Determinación de los factores asociados a la pérdida de células endoteliales en cirugía de facoemulsificación de catarata microincisional coaxial en la Fundación Oftalmológica de Santander

Objetivos: En este estudio se pretendió identificar los factores asociados a pérdida de células endoteliales durante la extracción extracapsular de catarata por facoemulsificación. Materiales y métodos: Se realizó un estudio observacional, longitudinal, retrospectivo de las historias clínicas de pac...

Full description

Autores:
Prada Rocha, Angélica María
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/1784
Acceso en línea:
http://hdl.handle.net/20.500.12749/1784
Palabra clave:
Waterfall
Phacoemulsification
Endothelial cells
Surgery
Medicine
Ophthalmology
Research
Endothelial count
Loss of endothelial cells
Associated factors
Catarata
Facoemulsificación
Células endoteliales
Cirugía
Medicina
Oftalmología
Investigaciones
Recuento endotelial
Pérdida de células endoteliales
Factores asociados
Fundación Oftalmológica de Santander
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UNAB2_058e4bc0881f7f5856af8cdd26fb1efd
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/1784
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Determinación de los factores asociados a la pérdida de células endoteliales en cirugía de facoemulsificación de catarata microincisional coaxial en la Fundación Oftalmológica de Santander
dc.title.translated.eng.fl_str_mv Determination of the factors associated with the loss of endothelial cells in phacoemulsification surgery of coaxial microincisional cataract at the Fundación Oftalmológica de Santander
title Determinación de los factores asociados a la pérdida de células endoteliales en cirugía de facoemulsificación de catarata microincisional coaxial en la Fundación Oftalmológica de Santander
spellingShingle Determinación de los factores asociados a la pérdida de células endoteliales en cirugía de facoemulsificación de catarata microincisional coaxial en la Fundación Oftalmológica de Santander
Waterfall
Phacoemulsification
Endothelial cells
Surgery
Medicine
Ophthalmology
Research
Endothelial count
Loss of endothelial cells
Associated factors
Catarata
Facoemulsificación
Células endoteliales
Cirugía
Medicina
Oftalmología
Investigaciones
Recuento endotelial
Pérdida de células endoteliales
Factores asociados
Fundación Oftalmológica de Santander
title_short Determinación de los factores asociados a la pérdida de células endoteliales en cirugía de facoemulsificación de catarata microincisional coaxial en la Fundación Oftalmológica de Santander
title_full Determinación de los factores asociados a la pérdida de células endoteliales en cirugía de facoemulsificación de catarata microincisional coaxial en la Fundación Oftalmológica de Santander
title_fullStr Determinación de los factores asociados a la pérdida de células endoteliales en cirugía de facoemulsificación de catarata microincisional coaxial en la Fundación Oftalmológica de Santander
title_full_unstemmed Determinación de los factores asociados a la pérdida de células endoteliales en cirugía de facoemulsificación de catarata microincisional coaxial en la Fundación Oftalmológica de Santander
title_sort Determinación de los factores asociados a la pérdida de células endoteliales en cirugía de facoemulsificación de catarata microincisional coaxial en la Fundación Oftalmológica de Santander
dc.creator.fl_str_mv Prada Rocha, Angélica María
dc.contributor.advisor.spa.fl_str_mv Tello Hernández, Alejandro
Galvis Ramírez, Virgilio
dc.contributor.author.spa.fl_str_mv Prada Rocha, Angélica María
dc.contributor.cvlac.*.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001009125
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000552453
dc.contributor.googlescholar.*.fl_str_mv https://scholar.google.es/citations?hl=es#user=puxZHKYAAAAJ
https://scholar.google.es/citations?hl=es&user=CZOaBDoAAAAJ
dc.contributor.scopus.*.fl_str_mv https://www.scopus.com/authid/detail.uri?authorId=6603664598
https://www.scopus.com/authid/detail.uri?authorId=55963715000
dc.contributor.researchgate.*.fl_str_mv https://www.researchgate.net/profile/Virgilio_Galvis
dc.subject.keywords.eng.fl_str_mv Waterfall
Phacoemulsification
Endothelial cells
Surgery
Medicine
Ophthalmology
Research
Endothelial count
Loss of endothelial cells
Associated factors
topic Waterfall
Phacoemulsification
Endothelial cells
Surgery
Medicine
Ophthalmology
Research
Endothelial count
Loss of endothelial cells
Associated factors
Catarata
Facoemulsificación
Células endoteliales
Cirugía
Medicina
Oftalmología
Investigaciones
Recuento endotelial
Pérdida de células endoteliales
Factores asociados
Fundación Oftalmológica de Santander
dc.subject.lemb.spa.fl_str_mv Catarata
Facoemulsificación
Células endoteliales
Cirugía
Medicina
Oftalmología
Investigaciones
dc.subject.proposal.none.fl_str_mv Recuento endotelial
Pérdida de células endoteliales
Factores asociados
Fundación Oftalmológica de Santander
description Objetivos: En este estudio se pretendió identificar los factores asociados a pérdida de células endoteliales durante la extracción extracapsular de catarata por facoemulsificación. Materiales y métodos: Se realizó un estudio observacional, longitudinal, retrospectivo de las historias clínicas de pacientes sometidos a cirugía de catarata por facoemulsificación microincisional coaxial por un único cirujano (VGR) durante los meses de Enero 2016 a Junio 2016. Resultados: Se encontró una pérdida endotelial promedio de 6.4 +/- 10%. Como factores asociados a pérdida de células endoteliales se encontraron la clasificación más avanzada de la catarata (LOCS III), el tiempo total de ultrasonido y la energía acumulada disipada (CDE por su nombre en inglés cumulative dissipated energy). Conclusión: Es preferible realizar la facoemulsificación cuando la catarata no haya alcanzado los grados más avanzados (más allá de NC2 en la clasificación LOCS III), sobretodo en pacientes con endotelios alterados que por ende tienen mayor riesgo de descompensación corneal. Adicionalmente es preferible realizar técnicas quirúrgicas para la fragmentación del núcleo en las cuales se emplee menos CDE y tiempo total de ultrasonido.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2020-06-26T20:01:41Z
dc.date.available.none.fl_str_mv 2020-06-26T20:01:41Z
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.local.spa.fl_str_mv Tesis
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/1784
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UNAB
url http://hdl.handle.net/20.500.12749/1784
identifier_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
reponame:Repositorio Institucional UNAB
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Prada Rocha, Angélica María (2017). Determinación de los factores asociados a la pérdida de células endoteliales en cirugía de facoemulsificación de catarata microincisional coaxial en la Fundación Oftalmológica de Santander. Bucaramanga (Santander, Colombia) : Universidad Autónoma de Bucaramanga UNAB
1. Pascolini, D., & Mariotti, S. P. (2012). Global estimates of visual impairment: 2010. The British Journal of Ophthalmology, 96(5), 614–8. https://doi.org/10.1136/bjophthalmol-2011-300539
2. Chylack, L. T. (1993). The Lens Opacities Classification System III. Archives of Ophthalmology, 111(6), 831. https://doi.org/10.1001/archopht.1993.01090060119035
3. Campbell, C. (1999). Observations on the optical effects of a cataract. Journal of Cataract and Refractive Surgery, 25(7), 995–1003. https://doi.org/10.1016/S0886-3350(99)00084-X
4. Spalton, D., & Koch, D. (2000). The constant evolution of cataract surgery. BMJ, 321(7272), 1304–1304. https://doi.org/10.1136/bmj.321.7272.1304.
5. Minassian, D. C., Rosen, P., Dart, J. K., Reidy, A., Desai, P., Sidhu, M., … Wingate, N. (2001). Extracapsular cataract extraction compared with small incision surgery by phacoemulsification: a randomised trial. The British Journal of Ophthalmology, 85(7), 822–9. https://doi.org/10.1136/bjo.85.7.822
6. Al Mahmood, A. M., Al-Swailem, S. A., & Behrens, A. Clear corneal incision in cataract surgery. Middle East African Journal of Ophthalmology, 21(1), 25–31. https://doi.org/10.4103/0974-9233.124084
7. Steinert, R. F. (2010) p 704. Cataract surgery. Saunders.
8. Cheng, J.-W., Wei, R.-L., Cai, J.-P., Xi, G.-L., Zhu, H., Li, Y., & Ma, X.-Y. (2007). Efficacy of different intraocular lens materials and optic edge designs in preventing posterior capsular opacification: a meta-analysis. American Journal of Ophthalmology, 143(3), 428–436. https://doi.org/10.1016/j.ajo.2006.11.045
9. Zamvar, U., & Dhillon, B. (2005). Postoperative IOP prophylaxis practice following uncomplicated cataract surgery: a UK-wide consultant survey. BMC Ophthalmology, 5, 24. https://doi.org/10.1186/1471-2415-5-24
10. Mamalis, N., Edelhauser, H. F., Dawson, D. G., Chew, J., LeBoyer, R. M., & Werner, L. (2006, February). Toxic anterior segment syndrome. Journal of Cataract and Refractive Surgery. https://doi.org/10.1016/j.jcrs.2006.01.065
11. Berrocal, A. M., & Davis, J. L. (2002, September). Uveitis following intraocular surgery. Ophthalmology Clinics of North America. https://doi.org/10.1016/S0896-1549(02)00032-92-9
12. Pueringer, S. L., Hodge, D. O., & Erie, J. C. (2011). RISK OF LATE INTRAOCULAR LENS DISLOCATION AFTER CATARACT SURGERY, 1980–2009: A Population-Based Study. American Journal of Ophthalmology, 152(4), 618–623. http://doi.org/10.1016/j.ajo.2011.03.009
13. Yavas, G. F., Ozturk, F., & Kusbeci, T. (2007). Preoperative topical indomethacin to prevent pseudophakic cystoid macular edema. Journal of Cataract and Refractive Surgery, 33(5), 804–807. https://doi.org/10.1016/j.jcrs.2007.01.033
14. Yi, D. H., & Dana, M. R. (2002). Corneal edema after cataract surgery: incidence and etiology. Seminars in Ophthalmology, 17(3–4), 110–114. https://doi.org/10.1076/soph.17.3.110.14783
15. Ripandelli, G., Coppé, A. M., Parisi, V., Olzi, D., Scassa, C., Chiaravalloti, A., & Stirpe, M. (2007). Posterior Vitreous Detachment and Retinal Detachment after Cataract Surgery. Ophthalmology, 114(4), 692–697. https://doi.org/10.1016/j.ophtha.2006.08.045
16. Barry, P., Seal, D. V, Gettinby, G., Lees, F., Peterson, M., & Revie, C. W. (2006). ESCRS study of prophylaxis of postoperative endophthalmitis after cataract surgery. Preliminary report of principal results from a European multicenter study. Journal of Cataract and Refractive Surgery, 32(3), 407–410. https://doi.org/10.1016/j.jcrs.2006.02.021
17. Borasio, E., Mehta, J. S., & Maurino, V. (2006). Surgically induced astigmatism after phacoemulsification in eyes with mild to moderate corneal astigmatism. Temporal versus on-axis clear corneal incisions. Journal of Cataract and Refractive Surgery, 32(4), 565–572. https://doi.org/10.1016/j.jcrs.2005.12.104
18. Viestenz, A., Seitz, B., & Langenbucher, A. (2005). Evaluating the eye’s rotational stability during standard photography: Effect on determining the axial orientation of toric intraocular lenses. Journal of Cataract and Refractive Surgery, 31(3), 557–561. https://doi.org/10.1016/j.jcrs.2004.07.019
19. Krachmer, J. H., Mannis, M. J., & Holland, E. J. (2011). Cornea. Mosby/Elsevier.
20. Waring, G. O., Bourne, W. M., Edelhauser, H. F., & Kenyon, K. R. (1982). The Corneal Endothelium. Ophthalmology, 89(6), 531–590. https://doi.org/10.1016/S0161-6420(82)34746-6
21. Bourne, W. M. (2003). Biology of the corneal endothelium in health and disease. Eye (London, England), 17(8), 912–8. https://doi.org/10.1038/sj.eye.6700559
22. Wörner, C. H., Olguín, A., Ruíz-García, J. L., & Garzón-Jiménez, N. (2011). Cell Pattern in Adult Human Corneal Endothelium. PLoS ONE, 6(5), e19483. http://doi.org/10.1371/journal.pone.0019483
23. Yee, R. W., Matsuda, M., Schultz, R. O., & Edelhauser, H. F. (1985). Changes in the normal corneal endothelial cellular pattern as a function of age. Current Eye Research, 4(6), 671–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/4028790
24. Cavanagh, H. D., El-Agha, M. S., Petroll, W. M., & Jester, J. V. (2000). Specular microscopy, confocal microscopy, and ultrasound biomicroscopy: diagnostic tools of the past quarter century. Cornea, 19(5), 712–722.
25. Matsuda, M., Suda, T., & Manabe, R. (1984). Serial alterations in endothelial cell shape and pattern after intraocular surgery. American Journal of Ophthalmology, 98(3), 313–319.
26. Yang, R., Sha, X., Zeng, M., Tan, Y., Zheng, Y., & Fan, F. (2011). The influence of phacoemulsification on corneal endothelial cells at varying blood glucose levels. Eye Science, 26(2), 91–5. https://doi.org/10.3969/j.issn.1000-4432.2011.02.018
27. Hugod, M., Storr-Paulsen, A., Norregaard, J. C., Nicolini, J., Larsen, A. B., & Thulesen, J. (2011). Corneal endothelial cell changes associated with cataract surgery in patients with type 2 diabetes mellitus. Cornea, 30(7), 749–753. https://doi.org/10.1097/ICO.0b013e31820142d9
28. Yamazoe, K., Yamaguchi, T., Hotta, K., Satake, Y., Konomi, K., Den, S., & Shimazaki, J. (2011). Outcomes of cataract surgery in eyes with a low corneal endothelial cell density. Journal of Cataract and Refractive Surgery, 37(12), 2130–2136. https://doi.org/10.1016/j.jcrs.2011.05.039
29. Mahdy, M. A. E. S., Eid, M. Z., Mohammed, M. A.-B., Hafez, A., & Bhatia, J. (2012). Relationship between endothelial cell loss and microcoaxial phacoemulsification parameters in noncomplicated cataract surgery. Clinical Ophthalmology (Auckland, N.Z.). https://doi.org/10.2147/OPTH.S29865
30. Mathys, K. C., Cohen, K. L., & Armstrong, B. D. (2007). Determining factors for corneal endothelial cell loss by using bimanual microincision phacoemulsification and power modulation. Cornea, 26(9), 1049–1055. https://doi.org/10.1097/ICO.0b013e31813349b3
31. Vasavada, V., Vasavada, A. R., Vasavada, V. A., Srivastava, S., Gajjar, D. U., & Mehta, S. (2013). Incision integrity and postoperative outcomes after microcoaxial phacoemulsification performed using 2 incision-dependent systems. Journal of Cataract and Refractive Surgery, 39(4), 563–571. https://doi.org/10.1016/j.jcrs.2012.11.018
32. Mencucci, R., Ponchietti, C., Virgili, G., Giansanti, F., & Menchini, U. (2006). Corneal endothelial damage after cataract surgery: Microincision versus standard technique. Journal of Cataract and Refractive Surgery, 32(8), 1351–1354. https://doi.org/10.1016/j.jcrs.2006.02.070
33. Storr-Paulsen, A., Norregaard, J. C., Ahmed, S., Storr-Paulsen, T., & Pedersen, T. H. (2008). Endothelial cell damage after cataract surgery: Divide-and-conquer versus phaco-chop technique. Journal of Cataract and Refractive Surgery, 34(6), 996–1000. https://doi.org/10.1016/j.jcrs.2008.02.013
34. Zetterström, C., & Laurell, C. G. (1995). Comparison of endothelial cell loss and phacoemulsification energy during endocapsular phacoemulsification surgery. Journal of Cataract and Refractive Surgery, 21(1), 55–8. https://doi.org/10.1016/S0886-3350(13)80480-4
35. Hayashi, K., Hayashi, H., Nakao, F., & Hayashi, F. (1996). Risk factors for corneal endothelial injury during phacoemulsification. Journal of Cataract and Refractive Surgery, 22(8), 1079–84. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8915805
36. Park, J., Yum, H. R., Kim, M. S., Harrison, A. R., & Kim, E. C. (2013). Comparison of phaco-chop, divide-and-conquer, and stop-and-chop phaco techniques in microincision coaxial cataract surgery. Journal of Cataract and Refractive Surgery, 39(10), 1463–1469. https://doi.org/10.1016/j.jcrs.2013.04.033
37. Ho, J. W., & Afshari, N. A. (2015). Advances in cataract surgery: preserving the corneal endothelium. Current Opinion in Ophthalmology, 26(1), 22–27. https://doi.org/10.1097/ICU.0000000000000121
38. Rekas, M., Montés-Micó, R., Krix-Jachym, K., Kluś, A., Stankiewicz, A., & Ferrer-Blasco, T. (2009). Comparison of torsional and longitudinal modes using phacoemulsification parameters. Journal of Cataract and Refractive Surgery, 35(10), 1719–1724. https://doi.org/10.1016/j.jcrs.2009.04.047
39. Gonen, T., Sever, O., Horozoglu, F., Yasar, M., & Keskinbora, K. H. (2012, November). Endothelial cell loss: Biaxial small-incision torsional phacoemulsification versus biaxial small-incision longitudinal phacoemulsification. Journal of Cataract and Refractive Surgery, pp. 1918–24. https://doi.org/10.1016/j.jcrs.2012.06.051
40. Arshinoff, S. A., & Wong, E. (2003). Understanding, retaining, and removing dispersive and pseudodispersive ophthalmic viscosurgical devices. Journal of Cataract and Refractive Surgery, 29(12), 2318–2323. https://doi.org/10.1016/j.jcrs.2003.09.045
41. Bissen-Miyajima, H. (2008). Ophthalmic viscosurgical devices. Current Opinion in Ophthalmology, 19(1), 50–54. https://doi.org/10.1097/ICU.0b013e3282f14db0
42. Bissen-Miyajima, H. (2008). Ophthalmic viscosurgical devices. Current Opinion in Ophthalmology, 19(1), 50–54. https://doi.org/10.1097/ICU.0b013e3282f14db0
43. Arshinoff, S. A., & Norman, R. (2013). Tri-soft shell technique. Journal of Cataract and Refractive Surgery, 39(8), 1196–1203. https://doi.org/10.1016/j.jcrs.2013.06.011
44. Rosado-Adames, N., & Afshari, N. A. (2012). The changing fate of the corneal endothelium in cataract surgery. Current Opinion in Ophthalmology, 23(1), 3–6. https://doi.org/10.1097/ICU.0b013e32834e4b5f
45. Van den Bruel, A., Gailly, J., Devriese, S., Welton, N. J., Shortt, A. J., & Vrijens, F. (2011). The protective effect of ophthalmic viscoelastic devices on endothelial cell loss during cataract surgery: a meta-analysis using mixed treatment comparisons. The British Journal of Ophthalmology, 95(1), 5–10. https://doi.org/10.1136/bjo.2009.158360
46. Reuschel, A., Bogatsch, H., Barth, T., & Wiedemann, R. (2010). Comparison of endothelial changes and power settings between torsional and longitudinal phacoemulsification. Journal of Cataract and Refractive Surgery, 36(11), 1855–1861. https://doi.org/10.1016/j.jcrs.2010.06.060
47. Faramarzi, A., Javadi, M. A., Karimian, F., Jafarinasab, M. R., Baradaran-Rafii, A., Jafari, F., & Yaseri, M. (2011). Corneal endothelial cell loss during phacoemulsification: Bevel-up versus bevel-down phaco tip. Journal of Cataract and Refractive Surgery, 37(11), 1971–1976. https://doi.org/10.1016/j.jcrs.2011.05.034
48. Hwang, H. Bin, Lyu, B., Yim, H. Bin, & Lee, N. Y. (2015). Endothelial Cell Loss after Phacoemulsification according to Different Anterior Chamber Depths. Journal of Ophthalmology, 2015, 210716. https://doi.org/10.1155/2015/210716
49. Reuschel, A., Bogatsch, H., Oertel, N., & Wiedemann, R. (2015). Influence of anterior chamber depth, anterior chamber volume, axial length, and lens density on postoperative endothelial cell loss. Graefe’s Archive for Clinical and Experimental Ophthalmology, 253(5), 745–752. https://doi.org/10.1007/s00417-015-2934-1
50. Galvis V, Tello A, Delgado J, Gutierrez, A, Rodriguez L. Reproducibilidad de resultados del análisis endotelial del microscopio especular de contacto TOPCON sp-3000. Revista de la Sociedad Colombiana de Oftalmologia, 44(3),191-290.
51. Fakhry, M. A., & El Shazly, M. I. (2011). Torsional ultrasound mode versus combined torsional and conventional ultrasound mode phacoemulsification for eyes with hard cataract. Clinical Ophthalmology (Auckland, N.Z.), 5, 973–978. https://doi.org/10.2147/OPTH.S22879
52. Hwang, H. Bin, Lyu, B., Yim, H. Bin, & Lee, N. Y. (2015). Endothelial Cell Loss after Phacoemulsification according to Different Anterior Chamber Depths. Journal of Ophthalmology, 2015, 210716. https://doi.org/10.1155/2015/210716
53. Reuschel, A., Bogatsch, H., Oertel, N., & Wiedemann, R. (2015). Influence of anterior chamber depth, anterior chamber volume, axial length, and lens density on postoperative endothelial cell loss. Graefe’s Archive for Clinical and Experimental , 253(5), 745–752. https://doi.org/10.1007/s00417-015-2934-1
54. Lucena, D. R., Ribeiro, M. S. A., Messias, A., Bicas, H. E. A., Scott, I. U., & Jorge, R. (2011). Comparison of corneal changes after phacoemulsification using BSS Plus versus Lactated Ringer’s irrigating solution: a prospective randomised trial. The British Journal of Ophthalmology, 95(4), 485–489. https://doi.org/10.1136/bjo.2009.172502
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial-SinDerivadas 2.5 Colombia
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spa.fl_str_mv Bucaramanga (Santander, Colombia)
dc.publisher.grantor.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.spa.fl_str_mv Facultad Ciencias de la Salud
dc.publisher.program.spa.fl_str_mv Especialización en Oftalmología
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/1784/1/2017_Tesis_Angelica_Maria_Prada_Rocha.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/1784/2/2017_Licencia_Angelica_Maria_Prada_Rocha.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/1784/3/2017_Tesis_Angelica_Maria_Prada_Rocha.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/1784/4/2017_Licencia_Angelica_Maria_Prada_Rocha.pdf.jpg
bitstream.checksum.fl_str_mv abdf8cc1b2818a179c4adb4858e484b8
960c0eba7f291de2afb05bde0102d0ae
5e75aa2b62dd3c575b3be65b026fbbb9
6c96496d56c446caeff734b2716a0c63
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1814277675262410752
spelling Tello Hernández, AlejandroGalvis Ramírez, VirgilioPrada Rocha, Angélica Maríahttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001009125https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000552453https://scholar.google.es/citations?hl=es#user=puxZHKYAAAAJhttps://scholar.google.es/citations?hl=es&user=CZOaBDoAAAAJhttps://www.scopus.com/authid/detail.uri?authorId=6603664598https://www.scopus.com/authid/detail.uri?authorId=55963715000https://www.researchgate.net/profile/Virgilio_Galvis2020-06-26T20:01:41Z2020-06-26T20:01:41Z2017http://hdl.handle.net/20.500.12749/1784instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABObjetivos: En este estudio se pretendió identificar los factores asociados a pérdida de células endoteliales durante la extracción extracapsular de catarata por facoemulsificación. Materiales y métodos: Se realizó un estudio observacional, longitudinal, retrospectivo de las historias clínicas de pacientes sometidos a cirugía de catarata por facoemulsificación microincisional coaxial por un único cirujano (VGR) durante los meses de Enero 2016 a Junio 2016. Resultados: Se encontró una pérdida endotelial promedio de 6.4 +/- 10%. Como factores asociados a pérdida de células endoteliales se encontraron la clasificación más avanzada de la catarata (LOCS III), el tiempo total de ultrasonido y la energía acumulada disipada (CDE por su nombre en inglés cumulative dissipated energy). Conclusión: Es preferible realizar la facoemulsificación cuando la catarata no haya alcanzado los grados más avanzados (más allá de NC2 en la clasificación LOCS III), sobretodo en pacientes con endotelios alterados que por ende tienen mayor riesgo de descompensación corneal. Adicionalmente es preferible realizar técnicas quirúrgicas para la fragmentación del núcleo en las cuales se emplee menos CDE y tiempo total de ultrasonido.Resumen 1. Introducción 2. Marco Teórico 2.1. Catarata y clasificación 2.2. Cirugía de facoemulsificación 2.3. Descripción de la técnica quirúrgica 2.4. Complicaciones de la cirugía de catarata por facoemulsificación 2.5. Endotelio corneal 2.6. Microscopia especular 2.7. Factores de riesgo asociados a pérdida endotelial 2.7.1. Factores dependientes del paciente 2.7.2. Factores dependientes de la cirugía [Cirugía de Catarata Microincisional (CCM)] 2.7.2.1. Técnica quirúrgica 2.7.2.2. Tamaño de incisión 2.7.2.3. Energía total de facoemulsificación, tiempo de facoemulsificación, promedio de poder en posición 3 y CDE, asociación con tipo de movimiento ultrasónico y modulación del poder. 2.7.2.4. Viscoelástico 2.7.2.5. Tiempo de aspiración y volumen de irrigación 2.7.2.6. Pérdida de células endoteliales posterior a cirugía 3. Objetivos 3.1. Objetivo General 3.2. Objetivos Específicos 4. Metodología 4.1. Tipo de Estudio 4.2. Universo y Muestra 4.3. Población 4.3.1. Criterios de selección 4.3.1.1. Criterios de Inclusión 4.3.1.2. Criterios de Exclusión 4.4. Recolección de datos 4.5. Depuración de datos y análisis 4.6. Procedimiento quirúrgico 5. Consideraciones Éticas 6. Resultados 7. Discusión 8. Conclusiones 9. Referencias bibliográficasEspecializaciónObjectives: This study aimed to identify the factors associated with endothelial cell loss during extracapsular extraction of cataract by phacoemulsification. Materials and methods: An observational, longitudinal, retrospective study was carried out of the medical records of patients undergoing cataract surgery by coaxial microincisional phacoemulsification by a single surgeon (VGR) during the months of January 2016 to June 2016. Results: An average endothelial loss of 6.4 +/- 10% was found. Factors associated with endothelial cell loss were the most advanced cataract classification (LOCS III), total ultrasound time, and cumulative dissipated energy (CDE). Conclusion: It is preferable to perform phacoemulsification when the cataract has not reached the most advanced degrees (beyond NC2 in the LOCS III classification), especially in patients with altered endotheliums who therefore have a higher risk of corneal decompensation. Additionally, it is preferable to perform surgical techniques for the fragmentation of the nucleus in which less CDE and total ultrasound time are used.application/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-SinDerivadas 2.5 ColombiaDeterminación de los factores asociados a la pérdida de células endoteliales en cirugía de facoemulsificación de catarata microincisional coaxial en la Fundación Oftalmológica de SantanderDetermination of the factors associated with the loss of endothelial cells in phacoemulsification surgery of coaxial microincisional cataract at the Fundación Oftalmológica de SantanderEspecialista en OftalmologíaBucaramanga (Santander, Colombia)Universidad Autónoma de Bucaramanga UNABFacultad Ciencias de la SaludEspecialización en Oftalmologíainfo:eu-repo/semantics/masterThesisTesishttp://purl.org/redcol/resource_type/TMWaterfallPhacoemulsificationEndothelial cellsSurgeryMedicineOphthalmologyResearchEndothelial countLoss of endothelial cellsAssociated factorsCatarataFacoemulsificaciónCélulas endotelialesCirugíaMedicinaOftalmologíaInvestigacionesRecuento endotelialPérdida de células endotelialesFactores asociadosFundación Oftalmológica de SantanderPrada Rocha, Angélica María (2017). Determinación de los factores asociados a la pérdida de células endoteliales en cirugía de facoemulsificación de catarata microincisional coaxial en la Fundación Oftalmológica de Santander. Bucaramanga (Santander, Colombia) : Universidad Autónoma de Bucaramanga UNAB1. Pascolini, D., & Mariotti, S. P. (2012). Global estimates of visual impairment: 2010. The British Journal of Ophthalmology, 96(5), 614–8. https://doi.org/10.1136/bjophthalmol-2011-3005392. Chylack, L. T. (1993). The Lens Opacities Classification System III. Archives of Ophthalmology, 111(6), 831. https://doi.org/10.1001/archopht.1993.010900601190353. Campbell, C. (1999). Observations on the optical effects of a cataract. Journal of Cataract and Refractive Surgery, 25(7), 995–1003. https://doi.org/10.1016/S0886-3350(99)00084-X4. Spalton, D., & Koch, D. (2000). The constant evolution of cataract surgery. BMJ, 321(7272), 1304–1304. https://doi.org/10.1136/bmj.321.7272.1304.5. Minassian, D. C., Rosen, P., Dart, J. K., Reidy, A., Desai, P., Sidhu, M., … Wingate, N. (2001). Extracapsular cataract extraction compared with small incision surgery by phacoemulsification: a randomised trial. The British Journal of Ophthalmology, 85(7), 822–9. https://doi.org/10.1136/bjo.85.7.8226. Al Mahmood, A. M., Al-Swailem, S. A., & Behrens, A. Clear corneal incision in cataract surgery. Middle East African Journal of Ophthalmology, 21(1), 25–31. https://doi.org/10.4103/0974-9233.1240847. Steinert, R. F. (2010) p 704. Cataract surgery. Saunders.8. Cheng, J.-W., Wei, R.-L., Cai, J.-P., Xi, G.-L., Zhu, H., Li, Y., & Ma, X.-Y. (2007). Efficacy of different intraocular lens materials and optic edge designs in preventing posterior capsular opacification: a meta-analysis. American Journal of Ophthalmology, 143(3), 428–436. https://doi.org/10.1016/j.ajo.2006.11.0459. Zamvar, U., & Dhillon, B. (2005). Postoperative IOP prophylaxis practice following uncomplicated cataract surgery: a UK-wide consultant survey. BMC Ophthalmology, 5, 24. https://doi.org/10.1186/1471-2415-5-2410. Mamalis, N., Edelhauser, H. F., Dawson, D. G., Chew, J., LeBoyer, R. M., & Werner, L. (2006, February). Toxic anterior segment syndrome. Journal of Cataract and Refractive Surgery. https://doi.org/10.1016/j.jcrs.2006.01.06511. Berrocal, A. M., & Davis, J. L. (2002, September). Uveitis following intraocular surgery. Ophthalmology Clinics of North America. https://doi.org/10.1016/S0896-1549(02)00032-92-912. Pueringer, S. L., Hodge, D. O., & Erie, J. C. (2011). RISK OF LATE INTRAOCULAR LENS DISLOCATION AFTER CATARACT SURGERY, 1980–2009: A Population-Based Study. American Journal of Ophthalmology, 152(4), 618–623. http://doi.org/10.1016/j.ajo.2011.03.00913. Yavas, G. F., Ozturk, F., & Kusbeci, T. (2007). Preoperative topical indomethacin to prevent pseudophakic cystoid macular edema. Journal of Cataract and Refractive Surgery, 33(5), 804–807. https://doi.org/10.1016/j.jcrs.2007.01.03314. Yi, D. H., & Dana, M. R. (2002). Corneal edema after cataract surgery: incidence and etiology. Seminars in Ophthalmology, 17(3–4), 110–114. https://doi.org/10.1076/soph.17.3.110.1478315. Ripandelli, G., Coppé, A. M., Parisi, V., Olzi, D., Scassa, C., Chiaravalloti, A., & Stirpe, M. (2007). Posterior Vitreous Detachment and Retinal Detachment after Cataract Surgery. Ophthalmology, 114(4), 692–697. https://doi.org/10.1016/j.ophtha.2006.08.04516. Barry, P., Seal, D. V, Gettinby, G., Lees, F., Peterson, M., & Revie, C. W. (2006). ESCRS study of prophylaxis of postoperative endophthalmitis after cataract surgery. Preliminary report of principal results from a European multicenter study. Journal of Cataract and Refractive Surgery, 32(3), 407–410. https://doi.org/10.1016/j.jcrs.2006.02.02117. Borasio, E., Mehta, J. S., & Maurino, V. (2006). Surgically induced astigmatism after phacoemulsification in eyes with mild to moderate corneal astigmatism. Temporal versus on-axis clear corneal incisions. Journal of Cataract and Refractive Surgery, 32(4), 565–572. https://doi.org/10.1016/j.jcrs.2005.12.10418. Viestenz, A., Seitz, B., & Langenbucher, A. (2005). Evaluating the eye’s rotational stability during standard photography: Effect on determining the axial orientation of toric intraocular lenses. Journal of Cataract and Refractive Surgery, 31(3), 557–561. https://doi.org/10.1016/j.jcrs.2004.07.01919. Krachmer, J. H., Mannis, M. J., & Holland, E. J. (2011). Cornea. Mosby/Elsevier.20. Waring, G. O., Bourne, W. M., Edelhauser, H. F., & Kenyon, K. R. (1982). The Corneal Endothelium. Ophthalmology, 89(6), 531–590. https://doi.org/10.1016/S0161-6420(82)34746-621. Bourne, W. M. (2003). Biology of the corneal endothelium in health and disease. Eye (London, England), 17(8), 912–8. https://doi.org/10.1038/sj.eye.670055922. Wörner, C. H., Olguín, A., Ruíz-García, J. L., & Garzón-Jiménez, N. (2011). Cell Pattern in Adult Human Corneal Endothelium. PLoS ONE, 6(5), e19483. http://doi.org/10.1371/journal.pone.001948323. Yee, R. W., Matsuda, M., Schultz, R. O., & Edelhauser, H. F. (1985). Changes in the normal corneal endothelial cellular pattern as a function of age. Current Eye Research, 4(6), 671–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/402879024. Cavanagh, H. D., El-Agha, M. S., Petroll, W. M., & Jester, J. V. (2000). Specular microscopy, confocal microscopy, and ultrasound biomicroscopy: diagnostic tools of the past quarter century. Cornea, 19(5), 712–722.25. Matsuda, M., Suda, T., & Manabe, R. (1984). Serial alterations in endothelial cell shape and pattern after intraocular surgery. American Journal of Ophthalmology, 98(3), 313–319.26. Yang, R., Sha, X., Zeng, M., Tan, Y., Zheng, Y., & Fan, F. (2011). The influence of phacoemulsification on corneal endothelial cells at varying blood glucose levels. Eye Science, 26(2), 91–5. https://doi.org/10.3969/j.issn.1000-4432.2011.02.01827. Hugod, M., Storr-Paulsen, A., Norregaard, J. C., Nicolini, J., Larsen, A. B., & Thulesen, J. (2011). Corneal endothelial cell changes associated with cataract surgery in patients with type 2 diabetes mellitus. Cornea, 30(7), 749–753. https://doi.org/10.1097/ICO.0b013e31820142d928. Yamazoe, K., Yamaguchi, T., Hotta, K., Satake, Y., Konomi, K., Den, S., & Shimazaki, J. (2011). Outcomes of cataract surgery in eyes with a low corneal endothelial cell density. Journal of Cataract and Refractive Surgery, 37(12), 2130–2136. https://doi.org/10.1016/j.jcrs.2011.05.03929. Mahdy, M. A. E. S., Eid, M. Z., Mohammed, M. A.-B., Hafez, A., & Bhatia, J. (2012). Relationship between endothelial cell loss and microcoaxial phacoemulsification parameters in noncomplicated cataract surgery. Clinical Ophthalmology (Auckland, N.Z.). https://doi.org/10.2147/OPTH.S2986530. Mathys, K. C., Cohen, K. L., & Armstrong, B. D. (2007). Determining factors for corneal endothelial cell loss by using bimanual microincision phacoemulsification and power modulation. Cornea, 26(9), 1049–1055. https://doi.org/10.1097/ICO.0b013e31813349b331. Vasavada, V., Vasavada, A. R., Vasavada, V. A., Srivastava, S., Gajjar, D. U., & Mehta, S. (2013). Incision integrity and postoperative outcomes after microcoaxial phacoemulsification performed using 2 incision-dependent systems. Journal of Cataract and Refractive Surgery, 39(4), 563–571. https://doi.org/10.1016/j.jcrs.2012.11.01832. Mencucci, R., Ponchietti, C., Virgili, G., Giansanti, F., & Menchini, U. (2006). Corneal endothelial damage after cataract surgery: Microincision versus standard technique. Journal of Cataract and Refractive Surgery, 32(8), 1351–1354. https://doi.org/10.1016/j.jcrs.2006.02.07033. Storr-Paulsen, A., Norregaard, J. C., Ahmed, S., Storr-Paulsen, T., & Pedersen, T. H. (2008). Endothelial cell damage after cataract surgery: Divide-and-conquer versus phaco-chop technique. Journal of Cataract and Refractive Surgery, 34(6), 996–1000. https://doi.org/10.1016/j.jcrs.2008.02.01334. Zetterström, C., & Laurell, C. G. (1995). Comparison of endothelial cell loss and phacoemulsification energy during endocapsular phacoemulsification surgery. Journal of Cataract and Refractive Surgery, 21(1), 55–8. https://doi.org/10.1016/S0886-3350(13)80480-435. Hayashi, K., Hayashi, H., Nakao, F., & Hayashi, F. (1996). Risk factors for corneal endothelial injury during phacoemulsification. Journal of Cataract and Refractive Surgery, 22(8), 1079–84. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/891580536. Park, J., Yum, H. R., Kim, M. S., Harrison, A. R., & Kim, E. C. (2013). Comparison of phaco-chop, divide-and-conquer, and stop-and-chop phaco techniques in microincision coaxial cataract surgery. Journal of Cataract and Refractive Surgery, 39(10), 1463–1469. https://doi.org/10.1016/j.jcrs.2013.04.03337. Ho, J. W., & Afshari, N. A. (2015). Advances in cataract surgery: preserving the corneal endothelium. Current Opinion in Ophthalmology, 26(1), 22–27. https://doi.org/10.1097/ICU.000000000000012138. Rekas, M., Montés-Micó, R., Krix-Jachym, K., Kluś, A., Stankiewicz, A., & Ferrer-Blasco, T. (2009). Comparison of torsional and longitudinal modes using phacoemulsification parameters. Journal of Cataract and Refractive Surgery, 35(10), 1719–1724. https://doi.org/10.1016/j.jcrs.2009.04.04739. Gonen, T., Sever, O., Horozoglu, F., Yasar, M., & Keskinbora, K. H. (2012, November). Endothelial cell loss: Biaxial small-incision torsional phacoemulsification versus biaxial small-incision longitudinal phacoemulsification. Journal of Cataract and Refractive Surgery, pp. 1918–24. https://doi.org/10.1016/j.jcrs.2012.06.05140. Arshinoff, S. A., & Wong, E. (2003). Understanding, retaining, and removing dispersive and pseudodispersive ophthalmic viscosurgical devices. Journal of Cataract and Refractive Surgery, 29(12), 2318–2323. https://doi.org/10.1016/j.jcrs.2003.09.04541. Bissen-Miyajima, H. (2008). Ophthalmic viscosurgical devices. Current Opinion in Ophthalmology, 19(1), 50–54. https://doi.org/10.1097/ICU.0b013e3282f14db042. Bissen-Miyajima, H. (2008). Ophthalmic viscosurgical devices. Current Opinion in Ophthalmology, 19(1), 50–54. https://doi.org/10.1097/ICU.0b013e3282f14db043. Arshinoff, S. A., & Norman, R. (2013). Tri-soft shell technique. Journal of Cataract and Refractive Surgery, 39(8), 1196–1203. https://doi.org/10.1016/j.jcrs.2013.06.01144. Rosado-Adames, N., & Afshari, N. A. (2012). The changing fate of the corneal endothelium in cataract surgery. Current Opinion in Ophthalmology, 23(1), 3–6. https://doi.org/10.1097/ICU.0b013e32834e4b5f45. Van den Bruel, A., Gailly, J., Devriese, S., Welton, N. J., Shortt, A. J., & Vrijens, F. (2011). The protective effect of ophthalmic viscoelastic devices on endothelial cell loss during cataract surgery: a meta-analysis using mixed treatment comparisons. The British Journal of Ophthalmology, 95(1), 5–10. https://doi.org/10.1136/bjo.2009.15836046. Reuschel, A., Bogatsch, H., Barth, T., & Wiedemann, R. (2010). Comparison of endothelial changes and power settings between torsional and longitudinal phacoemulsification. Journal of Cataract and Refractive Surgery, 36(11), 1855–1861. https://doi.org/10.1016/j.jcrs.2010.06.06047. Faramarzi, A., Javadi, M. A., Karimian, F., Jafarinasab, M. R., Baradaran-Rafii, A., Jafari, F., & Yaseri, M. (2011). Corneal endothelial cell loss during phacoemulsification: Bevel-up versus bevel-down phaco tip. Journal of Cataract and Refractive Surgery, 37(11), 1971–1976. https://doi.org/10.1016/j.jcrs.2011.05.03448. Hwang, H. Bin, Lyu, B., Yim, H. Bin, & Lee, N. Y. (2015). Endothelial Cell Loss after Phacoemulsification according to Different Anterior Chamber Depths. Journal of Ophthalmology, 2015, 210716. https://doi.org/10.1155/2015/21071649. Reuschel, A., Bogatsch, H., Oertel, N., & Wiedemann, R. (2015). Influence of anterior chamber depth, anterior chamber volume, axial length, and lens density on postoperative endothelial cell loss. Graefe’s Archive for Clinical and Experimental Ophthalmology, 253(5), 745–752. https://doi.org/10.1007/s00417-015-2934-150. Galvis V, Tello A, Delgado J, Gutierrez, A, Rodriguez L. Reproducibilidad de resultados del análisis endotelial del microscopio especular de contacto TOPCON sp-3000. Revista de la Sociedad Colombiana de Oftalmologia, 44(3),191-290.51. Fakhry, M. A., & El Shazly, M. I. (2011). Torsional ultrasound mode versus combined torsional and conventional ultrasound mode phacoemulsification for eyes with hard cataract. Clinical Ophthalmology (Auckland, N.Z.), 5, 973–978. https://doi.org/10.2147/OPTH.S2287952. Hwang, H. Bin, Lyu, B., Yim, H. Bin, & Lee, N. Y. (2015). Endothelial Cell Loss after Phacoemulsification according to Different Anterior Chamber Depths. Journal of Ophthalmology, 2015, 210716. https://doi.org/10.1155/2015/21071653. Reuschel, A., Bogatsch, H., Oertel, N., & Wiedemann, R. (2015). Influence of anterior chamber depth, anterior chamber volume, axial length, and lens density on postoperative endothelial cell loss. Graefe’s Archive for Clinical and Experimental , 253(5), 745–752. https://doi.org/10.1007/s00417-015-2934-154. Lucena, D. R., Ribeiro, M. S. A., Messias, A., Bicas, H. E. A., Scott, I. U., & Jorge, R. (2011). Comparison of corneal changes after phacoemulsification using BSS Plus versus Lactated Ringer’s irrigating solution: a prospective randomised trial. The British Journal of Ophthalmology, 95(4), 485–489. https://doi.org/10.1136/bjo.2009.172502ORIGINAL2017_Tesis_Angelica_Maria_Prada_Rocha.pdf2017_Tesis_Angelica_Maria_Prada_Rocha.pdfTesisapplication/pdf779752https://repository.unab.edu.co/bitstream/20.500.12749/1784/1/2017_Tesis_Angelica_Maria_Prada_Rocha.pdfabdf8cc1b2818a179c4adb4858e484b8MD51open access2017_Licencia_Angelica_Maria_Prada_Rocha.pdf2017_Licencia_Angelica_Maria_Prada_Rocha.pdfLicenciaapplication/pdf739127https://repository.unab.edu.co/bitstream/20.500.12749/1784/2/2017_Licencia_Angelica_Maria_Prada_Rocha.pdf960c0eba7f291de2afb05bde0102d0aeMD52metadata only accessTHUMBNAIL2017_Tesis_Angelica_Maria_Prada_Rocha.pdf.jpg2017_Tesis_Angelica_Maria_Prada_Rocha.pdf.jpgIM Thumbnailimage/jpeg5993https://repository.unab.edu.co/bitstream/20.500.12749/1784/3/2017_Tesis_Angelica_Maria_Prada_Rocha.pdf.jpg5e75aa2b62dd3c575b3be65b026fbbb9MD53open access2017_Licencia_Angelica_Maria_Prada_Rocha.pdf.jpg2017_Licencia_Angelica_Maria_Prada_Rocha.pdf.jpgIM Thumbnailimage/jpeg11624https://repository.unab.edu.co/bitstream/20.500.12749/1784/4/2017_Licencia_Angelica_Maria_Prada_Rocha.pdf.jpg6c96496d56c446caeff734b2716a0c63MD54open access20.500.12749/1784oai:repository.unab.edu.co:20.500.12749/17842021-11-09 14:12:58.421open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.co