Participación activa de los movimientos oculares de fijación en la codificación de memorias de contenido visuoespacial

La presente investigación pretende determinar si los movimientos oculares de fijación retroalimentan el proceso de codificación de memoria de trabajo visuoespacial, también, identificar las condiciones en las que ocurre. Por esa razón, se midió de forma experimental, a través del rastreamiento ocula...

Full description

Autores:
Ortiz Gamboa, Jeison Miguel
Rueda González, Claudia Maritza
Santamaría Castellanos, Angélica Johana
Vanegas Ibáñez, Angie Paola
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/11953
Acceso en línea:
http://hdl.handle.net/20.500.12749/11953
Palabra clave:
Psychology
Eye movements
Visuospatial work
Psychopedagogy
Attention
Association of ideas
Intelligence
Memory
Psicología
Psicopedagogía
Atención
Asociación de ideas
Inteligencia
Memoria
Movimientos oculares
Trabajo visuoespacial
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UNAB2_16b3f137d4ab0f1e52dc185cdcdda29d
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/11953
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Participación activa de los movimientos oculares de fijación en la codificación de memorias de contenido visuoespacial
dc.title.translated.spa.fl_str_mv Active participation of fixation eye movements in coding of memories of visuospatial content
title Participación activa de los movimientos oculares de fijación en la codificación de memorias de contenido visuoespacial
spellingShingle Participación activa de los movimientos oculares de fijación en la codificación de memorias de contenido visuoespacial
Psychology
Eye movements
Visuospatial work
Psychopedagogy
Attention
Association of ideas
Intelligence
Memory
Psicología
Psicopedagogía
Atención
Asociación de ideas
Inteligencia
Memoria
Movimientos oculares
Trabajo visuoespacial
title_short Participación activa de los movimientos oculares de fijación en la codificación de memorias de contenido visuoespacial
title_full Participación activa de los movimientos oculares de fijación en la codificación de memorias de contenido visuoespacial
title_fullStr Participación activa de los movimientos oculares de fijación en la codificación de memorias de contenido visuoespacial
title_full_unstemmed Participación activa de los movimientos oculares de fijación en la codificación de memorias de contenido visuoespacial
title_sort Participación activa de los movimientos oculares de fijación en la codificación de memorias de contenido visuoespacial
dc.creator.fl_str_mv Ortiz Gamboa, Jeison Miguel
Rueda González, Claudia Maritza
Santamaría Castellanos, Angélica Johana
Vanegas Ibáñez, Angie Paola
dc.contributor.advisor.spa.fl_str_mv Rosero Pahi, Mario Alberto
dc.contributor.author.spa.fl_str_mv Ortiz Gamboa, Jeison Miguel
Rueda González, Claudia Maritza
Santamaría Castellanos, Angélica Johana
Vanegas Ibáñez, Angie Paola
dc.contributor.cvlac.*.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001356760
dc.contributor.googlescholar.*.fl_str_mv https://scholar.google.es/citations?hl=es&user=lmqwzwUAAAAJ
dc.contributor.orcid.*.fl_str_mv https://orcid.org/0000-0002-9546-4064
dc.contributor.researchgate.*.fl_str_mv https://www.researchgate.net/profile/Mario_Alberto_Rosero_Pahi3
dc.subject.keywords.eng.fl_str_mv Psychology
Eye movements
Visuospatial work
Psychopedagogy
Attention
Association of ideas
Intelligence
Memory
topic Psychology
Eye movements
Visuospatial work
Psychopedagogy
Attention
Association of ideas
Intelligence
Memory
Psicología
Psicopedagogía
Atención
Asociación de ideas
Inteligencia
Memoria
Movimientos oculares
Trabajo visuoespacial
dc.subject.lemb.spa.fl_str_mv Psicología
Psicopedagogía
Atención
Asociación de ideas
Inteligencia
Memoria
dc.subject.proposal.spa.fl_str_mv Movimientos oculares
Trabajo visuoespacial
description La presente investigación pretende determinar si los movimientos oculares de fijación retroalimentan el proceso de codificación de memoria de trabajo visuoespacial, también, identificar las condiciones en las que ocurre. Por esa razón, se midió de forma experimental, a través del rastreamiento ocular y una tarea de memoria de trabajo visuoespacial, si los procesos de memoria se ven afectados al manipular los movimientos oculares, ya sea permitiendo su ejecución de forma libre o restringiéndolos. Esto, en una muestra de 16 estudiantes voluntarios de pregrado, entre los 18 y 21 años, 10 mujeres y 6 hombres, pertenecientes al programa de Psicología de la Universidad Autónoma de Bucaramanga (UNAB). Se encontró que, al limitar los movimientos oculares de los participantes, es evidente una reducción significativa en el desempeño de la tarea de memoria de trabajo, constatado en la cantidad de objetos recordados por los participantes, lo cual, indica que la participación del sistema oculomotor es relevante en los procesos de codificación de memoria.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-12-16T16:13:58Z
dc.date.available.none.fl_str_mv 2020-12-16T16:13:58Z
dc.date.issued.none.fl_str_mv 2020-11
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.local.spa.fl_str_mv Trabajo de Grado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/11953
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UNAB
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unab.edu.co
url http://hdl.handle.net/20.500.12749/11953
identifier_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
reponame:Repositorio Institucional UNAB
repourl:https://repository.unab.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abraham, R. H. (2011). The Genesis of Complexity. World Futures, 67(4-5), 380-394. https://doi.org/10.1080/02604027.2011.585915
Aguirre, J., Viana, R. L., y Sanjuán, M. A. F. (2009). Fractal structures in nonlinear dynamics. Reviews of Modern Physics, 81(1), 333–386. doi:10.1103/revmodphys.81.333
Altmann, G.T. (2004) Language-mediated eye movements in the absence of a visual world: the ‘blank screen paradigm’. Cognition 93, B79–B87. https://doi.org/10.1016/j.cognition.2004.02.005
Althoff, R. R., y Cohen, N. J. (1999). Eye-movement-based memory effect: A reprocessing effect in face perception. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(4), 997–1010. https://doi.org/10.1037/0278-7393.25.4.997
Awh, E., y Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5(3), 119-126. https://doi.org/10.1016/S1364-6613(00)01593-X
Balan, P. F., & Ferrera, V. P. (2003). Effects of Spontaneous Eye Movements on Spatial Memory in Macaque Periarcuate Cortex. The Journal of Neuroscience, 23(36), 11392-11401. https://doi.org/10.1523/JNEUROSCI.23-36-11392.2003
Bassett, D. S., y Gazzaniga, M. S. (2011). Understanding complexity in the human brain. Trends in Cognitive Sciences, 15(5), 200–209. doi:10.1016/j.tics.2011.03.006
Berrocal, P. Salamanca, G. (2002) Influencia de la estimulación periférica en la memoria. (Tesis de grado). Universidad Autónoma de Madrid, Madrid: España
Bliss, T., Collingridge, G. (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993). https://doi.org/10.1038/361031a0
Bliss, T., Collingridge, G., y Morris, R. (2007). Synaptic plasticity in the hippocampus. En P. Andersen, R. Morris, D. Amaral, T. Bliss y J. O'Keefe (Eds.), The hippocampus book (p. 343–474). Oxford University Press
Bojko Aga. (2013). Eye tracking the user experience: A practical guide to research. New York: Rosenfeld Media, LLC.
Bosch, M., y Hayashi, Y. (2012). Structural plasticity of dendritic spines. Current opinion in neurobiology, 22(3), 383–388. https://doi.org/10.1016/j.conb.2011.09.002
Bridge, D. J., Cohen, N. J., y Voss, J. L. (2017). Distinct Hippocampal versus Frontoparietal Network Contributions to Retrieval and Memory-guided Exploration. Journal of cognitive neuroscience, 29(8), 1324–1338. https://doi.org/10.1162/jocn_a_01143
Bullmore, E., Barnes, A., Bassett, D. S., Fornito, A., Kitzbichler, M., Meunier, D., y Suckling, J. (2009). Generic aspects of complexity in brain imaging data and other biological systems. NeuroImage, 47(3), 1125–1134. doi:10.1016/j.neuroimage.2009.05.032
Bullmore, E., y Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198. doi:10.1038/nrn2575
Capra, F., y Luisi, P. (2014). The Systems View of Life: A Unifying Vision. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511895555
Castelhano, M. S. Mack, M. L. y Henderson, J. M. (2009). Viewing task influences eye movement control during active scene perception. Journal of Vision, 9, 1–15. doi: https://doi.org/10.1167/9.3.6
Chapman, K. (2015). Complexity and Creative Capacity: Rethinking knowledge transfer, adaptive. Taylor & Francis
Chen, D., y Hutchinson, J. B. (2018). What is memory-guided attention? How past experiences shape selective visuospatial attention in the present. En M. Geyer, B. Ellenbroek, y C. Marsden (Eds.), Current topics in behavioral neurosciences (pp. 1–28). Berlin: Springer Nature.
Chun, M. M., Golomb, J. D., y Turk-Browne, N. B. (2011). A Taxonomy of External and Internal Attention. Annual Review of Psychology, 62(1), 73-101. https://doi.org/10.1146/annurev.psych.093008.
Chwang, W. B., O'Riordan, K. J., Levenson, J. M., y Sweatt, J. D. (2006). ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning. Learning & memory (Cold Spring Harbor, N.Y.), 13(3), 322–328. https://doi.org/10.1101/lm.152906
Cooke, S. F. y Bliss, T. V. P. (2006). Plasticity in the human central nervous system. Brain, 129, (7), 1659–1673. https://doi.org/10.1093/brain/awl082 Cooper, D. M. (2019). The Cell: A Molecular Approach (8th Ed). New York: Oxford University Press.
Corbetta, M., Patel, G., y Shulman, G. L. (2008). The Reorienting System of the Human Brain: From Environment to Theory of Mind. Neuron, 58(3), 306-324. https://doi.org/10.1016/j.neuron.2008.04.017
Corbetta, M., y Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201-215. https://doi.org/10.1038/nrn755
Costall, A. (2006). ‘Introspectionism’ and the mythical origins of scientific psychology. Consciousness and Cognition, 15(4), 634-654. https://doi.org/10.1016/j.concog.2006.09.008
Curtis, C. E., y D'Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in cognitive sciences, 7(9), 415-423
Dávila, J. (2009). El caso H. M. una vida sin recuerdos. Recuperado de: http://www.encuentros.uma.es/encuentros125/Recuerdos.pdf
Day, J. J., y Sweatt, J. D. (2011). Epigenetic Mechanisms in Cognition. Neuron, 70(5), 813–829. doi:10.1016/j.neuron.2011.05.019
Dell’Osso LF, y Daroff RB. (1982). Características y técnicas de registro de los movimientos oculares. Recuperado de: http://www.omlab.org/personnel/lfd/Jrnl_Arts/Book_Chapters/018_Caract_tecnicas_registro_mov_ocular_1982.pdf
Desimone, R., y Duncan, J. (1995). Neural Mechanisms of Selective Visual Attention. Annual Review of Neuroscience, 18(1), 193–222. doi:10.1146/annurev.ne.18.030195.0012
Driver, J., y Frackowiak, R. S. . (2001). Neurobiological measures of human selective attention. Neuropsychologia, 39(12), 1257–1262. doi:10.1016/s0028-3932(01)00115-4
Eckstein, M. K., Guerra-Carrillo, B., Singley, A. T. M., y Bunge, S. A. (2016). Beyond eye gaze: What else can eyetracking reveal about cognition and cognitive development?. Developmental cognitive neuroscience, 25, 69-91. https://doi.org/10.1016/j.dcn.2016.11.001
Fenici, M. (2012). Embodied Social Cognition and Embedded Theory of Mind. Universidad de Florencia. Florencia, Italia
Ferreira, F. Apel, A. y Henderson, J. M. (2008). Taking a new look at looking at nothing. Trends in Cognitive Science, 12(11), 405–41
Froese, T. (2009). Hume and the enactive approach to mind. Phenomenology and the Cognitive Sciences, 8(1), 95-133. https://doi.org/10.1007/s11097-008-9111-5
Fuster, J. M., y Bressler, S. L. (2012). Cognit activation: a mechanism enabling temporal integration in working memory. Trends in cognitive sciences, 16(4), 207–218. https://doi.org/10.1016/j.tics.2012.03.005
Fuster, J. M. (2009). Cortex and Memory: Emergence of a New Paradigm. Journal of Cognitive Neuroscience, 21(11), 2047-2072. https://doi.org/10.1162/jocn.2009.212
Fuster, J. M. (2014). The Prefrontal Cortex Makes the Brain a Preadaptive System. Proceedings of the IEEE, 102(4), 417-426. doi: 10.1109/JPROC.2014.2306250
Fuster, J. M. (2004). Upper processing stages of the perception–action cycle. Trends in cognitive sciences, 8(4), 143-145. doi:10.1016/j.tics.2004.02.004
Gaite, J., A. Domínguez, y J. Pérez-Mercader (1999). The Fractal Distribution of Galaxies and the Transition to Homogeneity. Astrophys. J. Lett. 522, L5. doi.org/10.1086/312204
Gila, L., Villanueva, A., y Cabeza, R.. (2009). Fisiopatología y técnicas de registro de los movimientos oculares. Anales del Sistema Sanitario de Navarra, 32(Supl. 3), 9-26. Recuperado en 15 de marzo de 2020, de http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1137-66272009000600002&lng=es&tlng=es.
Goyal, V., Behari, M., Srivastava, A., Sood, S., Shukla, G. y Sharma, R. (2014). Saccadic eye movements in Parkinson′s disease. Indian Journal of Ophthalmology, 62(5), 538. https://doi.org/10.4103/0301-4738.133482
Grant, E. R. y Spivey, M. J.(2003). Eye movements and problem solving guiding attention guides thought. Psychological Science,14, 462–466.
Green, H.J., Lemaire, P. y Dufau, S., (2007). Eye movement correlates of younger and older adults’ strategies for complex addition. Acta Psychologica. (Amst.) 125, 257–278, http://dx.doi.org/10.1016/j.actpsy.2006.08.001.
Gupta, S., Kim, S. Y., Artis, S., Molfese, D. L., Schumacher, A., Sweatt, J. D., Paylor, R. E., y Lubin, F. D. (2010). Histone methylation regulates memory formation. The Journal of neuroscience : the official journal of the Society for Neuroscience, 30(10), 3589–3599. https://doi.org/10.1523/JNEUROSCI.3732-09.2010c
Hannula, D. E., Althoff, R. R., Warren, D. E., Riggs, L., Cohen, N. J., y Ryan, J. D. (2010). Worth a glance: using eye movements to investigate the cognitive neuroscience of memory. Frontiers in human neuroscience, 4, 166. https://doi.org/10.3389/fnhum.2010.00166
Heitger, M. H., Jones, R. D., Macleod, A., Snell, D. L., Frampton, C. M., y Anderson, T. J. (2009). Impaired eye movements in postconcussion syndrome indicate suboptimal brain function beyond the influence of depression, malingering or intellectual ability. Brain, doi:https://doi.org/10.1093/brain/awp181
Henderson, J. M., Brockmole, J. R., Castelhano, M. S., y Mack, M. (2007). Visual saliency does not account for eye movements during visual search in real-world scenes. In R. P. G. van Gompel, M. H. Fischer, W. S. Murray, & R. L. Hill (Eds.), Eye movements: A window on mind and brain (p. 537–562). Elsevier. https://doi.org/10.1016/B978-008044980-7/50027-6
Henderson, J. M., Weeks, P. A., Jr., y Hollingworth, A. (1999). The effects of semantic consistency on eye movements during complex scene viewing. Journal of Experimental Psychology: Human Perception and Performance, 25(1), 210–228. https://doi.org/10.1037/0096-1523.25.1.210
Henderson, J. M., Williams, C. C., y Falk, R. J. (2005). Eye movements are functional during face learning. Memory & cognition, 33(1), 98–106. https://doi.org/10.3758/bf03195300
Hernández, S. R., Fernández, C. C. y Baptista, L. M. (2014). Metodología de la investigación. México: McGRAW-HILL. Recuperado de https://www.uca.ac.cr/wp-content/uploads/2017/10/Investigacion.pdf
Hutchinson, J. B., y Turk-Browne, N. B. (2012). Memory-guided attention: control from multiple memory systems. Trends in cognitive sciences, 16(12), 576–579. https://doi.org/10.1016/j.tics.2012.10.003
Itti, L., y Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 40, 1489–1506. https://doi.org/10.1016/S0042-6989(99)00163-7
Josselyn, S. A., Köhler, S., y Frankland, P. W. (2015). Finding the engram. Nature Reviews Neuroscience, 16(9), 521-534. doi:10.1038/nrn4000
Kandel, E. (2007). En busca de la memoria: El nacimiento de una ciencia de la mente. Buenos Aires: Katz Editores
Kandel, E. R., y Siegelbaum S. A. (2000). Prefrontal Cortex, Hippocampus, and the Biology of Explicit Memory Storage. En Kandel E. R., Schwartz J. H., Jessell T. M., Siegelbaum S. A. y Hudspeth, J. A. (Eds.), Principles of Neural Science (pp. 1487-1520). New York: McGraw-Hill.
Katz, A. J., y Thompson, A. H. (1985). Fractal Sandstone Pores: Implications for Conductivity and Pore Formation. Physical Review Letters, 54(12), 1325–1328. doi:10.1103/physrevlett.54.1325
King, C. C. (1991). Fractal and chaotic dynamics in nervous systems. Progress in Neurobiology, 36(4), 279–308. doi:10.1016/0301-0082(91)90003-j
Krassanakis, V., Filippakopoulou, V., y Nakos, B. (2014). EyeMMV toolbox: An eye movement post-analysis tool based on a two-step spatial dispersion threshold for fixation identification. Journal of Eye Movement Research, 7(1). https://doi.org/10.16910/jemr.7.1.1
Krieger, G., Rentschler, I., Hauske, G., Schill, K., & Zetzsche, C. (2000). Object and scene analysis by saccadic eye-movements: an investigation with higher-order statistics. Spatial vision, 13(2-3), 201–214. https://doi.org/10.1163/156856800741216).
Kristjánsson, A., y Campana, G. (2010). Where perception meets memory: a review of repetition priming in visual search tasks. Attention, perception & psychophysics, 72(1), 5–18. https://doi.org/10.3758/APP.72.1.5
Lamme, V. A. F. (2003). Why visual attention and awareness are different. Trends in Cognitive Sciences, 7(1), 12–18. doi:10.1016/s1364-6613(02)00013-x
Levenson, J. M., O'Riordan, K. J., Brown, K. D., Trinh, M. A., Molfese, D. L., y Sweatt, J. D. (2004). Regulation of histone acetylation during memory formation in the hippocampus. The Journal of biological chemistry, 279(39), 40545–40559. https://doi.org/10.1074/jbc.M402229200
Li, T.-Y., y Yorke, J. A. (1975). Period Three Implies Chaos. The American Mathematical Monthly, 82(10), 985. doi:10.2307/2318254
Liu, Z.-X., Shen, K., Olsen, R. K. y Ryan, J. D. (2017). Visual Sampling Predicts Hippocampal Activity. The Journal of Neuroscience, 37(3), 599-609. https://doi.org/10.1523/JNEUROSCI.2610-16.2016
Loftus, G. R. y Mackworth, N. H. (1978). Cognitive determinants of fixation location during picture viewing. Journal of Experimental Psychology: Human Perception and Performance, 4(4), 565–572. DOI: 10.1037 // 0096-1523.4.4.565
Losa, G. A., Baumann, G., y Nonnenmacher, T. F. (1992). Fractal dimension of pericellular membranes in human lymphocytes and lymphoblastic leukemia cells. Pathology - Research and Practice, 188(4-5), 680–686. doi:10.1016/s0344-0338(11)80080-4
Lyon, P. (2006). The biogenic approach to cognition. Cognitive Processing, 7(1), 11-29. https://doi.org/10.1007/s10339-005-0016-8
Malenka, R. C., y Nicoll, R. A. (1999). Long-term potentiation—a decade of progress? Science, 285(5435), 1870–1874. doi: 10.1126/science.285.543
Meghanathan, R. N., Nikolaev, A. R., y van Leeuwen, C. (2019). Refixation patterns reveal memory-encoding strategies in free viewing. Attention, Perception, & Psychophysics, 81(7), 2499-2516. https://doi.org/10.3758/s13414-019-01735-2
Maturana, H. Varela, F. (2003). El árbol del conocimiento: Las bases biológicas del entendimiento humano. Editorial Universitaria; Lumen
McKenzie, S., y Eichenbaum, H. (2011). Consolidation and Reconsolidation: Two Lives of Memories? Neuron, 71(2), 224-233. https://doi.org/10.1016/j.neuron.2011.06.037
Menary, R. (2010). Introduction to the special issue on 4E cognition. Phenomenology and the Cognitive Sciences, 9(4), 459-463. https://doi.org/10.1007/s11097-010-9187-6
Millette, N. (1936) How People Look at Pictures. By Guy T. Buswell, The Art Bulletin, 18(3), 429, DOI: 10.1080/00043079.1936.11408852
Mohr, J., Seyfarth, J., Lueschow, A., Weber, J. E., Wichmann, F. A., y Obermayer, K. (2016). BOiS-Berlin Object in Scene Database: Controlled Photographic Images for Visual Search Experiments with Quantified Contextual Priors. Frontiers in psychology, 7, 749. https://doi.org/10.3389/fpsyg.2016.00749
Moser, M. B., Trommald, M., y Andersen, P. (1994). An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. Proceedings of the National Academy of Sciences of the United States of America, 91(26), 12673–12675. https://doi.org/10.1073/pnas.91.26.12673
Muller, D., Toni, N., y Buchs, P.-A. (2000). Spine changes associated with long-term potentiation. Hippocampus, 10(5), 596–604. https://doi.org/10.1002/1098-1063(2000)10:5<596::AID-HIPO10>3.0.CO;2-Y
Murtonen, M., Gruber, H., y Lehtinen, E. (2017). The return of behaviourist epistemology: A review of learning outcomes studies. Educational Research Review, 22, 114-128. https://doi.org/10.1016/j.edurev.2017.08.001
Newman, M. E. J., y Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2). doi:10.1103/physreve.69.026113
Pape, H. C., y Pare, D. (2010). Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiological reviews, 90(2), 419–463. https://doi.org/10.1152/physrev.00037.2009
Pearson, D. G., Ball, K., y Smith, D. T. (2014). Oculomotor preparation as a rehearsal mechanism in spatial working memory. Cognition, 132(3), 416-428. https://doi.org/10.1016/j.cognition.2014.05.006
Petersen, S. E., y Sporns, O. (2015). Brain Networks and Cognitive Architectures. Neuron, 88(1), 207–219. doi:10.1016/j.neuron.2015.09.027
Phelps, E. A., y Hofmann, S. G. (2019). Memory editing from science fiction to clinical practice. Nature, 572(7767), 43–50. https://doi.org/10.1038/s41586-019-1433-7
Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3-25. https://doi.org/10.1080/00335558008248231
Popa, L., Selejan, O., Scott, A., Mureşanu, D. F., Balea, M., y Rafila, A. (2015). Reading beyond the glance: eye tracking in neurosciences. Neurological sciences : official 84 journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 36(5), 683–688. https://doi.org/10.1007/s10072-015-2076-6
Purves, D., Augustine, G., Fitzpatrick, D., Hall, W., Lamantia, A., y White, L. (2016). Neurociencia. Madrid, España: Panamericana.
Rayner K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological bulletin, 124(3), 372–422. https://doi.org/10.1037/0033-2909.124.3.372
Rickles, D., Hawe, P., y Shiell, A. (2007). A simple guide to chaos and complexity. Journal of Epidemiology & Community Health, 61(11), 933–937. doi:10.1136/jech.2006.054254
Rowlands, M. (2010). The new science of the mind: From extended mind to embodied phenomenology. Mit Press
Ruiz-Mirazo, K., y Moreno, A. (2012). Autonomy in evolution: From minimal to complex life. Synthese, 185(1), 21-52. https://doi.org/10.1007/s11229-011-9874-z
Ryan, J. D., Althoff, R. R., Whitlow, S., y Cohen, N. J. (2000). Amnesia is a deficit in relational memory. Psychological science, 11(6), 454–461. https://doi.org/10.1111/1467-9280.00288
Salvador, R., Suckling, J., Coleman, M.R., Pickard, J.D., Menon, D., y Bullmore, E., 2005. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex 15, 1332–1342
Sanjuán, M. A. F. (2003). Caos y Fractales: Conceptos Universales de la Ciencia de la Complejidad.Gaceta de la Real Sociedad Matemática Española, 6 (1), 81-87. Recuperado de http://gaceta.rsme.es/abrir.php?id=4
Schacter, D. L., y Addis, D. R. (2007). The cognitive neuroscience of constructive memory: remembering the past and imagining the future. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1481), 773–786. doi:10.1098/rstb.2007.2087
Schmuckler, M.A. (2001), What Is Ecological Validity? A Dimensional Analysis. Infancy, 2: 419-436. https://doi.org/10.1207/S15327078IN0204_02
Schütz, A. C., Braun, D. I., y Gegenfurtner, K. R. (2011). Eye movements and perception: a selective review. Journal of vision, 11(5), 9. https://doi.org/10.1167/11.5.9
Simon, H. (1962). The Architecture of Complexity. Proceedings of the American Philosophical Society, 106(6), 467-482. Recuperado de https://www.jstor.org/stable/985254
Stacey, R. (2001).Complex Responsive Processes in Organizations. London: Routledge
Stacey, R., Griffin, D. y Shaw, P. (2000). Complexity and Management: Fad or Radical Challenge. New York: Routledge.
Strogatz, S. H. (2001). Exploring complex networks. Nature, 410(6825), 268–276. doi:10.1038/35065725
Tatler, B. W., Gilchrist, I. D., y Land, M. F. (2005). Visual memory for objects in natural scenes: From fixations to object files. The Quarterly Journal of Experimental Psychology Section A, 58(5), 931–960. https://doi.org/10.1080/02724980443000430
Thompson, E. (2004). Life and mind: From autopoiesis to neurophenomenology. A tribute to Francisco Varela. Phenomenology and the Cognitive Sciences, 3(4), 381-398. https://doi.org/10.1023/B:PHEN.0000048936.73339.dd
Thompson, E., y Stapleton, M. (2009). Making Sense of Sense-Making: Reflections on Enactive and Extended Mind Theories. Topoi, 28(1), 23-30. https://doi.org/10.1007/s11245-008-9043-2.
Thompson, R. (2005). In Search of Memory Traces. Annual Review of Psychology, 56(1), 1–23. doi:10.1146/annurev.psych.56.091103.070239
Tonegawa, S., Liu, X., Ramirez, S., y Redondo, R. (2015). Memory Engram Cells Have Come of Age. Neuron, 87(5), 918-931. https://doi.org/10.1016/j.neuron.2015.08.00
Tonegawa, S., Morrissey, M, y Kitamura, T. (2018). The role of engram cells in the systems consolidation of memory. Nature, 19, 485-498. https://doi.org/10.1038/s41583-018-0031-2
Tononi, G., Sporns, O., y Edelman, G. M. (1994). A measure for brain complexity: relating functional segregation and integration in the nervous system. Proceedings of the National Academy of Sciences, 91(11), 5033–5037. doi:10.1073/pnas.91.11.5033
Valenti, S. S., y Stoffregen, T. A. (2001). The social dynamics of embodied cognition. Behavioral and Brain Sciences, 24, 67-68. doi:10.1017/S0140525X01533919
Varga, S. (2016). Interaction and extended cognition. Synthese, 193(8), 2469-2496. https://doi.org/10.1007/s11229-015-0861-7
Vossel, S., Weidner, R., Driver, J., Friston, K. J., y Fink, G. R. (2012). Deconstructing the Architecture of Dorsal and Ventral Attention Systems with Dynamic Causal Modeling. Journal of Neuroscience, 32(31), 10637-10648. https://doi.org/10.1523/JNEUROSCI.0414-12.2012
Vossel, S., Geng, J. J., y Fink, G. R. (2014). Dorsal and Ventral Attention Systems: Distinct Neural Circuits but Collaborative Roles. The Neuroscientist, 20(2), 150-159. https://doi.org/10.1177/1073858413494269
Yamaguchi, M., Valji, A., y Wolohan, F. D. A. (2018). Top-down contributions to attention shifting and disengagement: A template model of visual attention. Journal of Experimental Psychology: General, 147(6), 859-887. https://doi.org/10.1037/xge0000393
Yamamoto N, Philbeck JW. Peripheral vision benefits spatial learning by guiding eye movements. Memory & cognition. 2013;41(1):109–21. pmid:22930007
Weaver, W. (1991). Science and Complexity. En G. J. Klir, Facets of Systems Science (pp. 449-456). Springer US. https://doi.org/10.1007/978-1-4899-0718-9_30
Westbrook, A., y Braver, T. S. (2016). Dopamine does double duty in motivating cognitive effort. Neuron, 89(4), 695-710. https://doi.org/10.1016/j.neuron.2015.12.029
Wynn, J. S., Shen, K., y Ryan, J. D. (2019). Eye Movements Actively Reinstate Spatiotemporal Mnemonic Content. Vision (Basel, Switzerland), 3(2), 21. https://doi.org/10.3390/vision3020021
Wynn, J. S., Ryan, J. D., & Buchsbaum, B. R. (2020). Eye movements support behavioral pattern completion. Proceedings of the National Academy of Sciences, 117(11), 6246-6254. https://doi.org/10.1073/pnas.1917586117
Zelinsky, G. J., Loschky, L. C., y Dickinson, C. A. (2010). Do object refixations during scene viewing indicate rehearsal in visual working memory? Memory & Cognition, 39(4), 600–613. https://doi.org/10.3758/s13421-010-0048-x
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial-SinDerivadas 2.5 Colombia
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Colombia
dc.publisher.grantor.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.spa.fl_str_mv Facultad Ciencias de la Salud
dc.publisher.program.spa.fl_str_mv Pregrado Psicología
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/11953/1/2020_Tesis_Jeison_Ortiz_Gamboa.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/11953/2/2020_Licencia_Jeison_Ortiz_Gamboa.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/11953/3/license.txt
https://repository.unab.edu.co/bitstream/20.500.12749/11953/4/2020_Tesis_Jeison_Ortiz_Gamboa.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/11953/5/2020_Licencia_Jeison_Ortiz_Gamboa.pdf.jpg
bitstream.checksum.fl_str_mv 58babc6cd6d02a6a3375c841be90f302
fc3e04d5c56364009ad5dddb60ec4f7c
8a4605be74aa9ea9d79846c1fba20a33
8ae2b07c27930f3114ff76dbfbc96cf2
218ccff9fee2efa1a8f4519d7751e2bc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1814277314946531328
spelling Rosero Pahi, Mario AlbertoOrtiz Gamboa, Jeison MiguelRueda González, Claudia MaritzaSantamaría Castellanos, Angélica JohanaVanegas Ibáñez, Angie Paolahttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001356760https://scholar.google.es/citations?hl=es&user=lmqwzwUAAAAJhttps://orcid.org/0000-0002-9546-4064https://www.researchgate.net/profile/Mario_Alberto_Rosero_Pahi3Colombia2020-12-16T16:13:58Z2020-12-16T16:13:58Z2020-11http://hdl.handle.net/20.500.12749/11953instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coLa presente investigación pretende determinar si los movimientos oculares de fijación retroalimentan el proceso de codificación de memoria de trabajo visuoespacial, también, identificar las condiciones en las que ocurre. Por esa razón, se midió de forma experimental, a través del rastreamiento ocular y una tarea de memoria de trabajo visuoespacial, si los procesos de memoria se ven afectados al manipular los movimientos oculares, ya sea permitiendo su ejecución de forma libre o restringiéndolos. Esto, en una muestra de 16 estudiantes voluntarios de pregrado, entre los 18 y 21 años, 10 mujeres y 6 hombres, pertenecientes al programa de Psicología de la Universidad Autónoma de Bucaramanga (UNAB). Se encontró que, al limitar los movimientos oculares de los participantes, es evidente una reducción significativa en el desempeño de la tarea de memoria de trabajo, constatado en la cantidad de objetos recordados por los participantes, lo cual, indica que la participación del sistema oculomotor es relevante en los procesos de codificación de memoria.Resumen .................................................................................................................................... 8 Abstract ..................................................................................................................................... 9 Introducción ........................................................................................................................... 10 Descripción y planteamiento del problema .......................................................................... 11 Formulación de la pregunta de investigación ....................................................................... 13 Planteamiento de hipótesis ................................................................................................... 13 Objetivos de investigación ................................................................................................... 14 Objetivo General ............................................................................................................... 14 Objetivos Específicos ....................................................................................................... 14 Justificación de la investigación ........................................................................................... 14 Antecedentes de investigación ............................................................................................... 16 Marco teórico ......................................................................................................................... 21 Contexto histórico de la neurociencia cognitiva .................................................................. 21 Teoría de Santigo de la cognición ........................................................................................ 23 Cognición enactiva ........................................................................................................... 24 Cognición encarnada o encorporizada .............................................................................. 25 Cognición extendida ......................................................................................................... 26 Cognición embebida ......................................................................................................... 26 Teoría de la complejidad ...................................................................................................... 27 Sistemas dinámicos y neurociencia ...................................................................................... 29 Memoria y Aprendizaje ........................................................................................................ 35 Mecanismos neurobiológicos de la memoria ................................................................... 37 Modelo de sistemas dedicados de memorias .................................................................... 31 Nuevas perspectivas de memoria ..................................................................................... 33 Memoria de trabajo ........................................................................................................... 42 Rehearsal .......................................................................................................................... 43 El ciclo de percepción-acción ........................................................................................... 44 Sistemas atencionales ........................................................................................................... 45 Atención Exógena ............................................................................................................. 46 Atención Endógena ........................................................................................................... 47 Atención guiada por memoria .......................................................................................... 48 Movimientos oculares .......................................................................................................... 49 Fijaciones .......................................................................................................................... 53 5 Refijaciones ...................................................................................................................... 54 Método .................................................................................................................................... 55 Tipo de investigación ........................................................................................................... 55 Diseño................................................................................................................................... 56 Sujetos .................................................................................................................................. 56 Instrumentos ......................................................................................................................... 56 Tarea ................................................................................................................................. 56 Estímulos visuales............................................................................................................. 56 Eye tracker ........................................................................................................................ 57 Procedimiento de toma de datos........................................................................................... 57 Procedimiento de análisis de datos....................................................................................... 58 Resultados ............................................................................................................................... 61 Análisis basado en el spam de memoria de los participantes ........................................... 62 Análisis basado en la duración de las fijaciones ............................................................... 63 Análisis de refijaciones para la condición experimental .................................................. 64 Discusión ................................................................................................................................. 66 Conclusiones ........................................................................................................................... 73 Referencias.............................................................................................................................. 74PregradoThis research aims to determine whether the fixation eye movements feedback the visuospatial working memory coding process, as well, to identify the conditions under which it occurs. For that reason, it was measured experimentally, through eye tracking and a visuospatial working memory task, if memory processes are affected by manipulating eye movements, either by allowing their execution freely or by restricting them. This, in a sample of 16 undergraduate volunteer students, between the 18 and 21 years old, 10 women and 6 men, belonging to the Psychology program of the Autonomous University of Bucaramanga (UNAB). It was found that limiting the eye movements of participants shows a significant reduction in the performance of the working memory task, found in the number of objects remembered by the participants, indicating that the participation of the oculomotor system is relevant in memory coding processes.application/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-SinDerivadas 2.5 ColombiaParticipación activa de los movimientos oculares de fijación en la codificación de memorias de contenido visuoespacialActive participation of fixation eye movements in coding of memories of visuospatial contentPsicólogoUniversidad Autónoma de Bucaramanga UNABFacultad Ciencias de la SaludPregrado Psicologíainfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/redcol/resource_type/TPPsychologyEye movementsVisuospatial workPsychopedagogyAttentionAssociation of ideasIntelligenceMemoryPsicologíaPsicopedagogíaAtenciónAsociación de ideasInteligenciaMemoriaMovimientos ocularesTrabajo visuoespacialAbraham, R. H. (2011). The Genesis of Complexity. World Futures, 67(4-5), 380-394. https://doi.org/10.1080/02604027.2011.585915Aguirre, J., Viana, R. L., y Sanjuán, M. A. F. (2009). Fractal structures in nonlinear dynamics. Reviews of Modern Physics, 81(1), 333–386. doi:10.1103/revmodphys.81.333Altmann, G.T. (2004) Language-mediated eye movements in the absence of a visual world: the ‘blank screen paradigm’. Cognition 93, B79–B87. https://doi.org/10.1016/j.cognition.2004.02.005Althoff, R. R., y Cohen, N. J. (1999). Eye-movement-based memory effect: A reprocessing effect in face perception. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25(4), 997–1010. https://doi.org/10.1037/0278-7393.25.4.997Awh, E., y Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Sciences, 5(3), 119-126. https://doi.org/10.1016/S1364-6613(00)01593-XBalan, P. F., & Ferrera, V. P. (2003). Effects of Spontaneous Eye Movements on Spatial Memory in Macaque Periarcuate Cortex. The Journal of Neuroscience, 23(36), 11392-11401. https://doi.org/10.1523/JNEUROSCI.23-36-11392.2003Bassett, D. S., y Gazzaniga, M. S. (2011). Understanding complexity in the human brain. Trends in Cognitive Sciences, 15(5), 200–209. doi:10.1016/j.tics.2011.03.006Berrocal, P. Salamanca, G. (2002) Influencia de la estimulación periférica en la memoria. (Tesis de grado). Universidad Autónoma de Madrid, Madrid: EspañaBliss, T., Collingridge, G. (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993). https://doi.org/10.1038/361031a0Bliss, T., Collingridge, G., y Morris, R. (2007). Synaptic plasticity in the hippocampus. En P. Andersen, R. Morris, D. Amaral, T. Bliss y J. O'Keefe (Eds.), The hippocampus book (p. 343–474). Oxford University PressBojko Aga. (2013). Eye tracking the user experience: A practical guide to research. New York: Rosenfeld Media, LLC.Bosch, M., y Hayashi, Y. (2012). Structural plasticity of dendritic spines. Current opinion in neurobiology, 22(3), 383–388. https://doi.org/10.1016/j.conb.2011.09.002Bridge, D. J., Cohen, N. J., y Voss, J. L. (2017). Distinct Hippocampal versus Frontoparietal Network Contributions to Retrieval and Memory-guided Exploration. Journal of cognitive neuroscience, 29(8), 1324–1338. https://doi.org/10.1162/jocn_a_01143Bullmore, E., Barnes, A., Bassett, D. S., Fornito, A., Kitzbichler, M., Meunier, D., y Suckling, J. (2009). Generic aspects of complexity in brain imaging data and other biological systems. NeuroImage, 47(3), 1125–1134. doi:10.1016/j.neuroimage.2009.05.032Bullmore, E., y Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198. doi:10.1038/nrn2575Capra, F., y Luisi, P. (2014). The Systems View of Life: A Unifying Vision. Cambridge: Cambridge University Press. doi:10.1017/CBO9780511895555Castelhano, M. S. Mack, M. L. y Henderson, J. M. (2009). Viewing task influences eye movement control during active scene perception. Journal of Vision, 9, 1–15. doi: https://doi.org/10.1167/9.3.6Chapman, K. (2015). Complexity and Creative Capacity: Rethinking knowledge transfer, adaptive. Taylor & FrancisChen, D., y Hutchinson, J. B. (2018). What is memory-guided attention? How past experiences shape selective visuospatial attention in the present. En M. Geyer, B. Ellenbroek, y C. Marsden (Eds.), Current topics in behavioral neurosciences (pp. 1–28). Berlin: Springer Nature.Chun, M. M., Golomb, J. D., y Turk-Browne, N. B. (2011). A Taxonomy of External and Internal Attention. Annual Review of Psychology, 62(1), 73-101. https://doi.org/10.1146/annurev.psych.093008.Chwang, W. B., O'Riordan, K. J., Levenson, J. M., y Sweatt, J. D. (2006). ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning. Learning & memory (Cold Spring Harbor, N.Y.), 13(3), 322–328. https://doi.org/10.1101/lm.152906Cooke, S. F. y Bliss, T. V. P. (2006). Plasticity in the human central nervous system. Brain, 129, (7), 1659–1673. https://doi.org/10.1093/brain/awl082 Cooper, D. M. (2019). The Cell: A Molecular Approach (8th Ed). New York: Oxford University Press.Corbetta, M., Patel, G., y Shulman, G. L. (2008). The Reorienting System of the Human Brain: From Environment to Theory of Mind. Neuron, 58(3), 306-324. https://doi.org/10.1016/j.neuron.2008.04.017Corbetta, M., y Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201-215. https://doi.org/10.1038/nrn755Costall, A. (2006). ‘Introspectionism’ and the mythical origins of scientific psychology. Consciousness and Cognition, 15(4), 634-654. https://doi.org/10.1016/j.concog.2006.09.008Curtis, C. E., y D'Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in cognitive sciences, 7(9), 415-423Dávila, J. (2009). El caso H. M. una vida sin recuerdos. Recuperado de: http://www.encuentros.uma.es/encuentros125/Recuerdos.pdfDay, J. J., y Sweatt, J. D. (2011). Epigenetic Mechanisms in Cognition. Neuron, 70(5), 813–829. doi:10.1016/j.neuron.2011.05.019Dell’Osso LF, y Daroff RB. (1982). Características y técnicas de registro de los movimientos oculares. Recuperado de: http://www.omlab.org/personnel/lfd/Jrnl_Arts/Book_Chapters/018_Caract_tecnicas_registro_mov_ocular_1982.pdfDesimone, R., y Duncan, J. (1995). Neural Mechanisms of Selective Visual Attention. Annual Review of Neuroscience, 18(1), 193–222. doi:10.1146/annurev.ne.18.030195.0012Driver, J., y Frackowiak, R. S. . (2001). Neurobiological measures of human selective attention. Neuropsychologia, 39(12), 1257–1262. doi:10.1016/s0028-3932(01)00115-4Eckstein, M. K., Guerra-Carrillo, B., Singley, A. T. M., y Bunge, S. A. (2016). Beyond eye gaze: What else can eyetracking reveal about cognition and cognitive development?. Developmental cognitive neuroscience, 25, 69-91. https://doi.org/10.1016/j.dcn.2016.11.001Fenici, M. (2012). Embodied Social Cognition and Embedded Theory of Mind. Universidad de Florencia. Florencia, ItaliaFerreira, F. Apel, A. y Henderson, J. M. (2008). Taking a new look at looking at nothing. Trends in Cognitive Science, 12(11), 405–41Froese, T. (2009). Hume and the enactive approach to mind. Phenomenology and the Cognitive Sciences, 8(1), 95-133. https://doi.org/10.1007/s11097-008-9111-5Fuster, J. M., y Bressler, S. L. (2012). Cognit activation: a mechanism enabling temporal integration in working memory. Trends in cognitive sciences, 16(4), 207–218. https://doi.org/10.1016/j.tics.2012.03.005Fuster, J. M. (2009). Cortex and Memory: Emergence of a New Paradigm. Journal of Cognitive Neuroscience, 21(11), 2047-2072. https://doi.org/10.1162/jocn.2009.212Fuster, J. M. (2014). The Prefrontal Cortex Makes the Brain a Preadaptive System. Proceedings of the IEEE, 102(4), 417-426. doi: 10.1109/JPROC.2014.2306250Fuster, J. M. (2004). Upper processing stages of the perception–action cycle. Trends in cognitive sciences, 8(4), 143-145. doi:10.1016/j.tics.2004.02.004Gaite, J., A. Domínguez, y J. Pérez-Mercader (1999). The Fractal Distribution of Galaxies and the Transition to Homogeneity. Astrophys. J. Lett. 522, L5. doi.org/10.1086/312204Gila, L., Villanueva, A., y Cabeza, R.. (2009). Fisiopatología y técnicas de registro de los movimientos oculares. Anales del Sistema Sanitario de Navarra, 32(Supl. 3), 9-26. Recuperado en 15 de marzo de 2020, de http://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1137-66272009000600002&lng=es&tlng=es.Goyal, V., Behari, M., Srivastava, A., Sood, S., Shukla, G. y Sharma, R. (2014). Saccadic eye movements in Parkinson′s disease. Indian Journal of Ophthalmology, 62(5), 538. https://doi.org/10.4103/0301-4738.133482Grant, E. R. y Spivey, M. J.(2003). Eye movements and problem solving guiding attention guides thought. Psychological Science,14, 462–466.Green, H.J., Lemaire, P. y Dufau, S., (2007). Eye movement correlates of younger and older adults’ strategies for complex addition. Acta Psychologica. (Amst.) 125, 257–278, http://dx.doi.org/10.1016/j.actpsy.2006.08.001.Gupta, S., Kim, S. Y., Artis, S., Molfese, D. L., Schumacher, A., Sweatt, J. D., Paylor, R. E., y Lubin, F. D. (2010). Histone methylation regulates memory formation. The Journal of neuroscience : the official journal of the Society for Neuroscience, 30(10), 3589–3599. https://doi.org/10.1523/JNEUROSCI.3732-09.2010cHannula, D. E., Althoff, R. R., Warren, D. E., Riggs, L., Cohen, N. J., y Ryan, J. D. (2010). Worth a glance: using eye movements to investigate the cognitive neuroscience of memory. Frontiers in human neuroscience, 4, 166. https://doi.org/10.3389/fnhum.2010.00166Heitger, M. H., Jones, R. D., Macleod, A., Snell, D. L., Frampton, C. M., y Anderson, T. J. (2009). Impaired eye movements in postconcussion syndrome indicate suboptimal brain function beyond the influence of depression, malingering or intellectual ability. Brain, doi:https://doi.org/10.1093/brain/awp181Henderson, J. M., Brockmole, J. R., Castelhano, M. S., y Mack, M. (2007). Visual saliency does not account for eye movements during visual search in real-world scenes. In R. P. G. van Gompel, M. H. Fischer, W. S. Murray, & R. L. Hill (Eds.), Eye movements: A window on mind and brain (p. 537–562). Elsevier. https://doi.org/10.1016/B978-008044980-7/50027-6Henderson, J. M., Weeks, P. A., Jr., y Hollingworth, A. (1999). The effects of semantic consistency on eye movements during complex scene viewing. Journal of Experimental Psychology: Human Perception and Performance, 25(1), 210–228. https://doi.org/10.1037/0096-1523.25.1.210Henderson, J. M., Williams, C. C., y Falk, R. J. (2005). Eye movements are functional during face learning. Memory & cognition, 33(1), 98–106. https://doi.org/10.3758/bf03195300Hernández, S. R., Fernández, C. C. y Baptista, L. M. (2014). Metodología de la investigación. México: McGRAW-HILL. Recuperado de https://www.uca.ac.cr/wp-content/uploads/2017/10/Investigacion.pdfHutchinson, J. B., y Turk-Browne, N. B. (2012). Memory-guided attention: control from multiple memory systems. Trends in cognitive sciences, 16(12), 576–579. https://doi.org/10.1016/j.tics.2012.10.003Itti, L., y Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 40, 1489–1506. https://doi.org/10.1016/S0042-6989(99)00163-7Josselyn, S. A., Köhler, S., y Frankland, P. W. (2015). Finding the engram. Nature Reviews Neuroscience, 16(9), 521-534. doi:10.1038/nrn4000Kandel, E. (2007). En busca de la memoria: El nacimiento de una ciencia de la mente. Buenos Aires: Katz EditoresKandel, E. R., y Siegelbaum S. A. (2000). Prefrontal Cortex, Hippocampus, and the Biology of Explicit Memory Storage. En Kandel E. R., Schwartz J. H., Jessell T. M., Siegelbaum S. A. y Hudspeth, J. A. (Eds.), Principles of Neural Science (pp. 1487-1520). New York: McGraw-Hill.Katz, A. J., y Thompson, A. H. (1985). Fractal Sandstone Pores: Implications for Conductivity and Pore Formation. Physical Review Letters, 54(12), 1325–1328. doi:10.1103/physrevlett.54.1325King, C. C. (1991). Fractal and chaotic dynamics in nervous systems. Progress in Neurobiology, 36(4), 279–308. doi:10.1016/0301-0082(91)90003-jKrassanakis, V., Filippakopoulou, V., y Nakos, B. (2014). EyeMMV toolbox: An eye movement post-analysis tool based on a two-step spatial dispersion threshold for fixation identification. Journal of Eye Movement Research, 7(1). https://doi.org/10.16910/jemr.7.1.1Krieger, G., Rentschler, I., Hauske, G., Schill, K., & Zetzsche, C. (2000). Object and scene analysis by saccadic eye-movements: an investigation with higher-order statistics. Spatial vision, 13(2-3), 201–214. https://doi.org/10.1163/156856800741216).Kristjánsson, A., y Campana, G. (2010). Where perception meets memory: a review of repetition priming in visual search tasks. Attention, perception & psychophysics, 72(1), 5–18. https://doi.org/10.3758/APP.72.1.5Lamme, V. A. F. (2003). Why visual attention and awareness are different. Trends in Cognitive Sciences, 7(1), 12–18. doi:10.1016/s1364-6613(02)00013-xLevenson, J. M., O'Riordan, K. J., Brown, K. D., Trinh, M. A., Molfese, D. L., y Sweatt, J. D. (2004). Regulation of histone acetylation during memory formation in the hippocampus. The Journal of biological chemistry, 279(39), 40545–40559. https://doi.org/10.1074/jbc.M402229200Li, T.-Y., y Yorke, J. A. (1975). Period Three Implies Chaos. The American Mathematical Monthly, 82(10), 985. doi:10.2307/2318254Liu, Z.-X., Shen, K., Olsen, R. K. y Ryan, J. D. (2017). Visual Sampling Predicts Hippocampal Activity. The Journal of Neuroscience, 37(3), 599-609. https://doi.org/10.1523/JNEUROSCI.2610-16.2016Loftus, G. R. y Mackworth, N. H. (1978). Cognitive determinants of fixation location during picture viewing. Journal of Experimental Psychology: Human Perception and Performance, 4(4), 565–572. DOI: 10.1037 // 0096-1523.4.4.565Losa, G. A., Baumann, G., y Nonnenmacher, T. F. (1992). Fractal dimension of pericellular membranes in human lymphocytes and lymphoblastic leukemia cells. Pathology - Research and Practice, 188(4-5), 680–686. doi:10.1016/s0344-0338(11)80080-4Lyon, P. (2006). The biogenic approach to cognition. Cognitive Processing, 7(1), 11-29. https://doi.org/10.1007/s10339-005-0016-8Malenka, R. C., y Nicoll, R. A. (1999). Long-term potentiation—a decade of progress? Science, 285(5435), 1870–1874. doi: 10.1126/science.285.543Meghanathan, R. N., Nikolaev, A. R., y van Leeuwen, C. (2019). Refixation patterns reveal memory-encoding strategies in free viewing. Attention, Perception, & Psychophysics, 81(7), 2499-2516. https://doi.org/10.3758/s13414-019-01735-2Maturana, H. Varela, F. (2003). El árbol del conocimiento: Las bases biológicas del entendimiento humano. Editorial Universitaria; LumenMcKenzie, S., y Eichenbaum, H. (2011). Consolidation and Reconsolidation: Two Lives of Memories? Neuron, 71(2), 224-233. https://doi.org/10.1016/j.neuron.2011.06.037Menary, R. (2010). Introduction to the special issue on 4E cognition. Phenomenology and the Cognitive Sciences, 9(4), 459-463. https://doi.org/10.1007/s11097-010-9187-6Millette, N. (1936) How People Look at Pictures. By Guy T. Buswell, The Art Bulletin, 18(3), 429, DOI: 10.1080/00043079.1936.11408852Mohr, J., Seyfarth, J., Lueschow, A., Weber, J. E., Wichmann, F. A., y Obermayer, K. (2016). BOiS-Berlin Object in Scene Database: Controlled Photographic Images for Visual Search Experiments with Quantified Contextual Priors. Frontiers in psychology, 7, 749. https://doi.org/10.3389/fpsyg.2016.00749Moser, M. B., Trommald, M., y Andersen, P. (1994). An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. Proceedings of the National Academy of Sciences of the United States of America, 91(26), 12673–12675. https://doi.org/10.1073/pnas.91.26.12673Muller, D., Toni, N., y Buchs, P.-A. (2000). Spine changes associated with long-term potentiation. Hippocampus, 10(5), 596–604. https://doi.org/10.1002/1098-1063(2000)10:5<596::AID-HIPO10>3.0.CO;2-YMurtonen, M., Gruber, H., y Lehtinen, E. (2017). The return of behaviourist epistemology: A review of learning outcomes studies. Educational Research Review, 22, 114-128. https://doi.org/10.1016/j.edurev.2017.08.001Newman, M. E. J., y Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2). doi:10.1103/physreve.69.026113Pape, H. C., y Pare, D. (2010). Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiological reviews, 90(2), 419–463. https://doi.org/10.1152/physrev.00037.2009Pearson, D. G., Ball, K., y Smith, D. T. (2014). Oculomotor preparation as a rehearsal mechanism in spatial working memory. Cognition, 132(3), 416-428. https://doi.org/10.1016/j.cognition.2014.05.006Petersen, S. E., y Sporns, O. (2015). Brain Networks and Cognitive Architectures. Neuron, 88(1), 207–219. doi:10.1016/j.neuron.2015.09.027Phelps, E. A., y Hofmann, S. G. (2019). Memory editing from science fiction to clinical practice. Nature, 572(7767), 43–50. https://doi.org/10.1038/s41586-019-1433-7Posner, M. I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 3-25. https://doi.org/10.1080/00335558008248231Popa, L., Selejan, O., Scott, A., Mureşanu, D. F., Balea, M., y Rafila, A. (2015). Reading beyond the glance: eye tracking in neurosciences. Neurological sciences : official 84 journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 36(5), 683–688. https://doi.org/10.1007/s10072-015-2076-6Purves, D., Augustine, G., Fitzpatrick, D., Hall, W., Lamantia, A., y White, L. (2016). Neurociencia. Madrid, España: Panamericana.Rayner K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological bulletin, 124(3), 372–422. https://doi.org/10.1037/0033-2909.124.3.372Rickles, D., Hawe, P., y Shiell, A. (2007). A simple guide to chaos and complexity. Journal of Epidemiology & Community Health, 61(11), 933–937. doi:10.1136/jech.2006.054254Rowlands, M. (2010). The new science of the mind: From extended mind to embodied phenomenology. Mit PressRuiz-Mirazo, K., y Moreno, A. (2012). Autonomy in evolution: From minimal to complex life. Synthese, 185(1), 21-52. https://doi.org/10.1007/s11229-011-9874-zRyan, J. D., Althoff, R. R., Whitlow, S., y Cohen, N. J. (2000). Amnesia is a deficit in relational memory. Psychological science, 11(6), 454–461. https://doi.org/10.1111/1467-9280.00288Salvador, R., Suckling, J., Coleman, M.R., Pickard, J.D., Menon, D., y Bullmore, E., 2005. Neurophysiological architecture of functional magnetic resonance images of human brain. Cereb. Cortex 15, 1332–1342Sanjuán, M. A. F. (2003). Caos y Fractales: Conceptos Universales de la Ciencia de la Complejidad.Gaceta de la Real Sociedad Matemática Española, 6 (1), 81-87. Recuperado de http://gaceta.rsme.es/abrir.php?id=4Schacter, D. L., y Addis, D. R. (2007). The cognitive neuroscience of constructive memory: remembering the past and imagining the future. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1481), 773–786. doi:10.1098/rstb.2007.2087Schmuckler, M.A. (2001), What Is Ecological Validity? A Dimensional Analysis. Infancy, 2: 419-436. https://doi.org/10.1207/S15327078IN0204_02Schütz, A. C., Braun, D. I., y Gegenfurtner, K. R. (2011). Eye movements and perception: a selective review. Journal of vision, 11(5), 9. https://doi.org/10.1167/11.5.9Simon, H. (1962). The Architecture of Complexity. Proceedings of the American Philosophical Society, 106(6), 467-482. Recuperado de https://www.jstor.org/stable/985254Stacey, R. (2001).Complex Responsive Processes in Organizations. London: RoutledgeStacey, R., Griffin, D. y Shaw, P. (2000). Complexity and Management: Fad or Radical Challenge. New York: Routledge.Strogatz, S. H. (2001). Exploring complex networks. Nature, 410(6825), 268–276. doi:10.1038/35065725Tatler, B. W., Gilchrist, I. D., y Land, M. F. (2005). Visual memory for objects in natural scenes: From fixations to object files. The Quarterly Journal of Experimental Psychology Section A, 58(5), 931–960. https://doi.org/10.1080/02724980443000430Thompson, E. (2004). Life and mind: From autopoiesis to neurophenomenology. A tribute to Francisco Varela. Phenomenology and the Cognitive Sciences, 3(4), 381-398. https://doi.org/10.1023/B:PHEN.0000048936.73339.ddThompson, E., y Stapleton, M. (2009). Making Sense of Sense-Making: Reflections on Enactive and Extended Mind Theories. Topoi, 28(1), 23-30. https://doi.org/10.1007/s11245-008-9043-2.Thompson, R. (2005). In Search of Memory Traces. Annual Review of Psychology, 56(1), 1–23. doi:10.1146/annurev.psych.56.091103.070239Tonegawa, S., Liu, X., Ramirez, S., y Redondo, R. (2015). Memory Engram Cells Have Come of Age. Neuron, 87(5), 918-931. https://doi.org/10.1016/j.neuron.2015.08.00Tonegawa, S., Morrissey, M, y Kitamura, T. (2018). The role of engram cells in the systems consolidation of memory. Nature, 19, 485-498. https://doi.org/10.1038/s41583-018-0031-2Tononi, G., Sporns, O., y Edelman, G. M. (1994). A measure for brain complexity: relating functional segregation and integration in the nervous system. Proceedings of the National Academy of Sciences, 91(11), 5033–5037. doi:10.1073/pnas.91.11.5033Valenti, S. S., y Stoffregen, T. A. (2001). The social dynamics of embodied cognition. Behavioral and Brain Sciences, 24, 67-68. doi:10.1017/S0140525X01533919Varga, S. (2016). Interaction and extended cognition. Synthese, 193(8), 2469-2496. https://doi.org/10.1007/s11229-015-0861-7Vossel, S., Weidner, R., Driver, J., Friston, K. J., y Fink, G. R. (2012). Deconstructing the Architecture of Dorsal and Ventral Attention Systems with Dynamic Causal Modeling. Journal of Neuroscience, 32(31), 10637-10648. https://doi.org/10.1523/JNEUROSCI.0414-12.2012Vossel, S., Geng, J. J., y Fink, G. R. (2014). Dorsal and Ventral Attention Systems: Distinct Neural Circuits but Collaborative Roles. The Neuroscientist, 20(2), 150-159. https://doi.org/10.1177/1073858413494269Yamaguchi, M., Valji, A., y Wolohan, F. D. A. (2018). Top-down contributions to attention shifting and disengagement: A template model of visual attention. Journal of Experimental Psychology: General, 147(6), 859-887. https://doi.org/10.1037/xge0000393Yamamoto N, Philbeck JW. Peripheral vision benefits spatial learning by guiding eye movements. Memory & cognition. 2013;41(1):109–21. pmid:22930007Weaver, W. (1991). Science and Complexity. En G. J. Klir, Facets of Systems Science (pp. 449-456). Springer US. https://doi.org/10.1007/978-1-4899-0718-9_30Westbrook, A., y Braver, T. S. (2016). Dopamine does double duty in motivating cognitive effort. Neuron, 89(4), 695-710. https://doi.org/10.1016/j.neuron.2015.12.029Wynn, J. S., Shen, K., y Ryan, J. D. (2019). Eye Movements Actively Reinstate Spatiotemporal Mnemonic Content. Vision (Basel, Switzerland), 3(2), 21. https://doi.org/10.3390/vision3020021Wynn, J. S., Ryan, J. D., & Buchsbaum, B. R. (2020). Eye movements support behavioral pattern completion. Proceedings of the National Academy of Sciences, 117(11), 6246-6254. https://doi.org/10.1073/pnas.1917586117Zelinsky, G. J., Loschky, L. C., y Dickinson, C. A. (2010). Do object refixations during scene viewing indicate rehearsal in visual working memory? Memory & Cognition, 39(4), 600–613. https://doi.org/10.3758/s13421-010-0048-xORIGINAL2020_Tesis_Jeison_Ortiz_Gamboa.pdf2020_Tesis_Jeison_Ortiz_Gamboa.pdfTesisapplication/pdf752913https://repository.unab.edu.co/bitstream/20.500.12749/11953/1/2020_Tesis_Jeison_Ortiz_Gamboa.pdf58babc6cd6d02a6a3375c841be90f302MD51open access2020_Licencia_Jeison_Ortiz_Gamboa.pdf2020_Licencia_Jeison_Ortiz_Gamboa.pdfLicenciaapplication/pdf2115372https://repository.unab.edu.co/bitstream/20.500.12749/11953/2/2020_Licencia_Jeison_Ortiz_Gamboa.pdffc3e04d5c56364009ad5dddb60ec4f7cMD52metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.unab.edu.co/bitstream/20.500.12749/11953/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53open accessTHUMBNAIL2020_Tesis_Jeison_Ortiz_Gamboa.pdf.jpg2020_Tesis_Jeison_Ortiz_Gamboa.pdf.jpgIM Thumbnailimage/jpeg4295https://repository.unab.edu.co/bitstream/20.500.12749/11953/4/2020_Tesis_Jeison_Ortiz_Gamboa.pdf.jpg8ae2b07c27930f3114ff76dbfbc96cf2MD54open access2020_Licencia_Jeison_Ortiz_Gamboa.pdf.jpg2020_Licencia_Jeison_Ortiz_Gamboa.pdf.jpgIM Thumbnailimage/jpeg11244https://repository.unab.edu.co/bitstream/20.500.12749/11953/5/2020_Licencia_Jeison_Ortiz_Gamboa.pdf.jpg218ccff9fee2efa1a8f4519d7751e2bcMD55open access20.500.12749/11953oai:repository.unab.edu.co:20.500.12749/119532021-05-03 15:32:29.747open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=