEÓRICO 6 3. ESTADO DEL ARTE15 4. OBJETIVOS 4.1. Objetivo General 4.2. Objetivos específicos 19 5. METODOLOGÍA 5.1. Diseño del estudio 5.2. Población 5.3. Criterios de elegibilidad 5.4. Variables20 6. DESCRIPCIÓN DE LOS PROCEDIMIENTOS22 7.RESULTADOS ESPERADOS Y POTENCIALES BENEFICIARIOS 7.1.Relacionados con la generación de conocimiento y/o nuevos desarrollos tecnológicos e innovación 7.2.Conducentes al fortalecimiento de la capacidad científica institucional 7.3.Dirigidos a la apropiación social del conocimiento24 8.IMPACTO AMBIENTAL DEL PROYECTO26 9.CONSIDERACIONES ÉTICAS27 10.CRONOGRAMA DE ACTIVIDADES28 11.PRESUPUESTO29 12.RESULTADOS30 13.DISCUSIÓN44 14.CONCLUSIÓN48 15.REFERENCIAS BIBLIOGRÁFICAS49 16.ANEXOSEspecializaciónIntroduction: COVID-19, caused by SARS-CoV-2, has a clinical spectrum that varies from asymptomatic to severe, with diagnosis mainly through RT-PCR, although this test is not always accessible or rapid. Therefore, chest computed tomography (CT) has become an important tool to detect the virus due to its involvement of the lung parenchyma. With the advancement of artificial intelligence (AI), models have been developed to analyze radiological images, such as DeepSARS, a system designed in 2020 to identify and monitor cases of COVID-19 and risk of acute respiratory distress syndrome. This study aims to validate the effectiveness of DeepSARS in identifying these conditions using chest CT and RT-PCR results. Methodology: This diagnostic test evaluation study analyzed the DeepSARS database, collecting data from chest scans and RT-PCR results of suspected COVID-19 patients treated at FOSCAL and FOSUNAB between October 2020 and August 2021. They were included. both patients with positive results and those without COVID-19 confirmed by at least two negative RT-PCR tests. TCs that could not be evaluated in DeepSARS were excluded. Two radiologists independently reviewed the scans, classifying the presence of COVID-19 and lung severity. DeepSARS software was used to determine the presence and severity of COVID-19, as well as the likelihood of acute respiratory distress syndrome. The statistical analysis evaluated the performance of the software through measures such as sensitivity, specificity, and agreement between clinical and imaging findings. Results: 57 suspected COVID-19 patients were included, of which 50.8% were men, with an average age of 67.7 years. The most common comorbidities were hypertension (53.5%) and diabetes (26.7%). Half of the patients had a positive test for COVID-19. The most common radiological findings included ground glass opacities (74.14%) and consolidations (62%). Regarding the evaluation with the DeepSARS platform, images suggestive of COVID-19 were detected in 50% of the patients, with moderate and advanced findings being the most common. Statistical analyzes showed good agreement between radiologists in most of the imaging findings, although the CT score differed significantly between them. No significant differences were found in the ability of DeepSARS to discriminate between patients with and without COVID-19. Discussion: During the COVID-19 pandemic, artificial intelligence emerged as a promising tool for early detection and classification of COVID-19 pneumonia using radiological imaging. This study validated the DeepSARS artificial intelligence tool for the detection of COVID-19 using computed tomography, using a sample of 57 patients. Although the tool showed adequate agreement on typical COVID-19 findings, such as ground-glass opacities and consolidation, its discriminatory capacity was limited, with an AUC of 0.538. The imaging findings were consistent with previous studies in some aspects, but also revealed differences. The discrepancies could be due to the need for larger databases and problems in validating and reporting AI models in the literature. Conclusion: The implementation of artificial intelligence in the diagnosis of COVID-19 must be accompanied by rigorous internal and external validation and continuous adjustment to guarantee its clinical effectiveness. The results of this study underline the need to integrate broader and more varied data, to improve early detection and management of the disease, which must always be accompanied by medical follow-up.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Validación clínica del sistema de inteligencia artificial deepsars en la Fundación Oftalmológica de Santander - Foscal y Fundación FosunabClinical validation of the deepsars artificial intelligence system at the Santander Ophthalmological Foundation - Foscal and Fosunab FoundationEspecialistas en Radiología e Imágenes DiagnósticasUniversidad Autónoma de Bucaramanga UNABFacultad Ciencias de la SaludEspecialización en Radiología e Imágenes Diagnósticasinfo:eu-repo/semantics/masterThesisTesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/redcol/resource_type/TMArtificial intelligenceMedical sciencesRadiologyDiagnostic imagingDevelopment scientific and technologyMedical X-rayImaging systems in medicinePublic healthCiencias médicasRadiologíaDiagnóstico para imágenesDesarrollo científico y tecnológicoRadiografía médicaSistemas de imágenes en medicinaSalud públicaInteligencia artificialCovid-19Islam, K. U., & Iqbal, J. (2020). An Update on Molecular Diagnostics for COVID-19. Frontiers in cellular and infection microbiology, 10, 560616. https://doi.org/10.3389/fcimb.2020.560616. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7683783/Zu, Z. Y., Jiang, M. D., Xu, P. P., Chen, W., Ni, Q. Q., Lu, G. M., & Zhang, L. J. (2020). Coronavirus Disease 2019 (COVID-19): A Perspective from China. Radiology, 296(2), E15–E25. https://doi.org/10.1148/radiol.2020200490. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7233368/Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L. H., & Aerts, H. (2018). Artificial intelligence in radiology. Nature reviews. Cancer, 18(8), 500–510. https://doi.org/10.1038/s41568-018-0016-5. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6268174/Ozsahin, I., Sekeroglu, B., Musa, M. S., Mustapha, M. T., & Uzun Ozsahin, D. (2020). Review on Diagnosis of COVID-19 from Chest CT Images Using Artificial Intelligence. Computational and mathematical methods in medicine, 2020, 9756518. https://doi.org/10.1155/2020/9756518. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519983/Kim, D. W., Jang, H. Y., Kim, K. W., Shin, Y., & Park, S. H. (2019). Design Characteristics of Studies Reporting the Performance of Artificial Intelligence Algorithms for Diagnostic Analysis of Medical Images: Results from Recently Published Papers. Korean journal of radiology, 20(3), 405–410. https://doi.org/10.3348/kjr.2019.0025. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6389801/Asselah, T., Durantel, D., Pasmant, E., Lau, G., & Schinazi, R. F. (2021). COVID-19: Discovery, diagnostics and drug development. Journal of hepatology, 74(1), 168–184. https://doi.org/10.1016/j.jhep.2020.09.031. ncbi.nlm.nih.gov/pmc/articles/PMC7543767/Samudrala, P. K., Kumar, P., Choudhary, K., Thakur, N., Wadekar, G. S., Dayaramani, R., Agrawal, M., & Alexander, A. (2020). Virology, pathogenesis, diagnosis and in-line treatment of COVID-19. European journal of pharmacology, 883, 173375. https://doi.org/10.1016/j.ejphar.2020.173375. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366121/Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;109(February):18–21.Organización mundial de la salud. Alocución de apertura del Director General de la OMS en la rueda de prensa sobre la COVID-19 celebrada el 11 de marzo de 2020. Available from: https://www.who.int/es/dg/speeches/detail/who- 52 director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020Instituto Nacional de Salud. Coronavirus en Colombia. Consultado 22 de febrero de 2021. Disponible en: https://www.ins.gov.co/Noticias/Paginas/Coronavirus.aspxLi, M., Lei, P., Zeng, B., Li, Z., Yu, P., Fan, B., Wang, C., Li, Z., Zhou, J., Hu, S., & Liu, H. (2020). Coronavirus Disease (COVID-19): Spectrum of CT Findings and Temporal Progression of the Disease. Academic radiology, 27(5), 603–608. https://doi.org/10.1016/j.acra.2020.03.003. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7156150/Imaging BS of T. **UPDATED**VERSION 2 BSTI COVID-19 GUIDANCE FOR THE REPORTING RADIOLOGIST [Internet]. Consultada: 22 de febrero de 2021. Available from: https://www.bsti.org.uk/standards-clinical-guidelines/clinical-guidelines/bsti-covid-19-guidance-for-the-reporting-radiologis.Feng Pan, Tianhe Ye, Peng Sun, et al. Time Course of Lung Changes at Chest CT during Recovery from Coronavirus Disease 2019 (COVID-19). Radiology. 2020;295(3):715-21. DOI:https://doi.org/10.1148/radiol.2020200370. https://pubs.rsna.org/doi/10.1148/radiol.2020200370Francone, M., Iafrate, F., Masci, G. M., Coco, S., Cilia, F., Manganaro, L., Panebianco, V., Andreoli, C., Colaiacomo, M. C., Zingaropoli, M. A., Ciardi, M. R., Mastroianni, C. M., Pugliese, F., Alessandri, F., Turriziani, O., Ricci, P., & Catalano, C. (2020). Chest CT score in COVID-19 patients: correlation with disease severity and short-term prognosis. European radiology, 30(12), 6808–6817. https://doi.org/10.1007/s00330-020-07033-y. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7334627/Tabatabaei SMH, Rahimi H, Moghaddas F, Rajebi H. Predictive value of CT in the short-term mortality of Coronavirus Disease 2019 (COVID-19) pneumonia in nonelderly patients: A case-control study. Eur J Radiol. 2020;132:109298. doi:10.1016/j.ejrad.2020.109298 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7505070/.Hosny A, Parman C, Quackenbush J, Schwartz L, Aerts H. Artificial intelligence in radiology. Nat Rev Cancer. 2018;18(8):500-510. doi: 10.1038/s41568-018-0016-5. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6268174/Rubin D. L. (2019). Artificial Intelligence in Imaging: The Radiologist's Role. Journal of the American College of Radiology : JACR, 16(9 Pt B), 1309–1317. https://doi.org/10.1016/j.jacr.2019.05.036 Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733578/Kim, D. W., Jang, H. Y., Kim, K. W., Shin, Y., & Park, S. H. (2019). Design Characteristics of Studies Reporting the Performance of Artificial Intelligence 53 Algorithms for Diagnostic Analysis of Medical Images: Results from Recently Published Papers. Korean journal of radiology, 20(3), 405–410. https://doi.org/10.3348/kjr.2019.0025. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6389801/Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, et al. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin. 2019 Mar;69(2):127-157. doi: 10.3322/caac.21552. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6403009/Geras KJ, Mann RM, Moy L. Artificial Intelligence for Mammography and Digital Breast Tomosynthesis: Current Concepts and Future Perspectives. Radiology. 2019 Nov;293(2):246-259. doi: 10.1148/radiol.2019182627. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822772/Duong MT, Rauschecker AM, Rudie JD, Chen PH, Cook TS, et al. Artificial intelligence for precision education in radiology. Br J Radiol. 2019 Nov;92(1103):20190389. doi: 10.1259/bjr.20190389. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6849670/handelman GS, Kok HK, Chandra RV, Razavi AH, Lee MJ, Asadi.eDoctor: machine learning and the future of medicine. Journal of Internal Medecine. 2018. https://doi.org/10.1111/joim.12822. Disponible en: https://onlinelibrary.wiley.com/doi/full/10.1111/joim.12822Razavian N, Knoll F, Geras KJ. Artificial Intelligence Explained for Nonexperts. Semin Musculoskelet Radiol. 2020 Feb;24(1):3-11. doi: 10.1055/s-0039-3401041. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7393604/Koteluk O, Wartecki A, Mazurek S, Kołodziejczak I, Mackiewicz A. How Do Machines Learn? Artificial Intelligence as a New Era in Medicine. J Pers Med. 2021 Jan 7;11(1):32. doi: 10.3390/jpm11010032. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7825660/E. Klang (2018). Deep learning and medical imaging. Journal of thoracic disease, 10(3), 1325–1328. https://doi.org/10.21037/jtd.2018.02.76National Lung Screening Trial Research Team, Aberle DR, Adams AM, Berg CD, Black WC, Clapp JD, Fagerstrom RM, Gareen IF, Gatsonis C, Marcus PM, Sicks JD. Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med. 2011 Aug 4;365(5):395-409. doi: 10.1056/NEJMoa1102873. Epub 2011 Jun 29. PMID: 21714641; PMCID: PMC4356534. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4356534/Ardila, D., Kiraly, A.P., Bharadwaj, S. et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med 25, 954–961 (2019). https://doi.org/10.1038/s41591-019-0447-xChae KJ, Jin GY, Ko SB, Wang Y, Zhang H, Choi EJ, Choi H. Deep Learning for the Classification of Small (≤2 cm) Pulmonary Nodules on CT Imaging: A Preliminary Study. Acad Radiol. 2020 Apr;27(4):e55-e63. doi: 10.1016/j.acra.2019.05.018. Epub 2019 Nov 25. PMID: 31780395. https://pubmed.ncbi.nlm.nih.gov/31780395/Wang S, Shi J, Ye Z, Dong D, Yu D, Zhou M, Liu Y, Gevaert O, Wang K, Zhu Y, Zhou H, Liu Z, Tian J. Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning. Eur Respir J. 2019 Mar 28;53(3):1800986. doi: 10.1183/13993003.00986-2018. PMID: 30635290; PMCID: PMC6437603. https://pubmed.ncbi.nlm.nih.gov/30635290/González G, Ash SY, Vegas-Sánchez-Ferrero G, Onieva Onieva J, Rahaghi FN, Ross JC, et al. Disease Staging and Prognosis in Smokers Using Deep Learning in Chest Computed Tomography. Am J Respir Crit Care Med. 2018 Jan 15;197(2):193-203. doi: 10.1164/rccm.201705-0860OC. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5768902/Humphries SM, Notary AM, Centeno JP, Strand MJ, Crapo JD, Silverman EK, Lynch DA; Genetic Epidemiology of COPD (COPDGene) Investigators. Deep Learning Enables Automatic Classification of Emphysema Pattern at CT. Radiology. 2020 Feb;294(2):434-444. doi: 10.1148/radiol.2019191022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996603/Yue, Z., Ma, L., & Zhang, R. (2020). Comparison and Validation of Deep Learning Models for the Diagnosis of Pneumonia. Computational intelligence and neuroscience, 2020, 8876798. https://doi.org/10.1155/2020/8876798. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7520009/Stephen, O., Sain, M., Maduh, U. J., & Jeong, D. U. (2019). An Efficient Deep Learning Approach to Pneumonia Classification in Healthcare. Journal of healthcare engineering, 2019, 4180949. https://doi.org/10.1155/2019/4180949. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6458916/Chumbita, M., Cillóniz, C., Puerta-Alcalde, P., Moreno-García, E., Sanjuan, G., Garcia-Pouton, N., Soriano, A., Torres, A., & Garcia-Vidal, C. (2020). Can Artificial Intelligence Improve the Management of Pneumonia. Journal of clinical medicine, 9(1), 248. https://doi.org/10.3390/jcm9010248 Disponible en: Can Artificial Intelligence Improve the Management of Pneumonia (nih.gov)Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., Bai, J., Lu, Y., Fang, Z., Song, Q., Cao, K., Liu, D., Wang, G., Xu, Q., Fang, X., Zhang, S., Xia, J., & Xia, J. (2020). Using Artificial Intelligence to Detect COVID-19 and Community-acquired Pneumonia Based on Pulmonary CT: Evaluation of the Diagnostic Accuracy. Radiology, 296(2), E65–E71. https://doi.org/10.1148/radiol.2020200905Dong D, Tang Z, Wang S, Hui H, Gong L, Lu Y, Xue Z, Liao H, Chen F, Yang F, Jin R, Wang K, Liu Z, Wei J, Mu W, Zhang H, Jiang J, Tian J, Li H. The Role of Imaging in the Detection and Management of COVID-19: A Review. IEEE Rev Biomed Eng. 2021;14:16-29. doi: 10.1109/RBME.2020.2990959. Epub 2021 Jan 22. PMID: 32356760.Wang S, Zha Y, Li W, et al. A fully automatic deep learning system for COVID-19 diagnostic and prognostic analysis. Eur Respir J 2020; 56: 2000775 [https://doi.org/10.1183/13993003.00775-2020].DeCoVNet: Zheng C, Deng X, Fu Q, et al. . Deep learning-based detection for COVID-19 from chest CT using weak label. medRxiv 2020; preprint [10.1101/2020.03.12.20027185].Suri JS, Agarwal S, Gupta SK, Puvvula A, Biswas M, Saba L, et al. A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence. Comput Biol Med. 2021 Mar;130:104210. doi: 10.1016/j.compbiomed.2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7813499/Belfiore MP, Urraro F, Grassi R, Giacobbe G, Patelli G, Cappabianca S, Reginelli A. Artificial intelligence to codify lung CT in Covid-19 patients. Radiol Med. 2020 May;125(5):500-504. doi: 10.1007/s11547-020-01195-x. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7197034/Liu F, Zhang Q, Huang C, Shi C, Wang L, Shi N, Fang C, Shan F, Mei X, Shi J, Song F, Yang Z, et al. CT quantification of pneumonia lesions in early days predicts progression to severe illness in a cohort of COVID-19 patients. Theranostics. 2020 Apr 27;10(12):5613-5622. doi: 10.7150/thno.45985. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7196293/Liu F, Zhang Q, Huang C, Shi C, Wang L, Shi N, Fang C, Shan F, Mei X, Shi J, Song F, Yang Z, et al. CT quantification of pneumonia lesions in early days predicts progression to severe illness in a cohort of COVID-19 patients. Theranostics. 2020 Apr 27;10(12):5613-5622. doi: 10.7150/thno.45985. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7196293/Agarwal, M., Saba, L., Gupta, S. K., Carriero, A., Falaschi, Z., Paschè, A., Danna, P., El-Baz, A., Naidu, S., & Suri, J. S. (2021). A Novel Block Imaging Technique Using Nine Artificial Intelligence Models for COVID-19 Disease Classification, Characterization and Severity Measurement in Lung Computed Tomography Scans on an Italian Cohort. Journal of medical systems, 45(3), 28. https://doi.org/10.1007/s10916-021-01707-wLessmann, N., Sánchez, C. I., Beenen, L., Boulogne, L. H., Brink, M., Calli, E., Charbonnier, J. P., Dofferhoff, T., van Everdingen, W. M., Gerke, P. K., Geurts, B., Gietema, H. A., Groeneveld, M., van Harten, L., Hendrix, N., Hendrix, W., Huisman, H. J., Išgum, I., Jacobs, C., Kluge, R., … van Ginneken, B. (2021). Automated Assessment of COVID-19 Reporting and Data System and Chest CT Severity Scores in Patients Suspected of Having COVID-19 Using Artificial Intelligence. Radiology, 298(1), E18–E28. https://doi.org/10.1148/radiol.2020202439Wang, F., Kream, R. M., & Stefano, G. B. (2020). Long-Term Respiratory and Neurological Sequelae of COVID-19. Medical science monitor : international medical journal of experimental and clinical research, 26, e928996. https://doi.org/10.12659/MSM.928996Willi, S., Lüthold, R., Hunt, A., Hänggi, N. V., Sejdiu, D., Scaff, C., Bender, N., Staub, K., & Schlagenhauf, P. (2021). COVID-19 sequelae in adults aged less than 50 years: A systematic review. Travel medicine and infectious disease, 40, 101995. https://doi.org/10.1016/j.tmaid.2021.101995Rogliani, P., Calzetta, L., Coppola, A., Puxeddu, E., Sergiacomi, G., D'Amato, D., & Orlacchio, A. (2020). Are there pulmonary sequelae in patients recovering from COVID-19?. Respiratory research, 21(1), 286. https://doi.org/10.1186/s12931-020-01550-6Zou, J. N., Sun, L., Wang, B. R., Zou, Y., Xu, S., Ding, Y. J., Shen, L. J., Huang, W. C., Jiang, X. J., & Chen, S. M. (2021). The characteristics and evolution of pulmonary fibrosis in COVID-19 patients as assessed by AI-assisted chest HRCT. PloS one, 16(3), e0248957. https://doi.org/10.1371/journal.pone.0248957Lessmann, N., Sánchez, C. I., Beenen, L., Boulogne, L. H., Brink, M., Calli, E., Charbonnier, J. P., Dofferhoff, T., van Everdingen, W. M., Gerke, P. K., Geurts, B., Gietema, H. A., Groeneveld, M., van Harten, L., Hendrix, N., Hendrix, W., Huisman, H. J., Išgum, I., Jacobs, C., Kluge, R., … van Ginneken, B. (2021). Automated Assessment of COVID-19 Reporting and Data System and Chest CT Severity Scores in Patients Suspected of Having COVID-19 Using Artificial Intelligence. Radiology, 298(1), E18–E28. https://doi.org/10.1148/radiol.2020202439Wang, M., Xia, C., Huang, L., Xu, S., Qin, C., Liu, J., Cao, Y., Yu, P., Zhu, T., Zhu, H., Wu, C., Zhang, R., Chen, X., Wang, J., Du, G., Zhang, C., Wang, S., Chen, K., Liu, Z., Xia, L., … Wang, W. (2020). Deep learning-based triage and analysis of lesion burden for COVID-19: a retrospective study with external validation. The Lancet. Digital health, 2(10), e506–e515. https://doi.org/10.1016/S2589-7500(20)30199-0Quiroz, J. C., Feng, Y. Z., Cheng, Z. Y., Rezazadegan, D., Chen, P. K., Lin, Q. T., Qian, L., Liu, X. F., Berkovsky, S., Coiera, E., Song, L., Qiu, X., Liu, S., & Cai, X. R. (2021). Development and Validation of a Machine Learning Approach for Automated Severity Assessment of COVID-19 Based on Clinical and Imaging Data: Retrospective Study. JMIR medical informatics, 9(2), e24572. https://doi.org/10.2196/24572Lu-shan Xiao, Pu Li, Fenglong Sun, et al. Development and Validation of a Deep Learning-Based Model Using Computed Tomography Imaging for Predicting Disease Severity of Coronavirus Disease 2019. Bioeng. Biotechnol., 31 July 2020 | https://doi.org/10.3389/fbioe.2020.00898Shuai Wang, Bo Kang, Jinlu Ma, et al. A deep learning algorithm using CT images to screen for Corona virus disease (COVID-19). European RadiologyWang Q, Ma J, Zhang L, Xie L. Diagnostic performance of corona virus disease 2019 chest computer tomography image recognition based on deep learning: Systematic review and meta-analysis. Medicine [Internet]. 2022 Oct 21;101(42):e31346. Available from: https://doi.org/10.1097/md.0000000000031346Rodriguez DR, Pinzón ÁM, Rubio C, Pinilla DI, Niño MJ, Díaz MA, et al. Clinical characteristics and mortality associated with COVID-19 at high altitude: a 57 cohort of 5161 patients in Bogotá, Colombia. International Journal of Emergency Medicine [Internet]. 2022 May 21;15(1). Available from: https://doi.org/10.1186/s12245-022-00426-4Ramírez CC, Mantilla AJL, Gómez LAP, Vargas VO, Paz MP, Esparza VF, et al. General Hospitalization and Intensive Care Unit-Related Factors of COVID-19 patients in Northeastern Colombia: baseline characteristics of a cohort study. Cureus [Internet]. 2023 Aug 21; Available from: https://doi.org/10.7759/cureus.43888Zarifian A, Nour MG, Rezayat AA, Oskooei RR, Abbasi B, Sadeghi R. Chest CT findings of coronavirus disease 2019 (COVID-19): A comprehensive meta-analysis of 9907 confirmed patients. Clinical Imaging [Internet]. 2021 Feb 1;70:101–10. Available from: https://doi.org/10.1016/j.clinimag.2020.10.035Ghayda RA, Lee KH, Kim JS, Lee S, Hong SH, Kim KS, et al. Chest CT abnormalities in COVID-19: a systematic review. International Journal of Medical Sciences [Internet]. 2021 Jan 1;18(15):3395–402. Available from: https://doi.org/10.7150/ijms.50568Elmokadem AH, Mounir AM, Ramadan ZA, Elsedeiq M, Saleh GA. Comparison of chest CT severity scoring systems for COVID-19. European Radiology [Internet]. 2022 Jan 15;32(5):3501–12. Available from: https://doi.org/10.1007/s00330-021-08432-5Sharif PM, Nematizadeh M, Saghazadeh M, Saghazadeh A, Rezaei N. Computed tomography scan in COVID-19: a systematic review and meta-analysis. Polish Journal of Radiology [Internet]. 2022 Jan 1;87(1):1–23. Available from: https://doi.org/10.5114/pjr.2022.112613Simpson S, Kay FU, Abbara S, Bhalla S, Chung JH, Chung M, et al. Radiological Society of North America Expert Consensus Statement on Reporting Chest CT findings related to COVID-19. Endorsed by the Society of Thoracic Radiology, the American College of Radiology, and RSNA - secondary publication. Journal of Thoracic Imaging [Internet]. 2020 Apr 21;35(4):219–27. Available from: https://doi.org/10.1097/rti.0000000000000524Da Nam B, Hong H, Yoon SH. Diagnostic performance of standardized typical CT findings for COVID-19: a systematic review and meta-analysis. Insights Into Imaging [Internet]. 2023 May 24;14(1). Available from: https://doi.org/10.1186/s13244-023-01429-2Chen J, See KC. Artificial Intelligence for COVID-19: Rapid review. Journal of Medical Internet Research [Internet]. 2020 Oct 27;22(10):e21476. Available from: https://doi.org/10.2196/21476Jia LL, Zhao JX, Pan NN, Shi LY, Zhao LP, Tian JH, et al. Artificial intelligence model on chest imaging to diagnose COVID-19 and other pneumonias: A systematic review and meta-analysis. European Journal of Radiology Open [Internet]. 2022 Jan 1;9:100438. Available from: https://doi.org/10.1016/j.ejro.2022.100438Wynants L, Van Calster B, Collins GS, Riley RD, Heinze G, Schuit E, et al. Prediction models for diagnosis and prognosis of covid-19: systematic review 58 and critical appraisal. BMJ [Internet]. 2020 Apr 7;m1328. Available from: https://doi.org/10.1136/bmj.m1328Shillan D, Sterne J a. C, Champneys A, Gibbison B. Use of machine learning to analyse routinely collected intensive care unit data: a systematic review. Critical Care [Internet]. 2019 Aug 22;23(1). Available from: https://doi.org/10.1186/s13054-019-2564-9Bradshaw TJ, Huemann Z, Hu J, Rahmim A. A Guide to Cross-Validation for Artificial intelligence in Medical Imaging. Radiology Artificial Intelligence [Internet]. 2023 Jul 1;5(4). Available from: https://doi.org/10.1148/ryai.220232https://apolo.unab.edu.co/en/persons/daniel-eduardo-mantilla-garc%C3%ADaORIGINALDeepsars FINAL.pdfDeepsars FINAL.pdfTesisapplication/pdf4659888https://repository.unab.edu.co/bitstream/20.500.12749/26615/1/Deepsars%20FINAL.pdf148daca74605b2574fedff0d47c9ab9bMD51open accessLicencia.pdfLicencia.pdfLicenciaapplication/pdf319996https://repository.unab.edu.co/bitstream/20.500.12749/26615/5/Licencia.pdf8d3dac8a0311863cfc05653a7f836dfdMD55metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8829https://repository.unab.edu.co/bitstream/20.500.12749/26615/4/license.txt3755c0cfdb77e29f2b9125d7a45dd316MD54open accessTHUMBNAILDeepsars FINAL.pdf.jpgDeepsars FINAL.pdf.jpgIM Thumbnailimage/jpeg5290https://repository.unab.edu.co/bitstream/20.500.12749/26615/6/Deepsars%20FINAL.pdf.jpge2c3757b2f6bf1340360cb72532b229fMD56open accessLicencia.pdf.jpgLicencia.pdf.jpgIM Thumbnailimage/jpeg9755https://repository.unab.edu.co/bitstream/20.500.12749/26615/7/Licencia.pdf.jpg759808bd25e9aab08f0fc9bc1ca248f9MD57metadata only access20.500.12749/26615oai:repository.unab.edu.co:20.500.12749/266152024-10-15 14:25:51.964open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbi4gRWwgQVVUT1IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVTkFCIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpFbCBBVVRPUiBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBCdWNhcmFtYW5nYSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24uCg==