Desarrollo de un biomaterial a partir de peróxido de calcio encapsuladas en alginato como alternativa de prevención para la isquemia distal digital generada por vasopresores

El shock séptico, es una de las principales complicaciones que presentan los pacientes que padecen sepsis. Este corresponde a las alteraciones metabólicas, celulares, y circulatorias que aumentan el riesgo de mortalidad y producen hipotensión tisular grave, caracterizada clínicamente por la vasodila...

Full description

Autores:
García Rivero, Diana Cristina
Rodríguez Suárez, Jose Luis
Velandia Quintero, Yuri Tatiana
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/12427
Acceso en línea:
http://hdl.handle.net/20.500.12749/12427
Palabra clave:
Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Alginate
Calcium peroxide
Dressing
Ischemia
Oxygen release
Blood circulation disorders
Sepsis
Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Trastornos de la circulación sanguínea
Sepsis
Ingeniería clínica
Clinical engineering
Electrónica médica
Instrumentos y aparatos médicos
Alginato
Peróxido de calcio
Apósito
Isquemia
Liberación de oxígeno
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UNAB2_040fcccfbcd81a970b02b11dfe4a0b38
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/12427
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Desarrollo de un biomaterial a partir de peróxido de calcio encapsuladas en alginato como alternativa de prevención para la isquemia distal digital generada por vasopresores
dc.title.translated.spa.fl_str_mv Development of a biomaterial from calcium peroxide encapsulated in alginate as a preventive alternative for distal digital ischemia generated by vasopressors
title Desarrollo de un biomaterial a partir de peróxido de calcio encapsuladas en alginato como alternativa de prevención para la isquemia distal digital generada por vasopresores
spellingShingle Desarrollo de un biomaterial a partir de peróxido de calcio encapsuladas en alginato como alternativa de prevención para la isquemia distal digital generada por vasopresores
Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Alginate
Calcium peroxide
Dressing
Ischemia
Oxygen release
Blood circulation disorders
Sepsis
Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Trastornos de la circulación sanguínea
Sepsis
Ingeniería clínica
Clinical engineering
Electrónica médica
Instrumentos y aparatos médicos
Alginato
Peróxido de calcio
Apósito
Isquemia
Liberación de oxígeno
title_short Desarrollo de un biomaterial a partir de peróxido de calcio encapsuladas en alginato como alternativa de prevención para la isquemia distal digital generada por vasopresores
title_full Desarrollo de un biomaterial a partir de peróxido de calcio encapsuladas en alginato como alternativa de prevención para la isquemia distal digital generada por vasopresores
title_fullStr Desarrollo de un biomaterial a partir de peróxido de calcio encapsuladas en alginato como alternativa de prevención para la isquemia distal digital generada por vasopresores
title_full_unstemmed Desarrollo de un biomaterial a partir de peróxido de calcio encapsuladas en alginato como alternativa de prevención para la isquemia distal digital generada por vasopresores
title_sort Desarrollo de un biomaterial a partir de peróxido de calcio encapsuladas en alginato como alternativa de prevención para la isquemia distal digital generada por vasopresores
dc.creator.fl_str_mv García Rivero, Diana Cristina
Rodríguez Suárez, Jose Luis
Velandia Quintero, Yuri Tatiana
dc.contributor.advisor.spa.fl_str_mv Becerra Bayona, Silvia Milena
Solarte David, Víctor Alfonso
dc.contributor.author.spa.fl_str_mv García Rivero, Diana Cristina
Rodríguez Suárez, Jose Luis
Velandia Quintero, Yuri Tatiana
dc.contributor.cvlac.*.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001568861
dc.contributor.cvlac.none.fl_str_mv Becerra Bayona, Silvia Milena [0001568861]
dc.contributor.googlescholar.*.fl_str_mv https://scholar.google.es/citations?hl=es&user=5wr21EQAAAAJ
dc.contributor.googlescholar.none.fl_str_mv Becerra Bayona, Silvia Milena [5wr21EQAAAAJ]
dc.contributor.orcid.*.fl_str_mv https://orcid.org/0000-0002-4499-5885
dc.contributor.orcid.none.fl_str_mv Becerra Bayona, Silvia Milena [0000-0002-4499-5885]
dc.contributor.scopus.*.fl_str_mv https://www.scopus.com/authid/detail.uri?authorId=36522328100
dc.contributor.scopus.none.fl_str_mv Becerra Bayona, Silvia Milena [36522328100]
dc.contributor.researchgate.*.fl_str_mv https://www.researchgate.net/profile/Silvia_Becerra-Bayona
dc.contributor.researchgate.none.fl_str_mv Becerra Bayona, Silvia Milena [Silvia-Becerra-Bayona]
dc.contributor.apolounab.none.fl_str_mv Becerra Bayona, Silvia Milena [silvia-milena-becerra-bayona]
dc.contributor.linkedin.none.fl_str_mv Becerra Bayona, Silvia Milena [silvia-becerra-3174455a]
dc.subject.keywords.eng.fl_str_mv Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Alginate
Calcium peroxide
Dressing
Ischemia
Oxygen release
Blood circulation disorders
Sepsis
topic Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Alginate
Calcium peroxide
Dressing
Ischemia
Oxygen release
Blood circulation disorders
Sepsis
Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Trastornos de la circulación sanguínea
Sepsis
Ingeniería clínica
Clinical engineering
Electrónica médica
Instrumentos y aparatos médicos
Alginato
Peróxido de calcio
Apósito
Isquemia
Liberación de oxígeno
dc.subject.lemb.spa.fl_str_mv Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Trastornos de la circulación sanguínea
Sepsis
dc.subject.proposal.spa.fl_str_mv Ingeniería clínica
Clinical engineering
Electrónica médica
Instrumentos y aparatos médicos
Alginato
Peróxido de calcio
Apósito
Isquemia
Liberación de oxígeno
description El shock séptico, es una de las principales complicaciones que presentan los pacientes que padecen sepsis. Este corresponde a las alteraciones metabólicas, celulares, y circulatorias que aumentan el riesgo de mortalidad y producen hipotensión tisular grave, caracterizada clínicamente por la vasodilatación excesiva. Como tratamiento de esta condición, se hace uso de vasopresores tales como la norepinefrina, la cual lleva al aumento de la presión arterial media (PAM), con el fin de mantener un flujo arterial óptimo. No obstante, esto puede llevar a complicaciones como la pérdida de la micro perfusión periférica, generando así la isquemia, que en la mayoría de los pacientes se refleja en la necrosis distal digital. En la actualidad, este tipo de complicación se trata con la resección quirúrgica del tejido afectado, siendo los dedos generalmente los amputados. Sin embargo, no se cuenta con alternativas profilácticas que eviten la aparición de isquemia distal digital, y es necesario desarrollar alternativas terapéuticas que permitan evitarla. Por consiguiente, se fabricaron perlas de alginato, estandarizando su velocidad de agitación y concentración, para posteriormente encapsular en ellas peróxido de calcio (CPO) y evaluar tanto sus propiedades mecánicas por medio de pruebas de compresión, como su liberación de oxígeno por medio del método de desplazamiento de fluido. Los resultados obtenidos de la elaboración de las perlas de alginato demuestran que liberan entre 800 μL y 1200 μL de oxígeno en un periodo sostenido de 5 días, y que el aumento de la concentración de alginato es directamente proporcional a su módulo de elasticidad (entre 100 kPa y 150 kPa), además, al encapsular CPO, sus propiedades mecánicas se ven alteradas, aumentando los valores hasta cinco veces.
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-03-15T23:01:12Z
dc.date.available.none.fl_str_mv 2021-03-15T23:01:12Z
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.local.spa.fl_str_mv Trabajo de Grado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/12427
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UNAB
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unab.edu.co
url http://hdl.handle.net/20.500.12749/12427
identifier_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
reponame:Repositorio Institucional UNAB
repourl:https://repository.unab.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abdi, S. I. H., Ng, S. M., & Lim, J. O. (2011). An enzyme-modulated oxygen-producing microsystem for regenerative therapeutics. International Journal of Pharmaceutics, 409(1), 203-205. doi:10.1016/j.ijpharm.2011.02.041
Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6(2), 105-121. doi:10.1016/j.jare.2013.07.006
Akhavan-Kharazian, N., & Izadi-Vasafi, H. (2019). Preparation and characterization of chitosan/gelatin/nanocrystalline cellulose/calcium peroxide films for potential wound dressing applications. International Journal of Biological Macromolecules, 133, 881-891. doi:10.1016/j.ijbiomac.2019.04.159
Alemdar, N., Leijten, J., Camci-Unal, G., Hjortnaes, J., Ribas, J., Paul, A., . . . Khademhosseini, A. (2017). Oxygen-generating photo-cross-linkable hydrogels support cardiac progenitor cell survival by reducing hypoxia-induced necrosis. ACS Biomaterials Science & Engineering, 3(9), 1964-1971. doi:10.1021/acsbiomaterials.6b00109
Alayash, A. I. (2019). Mechanisms of toxicity and modulation of hemoglobin-based oxygen carriers. Shock (Augusta, Ga.), 52(1S Suppl 1), 41-49. doi:10.1097/SHK.0000000000001044
Amani, S., Shahrooz, R., Mortaz, E., Hobbenaghi, R., Mohammadi, R., & Baradar Khoshfetrat, A. (2019). Histomorphometric and immunohistochemical evaluation of angiogenesis in ischemia by tissue engineering in rats: Role of mast cells. Veterinary Research Forum : An International Quarterly Journal, 10(1), 23-30. doi:10.30466/vrf.2019.34311
Bairagi, A., Griffin, B., Tyack, Z., Vagenas, D., McPhail, S. M., & Kimble, R. (2019). Comparative effectiveness of biobrane®, RECELL® autologous skin cell suspension and silver dressings in partial thickness paediatric burns: BRACS randomised trial protocol. Burns & Trauma, 7, 33. doi:10.1186/s41038-019-0165-0
Baiula, M., Greco, R., Ferrazzano, L., Caligiana, A., Hoxha, K., Bandini, D., . . . Tolomelli, A. (2020). Integrin-mediated adhesive properties of neutrophils are reduced by hyperbaric oxygen therapy in patients with chronic non-healing wound. PloS One, 15(8), e0237746. doi:10.1371/journal.pone.0237746
Batra, J., & Srinivasan, S. (2019). Theranostics. New York, NY: Springer. doi:10.1007/978-1- 4939-9769-5 Retrieved from https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=592093
Bolaños Toro, O. F., Saldarriaga Rivera, L. M., Forero Gómez, J. E., & Alzate Piedrahita, J. A. (2018). Gangrena simétrica periférica asociada a norepinefrina en una paciente con urosepsis por escherichia coli. Revista Archivo Médico De Camagüey, 22(3), 341-348. Retrieved from http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1025- 02552018000300010&lng=es&nrm=iso&tlng=es
Bone, R. C., Balk, R. A., Cerra, F. B., Dellinger, R. P., Fein, A. M., Knaus, W. A., . . . Sibbald, W. J. (1992). Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. the ACCP/SCCM consensus conference committee. american college of chest physicians/society of critical care medicine. Chest, 101(6), 1644-1655. doi:10.1378/chest.101.6.1644
Borden, R. C., Goin, R. T., & Kao, C. (1997). Control of BTEX migration using a biologically enhanced permeable barrier. Groundwater Monitoring & Remediation, 17(1), 70-80. doi:10.1111/j.1745-6592.1997.tb01186.x
BUESO, A.', FURIÓ, C Y MANS, (1) IB V, & LH (2) S F P U V (3) Departament d9EnginyeriaQuímicai Metal-lúrgia. Universitat de Barcelona.Interpretación de las reacciones de oxidaci~n-reducci~pnor los estudiantes. primeros resultados
Cconislla Bello, J. L., Jacinto, C., Maza, I., Jahuira, M., Pando, A., Mayta, H., & Valderrama, A. (2016). Desarrollo de micropartículas de quitosano cuaternizado y entrecruzado para la adsorción de ácido desoxirribonucleico (ADN). Revista De La Sociedad Química Del Perú, 82(4), 467-479. Retrieved from http://www.scielo.org.pe/scielo.php?script=sci_abstract&pid=S1810- 634X2016000400008&lng=es&nrm=iso&tlng=es
Camci-Unal, G., Alemdar, N., Annabi, N., & Khademhosseini, A. (2013). Oxygen releasing biomaterials for tissue engineering. Polymer International, 62(6), 843-848. doi:10.1002/pi.4502
Cassidy, D. P., & Irvine, R. L. (1999). Use of calcium peroxide to provide oxygen for contaminant biodegradation in a saturated soil. Journal of hazardous materials, 69(1), 25-39.
Chan, E., Lim, T., Voo, W., Pogaku, R., Tey, B. T., & Zhang, Z. (2011). Effect of formulation of alginate beads on their mechanical behavior and stiffness. Particuology, 9(3), 228-234. doi:10.1016/j.partic.2010.12.002
Chandra, P. K., Ross, C. L., Smith, L. C., Jeong, S. S., Kim, J., Yoo, J. J., & Harrison, B. S. (2015). Peroxide-based oxygen generating topical wound dressing for enhancing healing of dermal wounds. Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society, 23(6), 830-841. doi:10.1111/wrr.12324
Cho, S. H., Lim, S. M., Han, D. K., Yuk, S. H., Im, G. I., & Lee, J. H. (2009). Time-dependent alginate/polyvinyl alcohol hydrogels as injectable cell carriers. Journal of Biomaterials Science. Polymer Edition, 20(7-8), 863-876. doi:10.1163/156856209X444312
Daroca-Pérez, R., & Carrascosa, M. F. (2017). Digital necrosis: A potential risk of high-dose norepinephrine. Therapeutic Advances in Drug Safety, 8(8), 259-261. doi:10.1177/2042098617712669
Diridollou, S., Vabre, V., Berson, M., Vaillant, L., Black, D., Lagarde, J. M., Grégoire, J. M., Gall, Y., & Patat, F. (2001). Skin ageing: Changes of physical properties of human skin in vivo. International Journal of Cosmetic Science, 23(6), 353–362. https://doi.org/10.1046/j.0412- 5463.2001.00105.x
Dharupaneedi, S. P., Nataraj, S. K., Nadagouda, M., Reddy, K. R., Shukla, S. S., & Aminabhavi, T. M. (2019). Membrane-based separation of potential emerging pollutants. Separation and Purification Technology, 210, 850-866. doi:10.1016/j.seppur.2018.09.003
Esmaeili, J., Rezaei, F. S., Beram, F. M., & Barati, A. (2020). Integration of microbubbles with biomaterials in tissue engineering for pharmaceutical purposes. Heliyon, 6(6), e04189. https://doi.org/10.1016/j.heliyon.2020.e04189
Fan, Z., Xu, Z., Niu, H., Gao, N., Guan, Y., Li, C., . . . Guan, J. (2018). An injectable oxygen release system to augment cell survival and promote cardiac repair following myocardial infarction. Scientific Reports, 8(1), 1371-22. doi:10.1038/s41598-018-19906-w
Fathollahipour, S., Patil, P. S., & Leipzig, N. D. (2018). Oxygen regulation in development: Lessons from embryogenesis towards tissue engineering. Cells, Tissues, Organs, 205(5-6), 350- 371. doi:10.1159/000493162
Fischer, B. H. (1969). Topical hyperbaric oxygen treatment of pressure sores and skin ulcers. Lancet (London, England), 2(7617), 405-409. doi:10.1016/s0140-6736(69)90113-5
Gaikowski, M. P., Rach, J. J., & Ramsay, R. T. (1999). Acute toxicity of hydrogen peroxide treatments to selected lifestages of cold-, cool-, and warmwater fish. Aquaculture, 178(3), 191- 207. doi:10.1016/S0044-8486(99)00123-4
Gattás‐Asfura, K. M., Fraker, C. A., & Stabler, C. L. (2012). Perfluorinated alginate for cellular 62 encapsulation. Journal of Biomedical Materials Research. Part A, 100A(8), 1963-1971. doi:10.1002/jbm.a.34052
Generaal, J. D., Lansdorp, C. A., Boonstra, O., van Leeuwen, B. L., Vanhauten, H. A. M., Stevenson, M. G., & Been, L. B. (2020). Hyperbaric oxygen therapy for radiation-induced tissue injury following sarcoma treatment: A retrospective analysis of a dutch cohort. PloS One, 15(6), e0234419. doi:10.1371/journal.pone.0234419
Goh, F., Gross, J. D., Simpson, N. E., & Sambanis, A. (2010). Limited beneficial effects of perfluorocarbon emulsions on encapsulated cells in culture: Experimental and modeling studies. Journal of Biotechnology, 150(2), 232-239. doi:10.1016/j.jbiotec.2010.08.013
Goi, A., Viisimaa, M., Trapido, M., & Munter, R. (2011). Polychlorinated biphenyls-containing electrical insulating oil contaminated soil treatment with calcium and magnesium peroxides. Chemosphere (Oxford), 82(8), 1196-1201. doi:10.1016/j.chemosphere.2010.11.053
Goi, A., Viisimaa, M., Trapido, M., & Munter, R. (2011). Polychlorinated biphenyls-containing electrical insulating oil contaminated soil treatment with calcium and magnesium peroxides. Chemosphere (Oxford), 82(8), 1196-1201. doi:10.1016/j.chemosphere.2010.11.053x
Gordillo, G. M., & Sen, C. K. (2009). Evidence-based recommendations for the use of topical oxygen therapy in the treatment of lower extremity wounds. The International Journal of Lower Extremity Wounds, 8(2), 105-111. doi:10.1177/1534734609335149
Greenwood, D. (2010). Lois N. magner, A history of infectious diseases and the microbial world Oxford Academic. doi:10.1093/shm/hkq081 Retrieved from https://academic.oup.com/shm/article/23/3/700/1720925
Hadanny, A., Rittblat, M., Bitterman, M., May-Raz, I., Suzin, G., Boussi-Gross, R., . . . Efrati, S. 63 (2020). Hyperbaric oxygen therapy improves neurocognitive functions of post-stroke patients - a retrospective analysis. Restorative Neurology and Neuroscience, 38(1), 93-107. doi:10.3233/RNN-19095
Harrison, B. S., Eberli, D., Lee, S. J., Atala, A., & Yoo, J. J. (2007). Oxygen producing biomaterials for tissue regeneration. Biomaterials, 28(31), 4628-4634. doi:10.1016/j.biomaterials.2007.07.003
Heinrich, H., & , H. a. (1985) Lieber die berührung fester elastischer körper
Ignacio, D. R., Pavot, A. P., Azer, R. N., & Wisotsky, L. (1985). Topical oxygen therapy treatment of extensive leg and foot ulcers. Journal of the American Podiatric Medical Association, 75(4), 196-199. doi:10.7547/87507315-75-4-196
Jansman, M. M. T., & Hosta-Rigau, L. (2018). Recent and prominent examples of nano- and microarchitectures as hemoglobin-based oxygen carriers doi:https://doi.org/10.1016/j.cis.2018.08.006
Johnson, D., & Cooper, J. (2019). Retinal artery and vein occlusions successfully treated with hyperbaric oxygen. Clinical Practice and Cases in Emergency Medicine, 3(4), 338-340. doi:10.5811/cpcem.2019.7.43017
Kalliainen, L. K., Gordillo, G. M., Schlanger, R., & Sen, C. K. (2003). Topical oxygen as an adjunct to wound healing: A clinical case series. Pathophysiology: The Official Journal of the International Society for Pathophysiology, 9(2), 81-87. doi:10.1016/s0928-4680(02)00079-2
Kang, J. I., Park, K. M., & Park, K. D. (2019). Oxygen-generating alginate hydrogels as a bioactive acellular matrix for facilitating wound healing. Journal of Industrial and Engineering Chemistry (Seoul, Korea), 69, 397-404. doi:10.1016/j.jiec.2018.09.048
Kashyap, N., Kumar, N., & Kumar, M. N. V. Ravi. (2005). Hydrogels for pharmaceutical and 64 biomedical applications. Critical Reviews in Therapeutic Drug Carrier Systems, 22(2), 107-149. doi:10.1615/critrevtherdrugcarriersyst.v22.i2.10
Kaygusuz, H., & Erim, F. B. (2013). Alginate/BSA/montmorillonite composites with enhanced protein entrapment and controlled release efficiency. Reactive and Functional Polymers, 73(11), 1420-1425. doi:10.1016/j.reactfunctpolym.2013.07.014
Kaygusuz, H., Uysal, M., Adımcılar, V., & Erim, F. B. (2015). Natural alginate biopolymer montmorillonite clay composites for vitamin B2 delivery: Journal of Bioactive and Compatible Polymers, doi:10.1177/0883911514557014
Kaygusuz, H., Evingür, G. A., Pekcan, Ö, von Klitzing, R., & Erim, F. B. (2016). Surfactant and metal ion effects on the mechanical properties of alginate hydrogels. International Journal of Biological Macromolecules, 92, 220-224. doi:10.1016/j.ijbiomac.2016.07.004
Khan, F., Singh, K., & Friedman, M. T. (2020). Artificial blood: The history and current perspectives of blood substitutes. Discoveries (Craiova, Romania), 8(1), e104. doi:10.15190/d.2020.1
Kershen, R. T., Fefer, S. D., & Atala, A. (2000). Tissue-engineered therapies for the treatment of urinary incontinence and vesicoureteral reflux. World Journal of Urology, 18(1), 51-55. doi:10.1007/pl00007072
Kim, J. W., & Oh, M. M. (2013). Endoscopic treatment of vesicoureteral reflux in pediatric patients. Korean Journal of Pediatrics, 56(4), 145-150. doi:10.3345/kjp.2013.56.4.145
Kohlert, S., McLean, L., Scarvelis, D., & Thompson, C. (2019). A case report of severe nasal ischemia from cold agglutinin disease and a novel treatment protocol including HBOT. Journal of Otolaryngology-Head and Neck Surgery, 48(1), 52. doi:10.1186/s40463-019-0369-0
Kong, H., Lee, K. Y., & Mooney, D. J. (2002). Decoupling the dependence of 65 rheological/mechanical properties of hydrogels from solids concentration. Polymer, 43(23), 6239-6246. doi:10.1016/S0032-3861(02)00559-1
Lee, C., Le Thanh, T., Kim, E., Gong, J., Chang, Y., & Chang, Y. (2014). Fabrication of novel oxygen-releasing alginate beads as an efficient oxygen carrier for the enhancement of aerobic bioremediation of 1,4-dioxane contaminated groundwater. Bioresource Technology, 171, 59-65. doi:10.1016/j.biortech.2014.08.039
Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in Polymer Science, 37(1), 106-126. doi:10.1016/j.progpolymsci.2011.06.003
Lin, C., & Metters, A. T. (2006). Hydrogels in controlled release formulations: Network design and mathematical modeling. Advanced Drug Delivery Reviews, 58(12-13), 1379-1408. doi:10.1016/j.addr.2006.09.004
Liao, J., Meng-Jun Wu, Yan-Dong Mu, Li, P., & Go, J. (2018). Impact of hyperbaric oxygen on tissue healing around dental implants in beagles Retrieved from http://ezproxy.aure.unab.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true &db=edb&AN=133050006&lang=es&site=eds-live
León, A. L., Hoyos, N. A., Barrera, L. I., De La Rosa, G., Dennis, R., Dueñas, C., . . . Jaimes, F. A. (2013). Clinical course of sepsis, severe sepsis, and septic shock in a cohort of infected patients from ten colombian hospitals. BMC Infectious Diseases, 13, 345. doi:10.1186/1471- 2334-13-345
Lu, Z., Jiang, X., Chen, M., Feng, L., & Kang, Y. J. (2019). An oxygen-releasing device to improve the survival of mesenchymal stem cells in tissue engineering. Biofabrication, 11(4), 045012. doi:10.1088/1758-5090/ab332a
Ma, C., Kuzma, M. L., Bai, X., & Yang, J. (2019). Biomaterial‐Based metabolic regulation in 66 regenerative engineering. Advanced Science, 6(19), 1900819-n/a. doi:10.1002/advs.201900819 Majno, G. (1991). The ancient riddle of sigma eta psi iota sigma (sepsis). The Journal of Infectious Diseases, 163(5), 937-945. doi:10.1093/infdis/163.5.937
Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P., & Malik, A. B. (2014). Reactive oxygen species in inflammation and tissue injury. Antioxidants & Redox Signaling, 20(7), 1126-1167. doi:10.1089/ars.2012.5149
Murphy, E. C., & Friedman, A. J. (2019). Hydrogen peroxide and cutaneous biology: Translational applications, benefits, and risks. Journal of the American Academy of Dermatology, 81(6), 1379- 1386. doi:10.1016/j.jaad.2019.05.030
Nataraj, M., Maiya, A. G., Karkada, G., Hande, M., Rodrigues, G. S., Shenoy, R., & Prasad, S. S. (2019). Application of topical oxygen therapy in healing dynamics of diabetic foot ulcers - A systematic review. The Review of Diabetic Studies, 15(1), 74-82. doi:10.1900/RDS.2019.15.74
Neira-Sanchez, E. R., & Málaga, G. (2016). Sepsis-3 y las nuevas definiciones, ¿es tiempo de abandonar SIRS? Acta Médica Peruana, 33(3), 217-222. doi:10.35663/amp.2016.333.115
Nishiguchi, A., & Taguchi, T. (2020). Sustained-immunostimulatory nanocellulose scaffold to enhance vaccine efficacy. Journal of Biomedical Materials Research Part A, 108(5), 1159- 1170. doi:https://doi.org/10.1002/jbm.a.36890
Northup, A., & Cassidy, D. (2008). Calcium peroxide (CaO2) for use in modified fenton chemistry. Journal of Hazardous Materials, 152(3), 1164-1170. doi:10.1016/j.jhazmat.2007.07.096
Lam, G., Fontaine, R., Ross, F. L., & Chiu, E. S. (2017). Hyperbaric oxygen therapy: Exploring the clinical evidence. Advances in Skin & Wound Care, 30(4), 181-190.
Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in Polymer Science, 37(1), 106-126. doi:10.1016/j.progpolymsci.2011.06.003
O'Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today (Kidlington, England), 14(3), 88-95. doi:10.1016/s1369-7021(11)70058-x
Odencrantz, J. E., Johnson, J. G., & Koenigsberg, S. S. (1996). Enhanced intrinsic bioremediation of hydrocarbons using an oxygen‐releasing compound. Remediation (New York, N.Y.), 6(4), 99- 114. doi:10.1002/rem.3440060408
Rhee, C., Gohil, S., & Klompas, M. (2014). Regulatory mandates for sepsis care--reasons for caution. The New England Journal of Medicine, 370(18), 1673-1676. doi:10.1056/NEJMp1400276
Rhodes, A., Evans, L. E., Alhazzani, W., Levy, M. M., Antonelli, M., Ferrer, R., . . . Dellinger, R. P. (2017). Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. Intensive Care Medicine, 43(3), 304-377. doi:10.1007/s00134-017-4683-6
Rinaudo, M. (1992). On the abnormal exponents aν and aD in mark houwink type equations for wormLike chain polysaccharides. Polymer Bulletin, 27(5), 585-589. doi:10.1007/BF00300608
Royal Society of Chemistry (Great Britain).RSC advances.
Rudrashish Haldar, Devendra Gupta, Shweta Chitranshi, Manish Kumar Singh, & Sumit Sachan. (2019). Artificial blood: A futuristic dimension of modern day transfusion sciences. Cardiovascular & Hematological Agents in Medicinal Chemistry, 17(1), 11-16. doi:10.2174/1871525717666190617120045
Sayadi, L. R., Banyard, D. A., Ziegler, M. E., Obagi, Z., Prussak, J., Klopfer, M. J., . . . Widgerow, A. D. (2018). Topical oxygen therapy & micro/nanobubbles: A new modality for tissue oxygen delivery. International Wound Journal, 15(3), 363-374. doi:10.1111/iwj.12873
Sculean, A., Windisch, P., Chiantella, G. C., Donos, N., Brecx, M., & Reich, E. (2001). Treatment of intrabony defects with enamel matrix proteins and guided tissue regeneration. A prospective controlled clinical study. Journal of Clinical Periodontology, 28(5), 397-403. doi:10.1034/j.1600-051x.2001.028005397.x
Simons, M., Gretton, S., Silkstone, G. G. A., Rajagopal, B. S., Allen-Baume, V., Syrett, N., . . . Cooper, C. E. (2018). Comparison of the oxidative reactivity of recombinant fetal and adult human hemoglobin: Implications for the design of hemoglobin-based oxygen carriers. Bioscience Reports, 38(4) doi:10.1042/BSR20180370
Steg, H., Buizer, A. T., Woudstra, W., Veldhuizen, A. G., Bulstra, S. K., Grijpma, D. W., & Kuijer, R. (2015). Control of oxygen release from peroxides using polymers. Journal of Materials Science : Materials in Medicine, 26(7), 1-4. doi:10.1007/s10856-015-5542-z
Paprocki, J., Pawłowska, M., Sutkowy, P., Piechocki, J., & Woźniak, A. (2020). Evaluation of oxidative stress in patients with difficult-to-heal skin wounds treated with hyperbaric oxygen. Oxidative Medicine and Cellular Longevity, 2020, 1-8. doi:10.1155/2020/1835352
Pacheco Pacori, Y. D., & García Duque, O. (2018). Necrosis isquémica de todos los dedos y ortejos después del uso de norepinefrina en paciente ginecológico. Anales De La Facultad De Medicina, 79(2), 149. doi:10.15381/anales.v79i2.14942
Perez-Vidal, C., Gracia, L., Carmona, C., Alorda, B., & Salinas, A. (2017). Wireless transmission of biosignals for hyperbaric chamber applications. PloS One, 12(3), e0172768. doi:10.1371/journal.pone.0172768
Sayadi, L. R., Banyard, D. A., Ziegler, M. E., Obagi, Z., Prussak, J., Klopfer, M. J., . . . Widgerow, A. D. (2018). Topical oxygen therapy & micro/nanobubbles: A new modality for tissue oxygen delivery. International Wound Journal, 15(3), 363-374. doi:10.1111/iwj.12873
Schäfer, M., & Werner, S. (2011). The cornified envelope: A first line of defense against reactive oxygen species. Journal of Investigative Dermatology, 131(7), 1409-1411. doi:10.1038/jid.2011.119
Seyedmahmoud, R., Çelebi-Saltik, B., Barros, N., Nasiri, R., Banton, E., ShamLoo, A., . . . Ahadian, S. (2019). Three-dimensional bioprinting of functional skeletal muscle tissue using gelatin methacryloyl-alginate bioinks. Micromachines, 10(10), 679. doi:10.3390/mi10100679
Singer, M., Deutschman, C. S., Seymour, C. W., Shankar-Hari, M., Annane, D., Bauer, M., . . . Angus, D. C. (2016). The third international consensus definitions for sepsis and septic shock (sepsis-3). Jama, 315(8), 801-810. doi:10.1001/jama.2016.0287
Soon-Shiong, P., Heintz, R. E., Merideth, N., Yao, Q. X., Yao, Z., Zheng, T. I. A. N. L. I., ... & Harris, M. (1994). Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet (London, England), 343(8903), 950.
Tønnesen, H. H., & Karlsen, J. (2002). Alginate in drug delivery systems. Drug Development and Industrial Pharmacy, 28(6), 621-630. doi:10.1081/DDC-120003853
Valenzuela Sánchez, F., Bohollo de Austria, R., Monge García, I., & Gil Cano, A. (2005). Shock séptico. Medicina Intensiva, 29(3), 192-200. doi:10.1016/S0210-5691(05)74227-3
Vesper, S. J., Murdoch, L. C., Hayes, S., & Davis-Hoover, W. J. (1994). Solid oxygen source for bioremediation in subsurface soils. Journal of Hazardous Materials, 36(3), 265-274. doi:10.1016/0304-3894(94)85019-4
Vinkel, J., Holm, N. F. R., Jakobsen, J. C., & Hyldegaard, O. (2020). Effects of adding adjunctive 70 hyperbaric oxygen therapy to standard wound care for diabetic foot ulcers: A protocol for a systematic review with meta-analysis and trial sequential analysis. BMJ Open, 10(6), e031708. doi:10.1136/bmjopen-2019-031708
Wang, C. X., Cowen, C., Zhang, Z., & Thomas, C. R. (2005). High-speed compression of single alginate microspheres. Chemical Engineering Science, 60(23), 6649-6657. doi:10.1016/j.ces.2005.05.052
Wang, M., & Tang, T. (2018). Surface treatment strategies to combat implant-related infection from the beginning. Journal of Orthopaedic Translation, 17, 42-54. doi:10.1016/j.jot.2018.09.001
Ward, C. L., Corona, B. T., Yoo, J. J., Harrison, B. S., & Christ, G. J. (2013). Oxygen generating biomaterials preserve skeletal muscle homeostasis under hypoxic and ischemic conditions. PloS One, 8(8), e72485. doi:10.1371/journal.pone.0072485
Wee, n., & Gombotz, n. (1998). Protein release from alginate matrices. Advanced Drug Delivery Reviews, 31(3), 267-285. doi:10.1016/s0169-409x(97)00124-5
White, D. M., Irvine, R. L., & Woolard, C. R. (1998). The use of solid peroxides to stimulate growth of aerobic microbes in tundra. Journal of Hazardous Materials, 57(1), 71-78. doi:10.1016/S0304-3894(97)00065-4
Wolanov, Y., Prikhodchenko, P. V., Medvedev, A. G., Pedahzur, R., & Lev, O. (2013). Zinc dioxide nanoparticulates: A hydrogen peroxide source at moderate pH. Environmental Science & Technology, 47(15), 8769-8774. doi:10.1021/es4020629
WHO (World Health Organization). (2018). Sepsis . Retrieved from https://www.who.int/newsroom/ fact-sheets/detail/sepsis
Yamamoto, N., Oyaizu, T., Enomoto, M., Horie, M., Yuasa, M., Okawa, A., & Yagishita, K. 71 (2020). VEGF and bFGF induction by nitric oxide is associated with hyperbaric oxygen-induced angiogenesis and muscle regeneration Retrieved from http://ezproxy.aure.unab.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct= true&db=edb&AN=141771922&lang=es&site=eds-live
Yang, Y., Di Pasqua, A. J., He, W., Tsai, T., Sueda, K., Zhang, Y., & Jay, M. (2013). Preparation of alginate beads containing a prodrug of diethylenetriaminepentaacetic acid. Carbohydrate Polymers, 92(2), 1915-1920. doi:10.1016/j.carbpol.2012.11.071
Zhang, N., Wei, M., & Ma, Q. (2019). Nanomedicines: A potential treatment for blood disorder diseases. Frontiers in Bioengineering and Biotechnology, 7, 369. doi:10.3389/fbioe.2019.0036
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial-SinDerivadas 2.5 Colombia
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Colombia
dc.coverage.campus.spa.fl_str_mv UNAB Campus Bucaramanga
dc.publisher.grantor.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.spa.fl_str_mv Facultad Ingeniería
dc.publisher.program.spa.fl_str_mv Pregrado Ingeniería Biomédica
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/12427/1/2020_Tesis_Diana_Cristina_Garcia_Rivero.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/12427/2/2020_Licencia_Diana_Cristina_Garcia_Rivero.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/12427/3/license.txt
https://repository.unab.edu.co/bitstream/20.500.12749/12427/4/2020_Tesis_Diana_Cristina_Garcia_Rivero.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/12427/5/2020_Licencia_Diana_Cristina_Garcia_Rivero.pdf.jpg
bitstream.checksum.fl_str_mv 57341f4464f2d4110019a2cc87ce5728
3c39d85b7b73319d4879f00e87fef4dd
8a4605be74aa9ea9d79846c1fba20a33
18d43e507939e889396f00e673cadb08
cd52f35eb680e09a61e04749d0a65f86
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1814277676934889472
spelling Becerra Bayona, Silvia Milenaf59fde3b-924f-4fcc-96e9-5fd6250b2dae-1Solarte David, Víctor Alfonso54590e96-eda3-4b43-9ffa-14bd35ed7d08-1García Rivero, Diana Cristina46f1227e-7264-4132-875d-fdbc3ce7d8ed-1Rodríguez Suárez, Jose Luisde53fa4d-991c-45c3-b95b-464661d97b49-1Velandia Quintero, Yuri Tatiana39b65f51-6dbe-4ef9-a1ce-bfb7db0dfb02-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001568861Becerra Bayona, Silvia Milena [0001568861]https://scholar.google.es/citations?hl=es&user=5wr21EQAAAAJBecerra Bayona, Silvia Milena [5wr21EQAAAAJ]https://orcid.org/0000-0002-4499-5885Becerra Bayona, Silvia Milena [0000-0002-4499-5885]https://www.scopus.com/authid/detail.uri?authorId=36522328100Becerra Bayona, Silvia Milena [36522328100]https://www.researchgate.net/profile/Silvia_Becerra-BayonaBecerra Bayona, Silvia Milena [Silvia-Becerra-Bayona]Becerra Bayona, Silvia Milena [silvia-milena-becerra-bayona]Becerra Bayona, Silvia Milena [silvia-becerra-3174455a]ColombiaUNAB Campus Bucaramanga2021-03-15T23:01:12Z2021-03-15T23:01:12Z2020http://hdl.handle.net/20.500.12749/12427instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coEl shock séptico, es una de las principales complicaciones que presentan los pacientes que padecen sepsis. Este corresponde a las alteraciones metabólicas, celulares, y circulatorias que aumentan el riesgo de mortalidad y producen hipotensión tisular grave, caracterizada clínicamente por la vasodilatación excesiva. Como tratamiento de esta condición, se hace uso de vasopresores tales como la norepinefrina, la cual lleva al aumento de la presión arterial media (PAM), con el fin de mantener un flujo arterial óptimo. No obstante, esto puede llevar a complicaciones como la pérdida de la micro perfusión periférica, generando así la isquemia, que en la mayoría de los pacientes se refleja en la necrosis distal digital. En la actualidad, este tipo de complicación se trata con la resección quirúrgica del tejido afectado, siendo los dedos generalmente los amputados. Sin embargo, no se cuenta con alternativas profilácticas que eviten la aparición de isquemia distal digital, y es necesario desarrollar alternativas terapéuticas que permitan evitarla. Por consiguiente, se fabricaron perlas de alginato, estandarizando su velocidad de agitación y concentración, para posteriormente encapsular en ellas peróxido de calcio (CPO) y evaluar tanto sus propiedades mecánicas por medio de pruebas de compresión, como su liberación de oxígeno por medio del método de desplazamiento de fluido. Los resultados obtenidos de la elaboración de las perlas de alginato demuestran que liberan entre 800 μL y 1200 μL de oxígeno en un periodo sostenido de 5 días, y que el aumento de la concentración de alginato es directamente proporcional a su módulo de elasticidad (entre 100 kPa y 150 kPa), además, al encapsular CPO, sus propiedades mecánicas se ven alteradas, aumentando los valores hasta cinco veces.Capítulo 1. Problema u Oportunidad………………………………………………………9 1.1 Introducción………………………………………………………………….9 1.2 Problemática…………………………………………………………………9 1.3 Justificación………………………………………………………………….10 1.4 Pregunta problema…………………………………………………………...11 1.5 Objetivo general……………………………………………………………...11 1.6 Objetivos específicos………………………………………………………...12 1.7 Limitaciones y delimitaciones……………………………………………….12 Capítulo 2. Marco teórico………………………………………………………………….13 2.1 Sepsis………………………………………………………………………...13 2.2 Terapias de oxígeno………………………………………………………….16 2.2.1 Terapia de oxígeno tópica……………………………………………….17 2.2.2 Agentes liberadores de oxígeno…………………………………………17 2.2.3 Peróxido de calcio……………………………………………………….19 2.3 Sistemas de encapsulación para materiales generadores de oxígeno………..21 2.3.1 Andamios………………………………………………………………...21 2.3.2 Hidrogeles………………………………………………………………..22 2.3.3 Hidrogeles de alginato…………………………………………………………...23 2.4 Propiedades mecánicas………………………………………………………26 Capítulo 3. Estado del Arte………………………………………………………………...27 Capítulo 4. Metodología…………………………………………………………………...34 4.1 Fabricación de perlas de alginato…………………………………………….34 4.2 Inmovilización de CPO en perlas de alginato………………………………..35 4.3 Evaluación de las características de fabricación……………………………..36 4.4 Estandarización del método de evaluación de liberación oxígeno…………...37 4.5 Análisis estadísticos………………………………………………………….39 Capítulo 5. Resultados y Análisis de Resultados…………………………………………..40 5.1 Resultados……………………………………………………………………40 5.1.1 Fabricación de perlas de alginato………………………………………..40 5.1.2 Fabricación de perlas de alginato con CPO……………………………..47 5.1.3 Caracterización mecánica……………………………………….……….50 5.1.4 Liberación de oxígeno…………………………………………….……..51 5.2 Análisis de resultados…………………………………………………….......53 Capítulo 6. Conclusiones y recomendaciones………………………………………....…...57 Referencias………………………………………………………………………………....58PregradoSeptic shock is one of the main complications presented by patients suffering from sepsis. This corresponds to metabolic, cellular, and circulatory alterations that increase the risk of mortality and produce severe tissue hypotension, clinically characterized by excessive vasodilation. As a treatment for this condition, vasopressors such as norepinephrine are used, which leads to an increase in mean arterial pressure (MAP), in order to maintain optimal arterial flow. However, this can lead to complications such as loss of peripheral micro perfusion, thus generating ischemia, which in most patients is reflected in distal digital necrosis. At present, this type of complication is treated with surgical resection of the affected tissue, the fingers generally being amputees. However, there are no prophylactic alternatives that prevent the appearance of distal digital ischemia, and it is necessary to develop therapeutic alternatives that allow it to be avoided. Therefore, alginate beads were manufactured, standardizing their stirring speed and concentration, to later encapsulate calcium peroxide (CPO) in them and evaluate both their mechanical properties through compression tests, and their oxygen release through the method. fluid displacement. The results obtained from the production of alginate beads show that they release between 800 μL and 1200 μL of oxygen in a sustained period of 5 days, and that the increase in alginate concentration is directly proportional to its modulus of elasticity (between 100 kPa and 150 kPa), in addition, when encapsulating CPO, its mechanical properties are altered, increasing the values ​​up to five times.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-SinDerivadas 2.5 ColombiaDesarrollo de un biomaterial a partir de peróxido de calcio encapsuladas en alginato como alternativa de prevención para la isquemia distal digital generada por vasopresoresDevelopment of a biomaterial from calcium peroxide encapsulated in alginate as a preventive alternative for distal digital ischemia generated by vasopressorsIngeniero BiomédicoUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaPregrado Ingeniería Biomédicainfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/redcol/resource_type/TPBiomedical engineeringEngineeringMedical electronicsBiological physicsBioengineeringMedical instruments and apparatusMedicineAlginateCalcium peroxideDressingIschemiaOxygen releaseBlood circulation disordersSepsisIngeniería biomédicaIngenieríaBiofísicaBioingenieríaMedicinaTrastornos de la circulación sanguíneaSepsisIngeniería clínicaClinical engineeringElectrónica médicaInstrumentos y aparatos médicosAlginatoPeróxido de calcioApósitoIsquemiaLiberación de oxígenoAbdi, S. I. H., Ng, S. M., & Lim, J. O. (2011). An enzyme-modulated oxygen-producing microsystem for regenerative therapeutics. International Journal of Pharmaceutics, 409(1), 203-205. doi:10.1016/j.ijpharm.2011.02.041Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6(2), 105-121. doi:10.1016/j.jare.2013.07.006Akhavan-Kharazian, N., & Izadi-Vasafi, H. (2019). Preparation and characterization of chitosan/gelatin/nanocrystalline cellulose/calcium peroxide films for potential wound dressing applications. International Journal of Biological Macromolecules, 133, 881-891. doi:10.1016/j.ijbiomac.2019.04.159Alemdar, N., Leijten, J., Camci-Unal, G., Hjortnaes, J., Ribas, J., Paul, A., . . . Khademhosseini, A. (2017). Oxygen-generating photo-cross-linkable hydrogels support cardiac progenitor cell survival by reducing hypoxia-induced necrosis. ACS Biomaterials Science & Engineering, 3(9), 1964-1971. doi:10.1021/acsbiomaterials.6b00109Alayash, A. I. (2019). Mechanisms of toxicity and modulation of hemoglobin-based oxygen carriers. Shock (Augusta, Ga.), 52(1S Suppl 1), 41-49. doi:10.1097/SHK.0000000000001044Amani, S., Shahrooz, R., Mortaz, E., Hobbenaghi, R., Mohammadi, R., & Baradar Khoshfetrat, A. (2019). Histomorphometric and immunohistochemical evaluation of angiogenesis in ischemia by tissue engineering in rats: Role of mast cells. Veterinary Research Forum : An International Quarterly Journal, 10(1), 23-30. doi:10.30466/vrf.2019.34311Bairagi, A., Griffin, B., Tyack, Z., Vagenas, D., McPhail, S. M., & Kimble, R. (2019). Comparative effectiveness of biobrane®, RECELL® autologous skin cell suspension and silver dressings in partial thickness paediatric burns: BRACS randomised trial protocol. Burns & Trauma, 7, 33. doi:10.1186/s41038-019-0165-0Baiula, M., Greco, R., Ferrazzano, L., Caligiana, A., Hoxha, K., Bandini, D., . . . Tolomelli, A. (2020). Integrin-mediated adhesive properties of neutrophils are reduced by hyperbaric oxygen therapy in patients with chronic non-healing wound. PloS One, 15(8), e0237746. doi:10.1371/journal.pone.0237746Batra, J., & Srinivasan, S. (2019). Theranostics. New York, NY: Springer. doi:10.1007/978-1- 4939-9769-5 Retrieved from https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=592093Bolaños Toro, O. F., Saldarriaga Rivera, L. M., Forero Gómez, J. E., & Alzate Piedrahita, J. A. (2018). Gangrena simétrica periférica asociada a norepinefrina en una paciente con urosepsis por escherichia coli. Revista Archivo Médico De Camagüey, 22(3), 341-348. Retrieved from http://scielo.sld.cu/scielo.php?script=sci_abstract&pid=S1025- 02552018000300010&lng=es&nrm=iso&tlng=esBone, R. C., Balk, R. A., Cerra, F. B., Dellinger, R. P., Fein, A. M., Knaus, W. A., . . . Sibbald, W. J. (1992). Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. the ACCP/SCCM consensus conference committee. american college of chest physicians/society of critical care medicine. Chest, 101(6), 1644-1655. doi:10.1378/chest.101.6.1644Borden, R. C., Goin, R. T., & Kao, C. (1997). Control of BTEX migration using a biologically enhanced permeable barrier. Groundwater Monitoring & Remediation, 17(1), 70-80. doi:10.1111/j.1745-6592.1997.tb01186.xBUESO, A.', FURIÓ, C Y MANS, (1) IB V, & LH (2) S F P U V (3) Departament d9EnginyeriaQuímicai Metal-lúrgia. Universitat de Barcelona.Interpretación de las reacciones de oxidaci~n-reducci~pnor los estudiantes. primeros resultadosCconislla Bello, J. L., Jacinto, C., Maza, I., Jahuira, M., Pando, A., Mayta, H., & Valderrama, A. (2016). Desarrollo de micropartículas de quitosano cuaternizado y entrecruzado para la adsorción de ácido desoxirribonucleico (ADN). Revista De La Sociedad Química Del Perú, 82(4), 467-479. Retrieved from http://www.scielo.org.pe/scielo.php?script=sci_abstract&pid=S1810- 634X2016000400008&lng=es&nrm=iso&tlng=esCamci-Unal, G., Alemdar, N., Annabi, N., & Khademhosseini, A. (2013). Oxygen releasing biomaterials for tissue engineering. Polymer International, 62(6), 843-848. doi:10.1002/pi.4502Cassidy, D. P., & Irvine, R. L. (1999). Use of calcium peroxide to provide oxygen for contaminant biodegradation in a saturated soil. Journal of hazardous materials, 69(1), 25-39.Chan, E., Lim, T., Voo, W., Pogaku, R., Tey, B. T., & Zhang, Z. (2011). Effect of formulation of alginate beads on their mechanical behavior and stiffness. Particuology, 9(3), 228-234. doi:10.1016/j.partic.2010.12.002Chandra, P. K., Ross, C. L., Smith, L. C., Jeong, S. S., Kim, J., Yoo, J. J., & Harrison, B. S. (2015). Peroxide-based oxygen generating topical wound dressing for enhancing healing of dermal wounds. Wound Repair and Regeneration: Official Publication of the Wound Healing Society [and] the European Tissue Repair Society, 23(6), 830-841. doi:10.1111/wrr.12324Cho, S. H., Lim, S. M., Han, D. K., Yuk, S. H., Im, G. I., & Lee, J. H. (2009). Time-dependent alginate/polyvinyl alcohol hydrogels as injectable cell carriers. Journal of Biomaterials Science. Polymer Edition, 20(7-8), 863-876. doi:10.1163/156856209X444312Daroca-Pérez, R., & Carrascosa, M. F. (2017). Digital necrosis: A potential risk of high-dose norepinephrine. Therapeutic Advances in Drug Safety, 8(8), 259-261. doi:10.1177/2042098617712669Diridollou, S., Vabre, V., Berson, M., Vaillant, L., Black, D., Lagarde, J. M., Grégoire, J. M., Gall, Y., & Patat, F. (2001). Skin ageing: Changes of physical properties of human skin in vivo. International Journal of Cosmetic Science, 23(6), 353–362. https://doi.org/10.1046/j.0412- 5463.2001.00105.xDharupaneedi, S. P., Nataraj, S. K., Nadagouda, M., Reddy, K. R., Shukla, S. S., & Aminabhavi, T. M. (2019). Membrane-based separation of potential emerging pollutants. Separation and Purification Technology, 210, 850-866. doi:10.1016/j.seppur.2018.09.003Esmaeili, J., Rezaei, F. S., Beram, F. M., & Barati, A. (2020). Integration of microbubbles with biomaterials in tissue engineering for pharmaceutical purposes. Heliyon, 6(6), e04189. https://doi.org/10.1016/j.heliyon.2020.e04189Fan, Z., Xu, Z., Niu, H., Gao, N., Guan, Y., Li, C., . . . Guan, J. (2018). An injectable oxygen release system to augment cell survival and promote cardiac repair following myocardial infarction. Scientific Reports, 8(1), 1371-22. doi:10.1038/s41598-018-19906-wFathollahipour, S., Patil, P. S., & Leipzig, N. D. (2018). Oxygen regulation in development: Lessons from embryogenesis towards tissue engineering. Cells, Tissues, Organs, 205(5-6), 350- 371. doi:10.1159/000493162Fischer, B. H. (1969). Topical hyperbaric oxygen treatment of pressure sores and skin ulcers. Lancet (London, England), 2(7617), 405-409. doi:10.1016/s0140-6736(69)90113-5Gaikowski, M. P., Rach, J. J., & Ramsay, R. T. (1999). Acute toxicity of hydrogen peroxide treatments to selected lifestages of cold-, cool-, and warmwater fish. Aquaculture, 178(3), 191- 207. doi:10.1016/S0044-8486(99)00123-4Gattás‐Asfura, K. M., Fraker, C. A., & Stabler, C. L. (2012). Perfluorinated alginate for cellular 62 encapsulation. Journal of Biomedical Materials Research. Part A, 100A(8), 1963-1971. doi:10.1002/jbm.a.34052Generaal, J. D., Lansdorp, C. A., Boonstra, O., van Leeuwen, B. L., Vanhauten, H. A. M., Stevenson, M. G., & Been, L. B. (2020). Hyperbaric oxygen therapy for radiation-induced tissue injury following sarcoma treatment: A retrospective analysis of a dutch cohort. PloS One, 15(6), e0234419. doi:10.1371/journal.pone.0234419Goh, F., Gross, J. D., Simpson, N. E., & Sambanis, A. (2010). Limited beneficial effects of perfluorocarbon emulsions on encapsulated cells in culture: Experimental and modeling studies. Journal of Biotechnology, 150(2), 232-239. doi:10.1016/j.jbiotec.2010.08.013Goi, A., Viisimaa, M., Trapido, M., & Munter, R. (2011). Polychlorinated biphenyls-containing electrical insulating oil contaminated soil treatment with calcium and magnesium peroxides. Chemosphere (Oxford), 82(8), 1196-1201. doi:10.1016/j.chemosphere.2010.11.053Goi, A., Viisimaa, M., Trapido, M., & Munter, R. (2011). Polychlorinated biphenyls-containing electrical insulating oil contaminated soil treatment with calcium and magnesium peroxides. Chemosphere (Oxford), 82(8), 1196-1201. doi:10.1016/j.chemosphere.2010.11.053xGordillo, G. M., & Sen, C. K. (2009). Evidence-based recommendations for the use of topical oxygen therapy in the treatment of lower extremity wounds. The International Journal of Lower Extremity Wounds, 8(2), 105-111. doi:10.1177/1534734609335149Greenwood, D. (2010). Lois N. magner, A history of infectious diseases and the microbial world Oxford Academic. doi:10.1093/shm/hkq081 Retrieved from https://academic.oup.com/shm/article/23/3/700/1720925Hadanny, A., Rittblat, M., Bitterman, M., May-Raz, I., Suzin, G., Boussi-Gross, R., . . . Efrati, S. 63 (2020). Hyperbaric oxygen therapy improves neurocognitive functions of post-stroke patients - a retrospective analysis. Restorative Neurology and Neuroscience, 38(1), 93-107. doi:10.3233/RNN-19095Harrison, B. S., Eberli, D., Lee, S. J., Atala, A., & Yoo, J. J. (2007). Oxygen producing biomaterials for tissue regeneration. Biomaterials, 28(31), 4628-4634. doi:10.1016/j.biomaterials.2007.07.003Heinrich, H., & , H. a. (1985) Lieber die berührung fester elastischer körperIgnacio, D. R., Pavot, A. P., Azer, R. N., & Wisotsky, L. (1985). Topical oxygen therapy treatment of extensive leg and foot ulcers. Journal of the American Podiatric Medical Association, 75(4), 196-199. doi:10.7547/87507315-75-4-196Jansman, M. M. T., & Hosta-Rigau, L. (2018). Recent and prominent examples of nano- and microarchitectures as hemoglobin-based oxygen carriers doi:https://doi.org/10.1016/j.cis.2018.08.006Johnson, D., & Cooper, J. (2019). Retinal artery and vein occlusions successfully treated with hyperbaric oxygen. Clinical Practice and Cases in Emergency Medicine, 3(4), 338-340. doi:10.5811/cpcem.2019.7.43017Kalliainen, L. K., Gordillo, G. M., Schlanger, R., & Sen, C. K. (2003). Topical oxygen as an adjunct to wound healing: A clinical case series. Pathophysiology: The Official Journal of the International Society for Pathophysiology, 9(2), 81-87. doi:10.1016/s0928-4680(02)00079-2Kang, J. I., Park, K. M., & Park, K. D. (2019). Oxygen-generating alginate hydrogels as a bioactive acellular matrix for facilitating wound healing. Journal of Industrial and Engineering Chemistry (Seoul, Korea), 69, 397-404. doi:10.1016/j.jiec.2018.09.048Kashyap, N., Kumar, N., & Kumar, M. N. V. Ravi. (2005). Hydrogels for pharmaceutical and 64 biomedical applications. Critical Reviews in Therapeutic Drug Carrier Systems, 22(2), 107-149. doi:10.1615/critrevtherdrugcarriersyst.v22.i2.10Kaygusuz, H., & Erim, F. B. (2013). Alginate/BSA/montmorillonite composites with enhanced protein entrapment and controlled release efficiency. Reactive and Functional Polymers, 73(11), 1420-1425. doi:10.1016/j.reactfunctpolym.2013.07.014Kaygusuz, H., Uysal, M., Adımcılar, V., & Erim, F. B. (2015). Natural alginate biopolymer montmorillonite clay composites for vitamin B2 delivery: Journal of Bioactive and Compatible Polymers, doi:10.1177/0883911514557014Kaygusuz, H., Evingür, G. A., Pekcan, Ö, von Klitzing, R., & Erim, F. B. (2016). Surfactant and metal ion effects on the mechanical properties of alginate hydrogels. International Journal of Biological Macromolecules, 92, 220-224. doi:10.1016/j.ijbiomac.2016.07.004Khan, F., Singh, K., & Friedman, M. T. (2020). Artificial blood: The history and current perspectives of blood substitutes. Discoveries (Craiova, Romania), 8(1), e104. doi:10.15190/d.2020.1Kershen, R. T., Fefer, S. D., & Atala, A. (2000). Tissue-engineered therapies for the treatment of urinary incontinence and vesicoureteral reflux. World Journal of Urology, 18(1), 51-55. doi:10.1007/pl00007072Kim, J. W., & Oh, M. M. (2013). Endoscopic treatment of vesicoureteral reflux in pediatric patients. Korean Journal of Pediatrics, 56(4), 145-150. doi:10.3345/kjp.2013.56.4.145Kohlert, S., McLean, L., Scarvelis, D., & Thompson, C. (2019). A case report of severe nasal ischemia from cold agglutinin disease and a novel treatment protocol including HBOT. Journal of Otolaryngology-Head and Neck Surgery, 48(1), 52. doi:10.1186/s40463-019-0369-0Kong, H., Lee, K. Y., & Mooney, D. J. (2002). Decoupling the dependence of 65 rheological/mechanical properties of hydrogels from solids concentration. Polymer, 43(23), 6239-6246. doi:10.1016/S0032-3861(02)00559-1Lee, C., Le Thanh, T., Kim, E., Gong, J., Chang, Y., & Chang, Y. (2014). Fabrication of novel oxygen-releasing alginate beads as an efficient oxygen carrier for the enhancement of aerobic bioremediation of 1,4-dioxane contaminated groundwater. Bioresource Technology, 171, 59-65. doi:10.1016/j.biortech.2014.08.039Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in Polymer Science, 37(1), 106-126. doi:10.1016/j.progpolymsci.2011.06.003Lin, C., & Metters, A. T. (2006). Hydrogels in controlled release formulations: Network design and mathematical modeling. Advanced Drug Delivery Reviews, 58(12-13), 1379-1408. doi:10.1016/j.addr.2006.09.004Liao, J., Meng-Jun Wu, Yan-Dong Mu, Li, P., & Go, J. (2018). Impact of hyperbaric oxygen on tissue healing around dental implants in beagles Retrieved from http://ezproxy.aure.unab.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct=true &db=edb&AN=133050006&lang=es&site=eds-liveLeón, A. L., Hoyos, N. A., Barrera, L. I., De La Rosa, G., Dennis, R., Dueñas, C., . . . Jaimes, F. A. (2013). Clinical course of sepsis, severe sepsis, and septic shock in a cohort of infected patients from ten colombian hospitals. BMC Infectious Diseases, 13, 345. doi:10.1186/1471- 2334-13-345Lu, Z., Jiang, X., Chen, M., Feng, L., & Kang, Y. J. (2019). An oxygen-releasing device to improve the survival of mesenchymal stem cells in tissue engineering. Biofabrication, 11(4), 045012. doi:10.1088/1758-5090/ab332aMa, C., Kuzma, M. L., Bai, X., & Yang, J. (2019). Biomaterial‐Based metabolic regulation in 66 regenerative engineering. Advanced Science, 6(19), 1900819-n/a. doi:10.1002/advs.201900819 Majno, G. (1991). The ancient riddle of sigma eta psi iota sigma (sepsis). The Journal of Infectious Diseases, 163(5), 937-945. doi:10.1093/infdis/163.5.937Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P., & Malik, A. B. (2014). Reactive oxygen species in inflammation and tissue injury. Antioxidants & Redox Signaling, 20(7), 1126-1167. doi:10.1089/ars.2012.5149Murphy, E. C., & Friedman, A. J. (2019). Hydrogen peroxide and cutaneous biology: Translational applications, benefits, and risks. Journal of the American Academy of Dermatology, 81(6), 1379- 1386. doi:10.1016/j.jaad.2019.05.030Nataraj, M., Maiya, A. G., Karkada, G., Hande, M., Rodrigues, G. S., Shenoy, R., & Prasad, S. S. (2019). Application of topical oxygen therapy in healing dynamics of diabetic foot ulcers - A systematic review. The Review of Diabetic Studies, 15(1), 74-82. doi:10.1900/RDS.2019.15.74Neira-Sanchez, E. R., & Málaga, G. (2016). Sepsis-3 y las nuevas definiciones, ¿es tiempo de abandonar SIRS? Acta Médica Peruana, 33(3), 217-222. doi:10.35663/amp.2016.333.115Nishiguchi, A., & Taguchi, T. (2020). Sustained-immunostimulatory nanocellulose scaffold to enhance vaccine efficacy. Journal of Biomedical Materials Research Part A, 108(5), 1159- 1170. doi:https://doi.org/10.1002/jbm.a.36890Northup, A., & Cassidy, D. (2008). Calcium peroxide (CaO2) for use in modified fenton chemistry. Journal of Hazardous Materials, 152(3), 1164-1170. doi:10.1016/j.jhazmat.2007.07.096Lam, G., Fontaine, R., Ross, F. L., & Chiu, E. S. (2017). Hyperbaric oxygen therapy: Exploring the clinical evidence. Advances in Skin & Wound Care, 30(4), 181-190.Lee, K. Y., & Mooney, D. J. (2012). Alginate: Properties and biomedical applications. Progress in Polymer Science, 37(1), 106-126. doi:10.1016/j.progpolymsci.2011.06.003O'Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today (Kidlington, England), 14(3), 88-95. doi:10.1016/s1369-7021(11)70058-xOdencrantz, J. E., Johnson, J. G., & Koenigsberg, S. S. (1996). Enhanced intrinsic bioremediation of hydrocarbons using an oxygen‐releasing compound. Remediation (New York, N.Y.), 6(4), 99- 114. doi:10.1002/rem.3440060408Rhee, C., Gohil, S., & Klompas, M. (2014). Regulatory mandates for sepsis care--reasons for caution. The New England Journal of Medicine, 370(18), 1673-1676. doi:10.1056/NEJMp1400276Rhodes, A., Evans, L. E., Alhazzani, W., Levy, M. M., Antonelli, M., Ferrer, R., . . . Dellinger, R. P. (2017). Surviving sepsis campaign: International guidelines for management of sepsis and septic shock: 2016. Intensive Care Medicine, 43(3), 304-377. doi:10.1007/s00134-017-4683-6Rinaudo, M. (1992). On the abnormal exponents aν and aD in mark houwink type equations for wormLike chain polysaccharides. Polymer Bulletin, 27(5), 585-589. doi:10.1007/BF00300608Royal Society of Chemistry (Great Britain).RSC advances.Rudrashish Haldar, Devendra Gupta, Shweta Chitranshi, Manish Kumar Singh, & Sumit Sachan. (2019). Artificial blood: A futuristic dimension of modern day transfusion sciences. Cardiovascular & Hematological Agents in Medicinal Chemistry, 17(1), 11-16. doi:10.2174/1871525717666190617120045Sayadi, L. R., Banyard, D. A., Ziegler, M. E., Obagi, Z., Prussak, J., Klopfer, M. J., . . . Widgerow, A. D. (2018). Topical oxygen therapy & micro/nanobubbles: A new modality for tissue oxygen delivery. International Wound Journal, 15(3), 363-374. doi:10.1111/iwj.12873Sculean, A., Windisch, P., Chiantella, G. C., Donos, N., Brecx, M., & Reich, E. (2001). Treatment of intrabony defects with enamel matrix proteins and guided tissue regeneration. A prospective controlled clinical study. Journal of Clinical Periodontology, 28(5), 397-403. doi:10.1034/j.1600-051x.2001.028005397.xSimons, M., Gretton, S., Silkstone, G. G. A., Rajagopal, B. S., Allen-Baume, V., Syrett, N., . . . Cooper, C. E. (2018). Comparison of the oxidative reactivity of recombinant fetal and adult human hemoglobin: Implications for the design of hemoglobin-based oxygen carriers. Bioscience Reports, 38(4) doi:10.1042/BSR20180370Steg, H., Buizer, A. T., Woudstra, W., Veldhuizen, A. G., Bulstra, S. K., Grijpma, D. W., & Kuijer, R. (2015). Control of oxygen release from peroxides using polymers. Journal of Materials Science : Materials in Medicine, 26(7), 1-4. doi:10.1007/s10856-015-5542-zPaprocki, J., Pawłowska, M., Sutkowy, P., Piechocki, J., & Woźniak, A. (2020). Evaluation of oxidative stress in patients with difficult-to-heal skin wounds treated with hyperbaric oxygen. Oxidative Medicine and Cellular Longevity, 2020, 1-8. doi:10.1155/2020/1835352Pacheco Pacori, Y. D., & García Duque, O. (2018). Necrosis isquémica de todos los dedos y ortejos después del uso de norepinefrina en paciente ginecológico. Anales De La Facultad De Medicina, 79(2), 149. doi:10.15381/anales.v79i2.14942Perez-Vidal, C., Gracia, L., Carmona, C., Alorda, B., & Salinas, A. (2017). Wireless transmission of biosignals for hyperbaric chamber applications. PloS One, 12(3), e0172768. doi:10.1371/journal.pone.0172768Sayadi, L. R., Banyard, D. A., Ziegler, M. E., Obagi, Z., Prussak, J., Klopfer, M. J., . . . Widgerow, A. D. (2018). Topical oxygen therapy & micro/nanobubbles: A new modality for tissue oxygen delivery. International Wound Journal, 15(3), 363-374. doi:10.1111/iwj.12873Schäfer, M., & Werner, S. (2011). The cornified envelope: A first line of defense against reactive oxygen species. Journal of Investigative Dermatology, 131(7), 1409-1411. doi:10.1038/jid.2011.119Seyedmahmoud, R., Çelebi-Saltik, B., Barros, N., Nasiri, R., Banton, E., ShamLoo, A., . . . Ahadian, S. (2019). Three-dimensional bioprinting of functional skeletal muscle tissue using gelatin methacryloyl-alginate bioinks. Micromachines, 10(10), 679. doi:10.3390/mi10100679Singer, M., Deutschman, C. S., Seymour, C. W., Shankar-Hari, M., Annane, D., Bauer, M., . . . Angus, D. C. (2016). The third international consensus definitions for sepsis and septic shock (sepsis-3). Jama, 315(8), 801-810. doi:10.1001/jama.2016.0287Soon-Shiong, P., Heintz, R. E., Merideth, N., Yao, Q. X., Yao, Z., Zheng, T. I. A. N. L. I., ... & Harris, M. (1994). Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet (London, England), 343(8903), 950.Tønnesen, H. H., & Karlsen, J. (2002). Alginate in drug delivery systems. Drug Development and Industrial Pharmacy, 28(6), 621-630. doi:10.1081/DDC-120003853Valenzuela Sánchez, F., Bohollo de Austria, R., Monge García, I., & Gil Cano, A. (2005). Shock séptico. Medicina Intensiva, 29(3), 192-200. doi:10.1016/S0210-5691(05)74227-3Vesper, S. J., Murdoch, L. C., Hayes, S., & Davis-Hoover, W. J. (1994). Solid oxygen source for bioremediation in subsurface soils. Journal of Hazardous Materials, 36(3), 265-274. doi:10.1016/0304-3894(94)85019-4Vinkel, J., Holm, N. F. R., Jakobsen, J. C., & Hyldegaard, O. (2020). Effects of adding adjunctive 70 hyperbaric oxygen therapy to standard wound care for diabetic foot ulcers: A protocol for a systematic review with meta-analysis and trial sequential analysis. BMJ Open, 10(6), e031708. doi:10.1136/bmjopen-2019-031708Wang, C. X., Cowen, C., Zhang, Z., & Thomas, C. R. (2005). High-speed compression of single alginate microspheres. Chemical Engineering Science, 60(23), 6649-6657. doi:10.1016/j.ces.2005.05.052Wang, M., & Tang, T. (2018). Surface treatment strategies to combat implant-related infection from the beginning. Journal of Orthopaedic Translation, 17, 42-54. doi:10.1016/j.jot.2018.09.001Ward, C. L., Corona, B. T., Yoo, J. J., Harrison, B. S., & Christ, G. J. (2013). Oxygen generating biomaterials preserve skeletal muscle homeostasis under hypoxic and ischemic conditions. PloS One, 8(8), e72485. doi:10.1371/journal.pone.0072485Wee, n., & Gombotz, n. (1998). Protein release from alginate matrices. Advanced Drug Delivery Reviews, 31(3), 267-285. doi:10.1016/s0169-409x(97)00124-5White, D. M., Irvine, R. L., & Woolard, C. R. (1998). The use of solid peroxides to stimulate growth of aerobic microbes in tundra. Journal of Hazardous Materials, 57(1), 71-78. doi:10.1016/S0304-3894(97)00065-4Wolanov, Y., Prikhodchenko, P. V., Medvedev, A. G., Pedahzur, R., & Lev, O. (2013). Zinc dioxide nanoparticulates: A hydrogen peroxide source at moderate pH. Environmental Science & Technology, 47(15), 8769-8774. doi:10.1021/es4020629WHO (World Health Organization). (2018). Sepsis . Retrieved from https://www.who.int/newsroom/ fact-sheets/detail/sepsisYamamoto, N., Oyaizu, T., Enomoto, M., Horie, M., Yuasa, M., Okawa, A., & Yagishita, K. 71 (2020). VEGF and bFGF induction by nitric oxide is associated with hyperbaric oxygen-induced angiogenesis and muscle regeneration Retrieved from http://ezproxy.aure.unab.edu.co/login?url=http://search.ebscohost.com/login.aspx?direct= true&db=edb&AN=141771922&lang=es&site=eds-liveYang, Y., Di Pasqua, A. J., He, W., Tsai, T., Sueda, K., Zhang, Y., & Jay, M. (2013). Preparation of alginate beads containing a prodrug of diethylenetriaminepentaacetic acid. Carbohydrate Polymers, 92(2), 1915-1920. doi:10.1016/j.carbpol.2012.11.071Zhang, N., Wei, M., & Ma, Q. (2019). Nanomedicines: A potential treatment for blood disorder diseases. Frontiers in Bioengineering and Biotechnology, 7, 369. doi:10.3389/fbioe.2019.0036ORIGINAL2020_Tesis_Diana_Cristina_Garcia_Rivero.pdf2020_Tesis_Diana_Cristina_Garcia_Rivero.pdfTesisapplication/pdf1903961https://repository.unab.edu.co/bitstream/20.500.12749/12427/1/2020_Tesis_Diana_Cristina_Garcia_Rivero.pdf57341f4464f2d4110019a2cc87ce5728MD51open access2020_Licencia_Diana_Cristina_Garcia_Rivero.pdf2020_Licencia_Diana_Cristina_Garcia_Rivero.pdfLicenciaapplication/pdf287020https://repository.unab.edu.co/bitstream/20.500.12749/12427/2/2020_Licencia_Diana_Cristina_Garcia_Rivero.pdf3c39d85b7b73319d4879f00e87fef4ddMD52metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.unab.edu.co/bitstream/20.500.12749/12427/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53open accessTHUMBNAIL2020_Tesis_Diana_Cristina_Garcia_Rivero.pdf.jpg2020_Tesis_Diana_Cristina_Garcia_Rivero.pdf.jpgIM Thumbnailimage/jpeg5213https://repository.unab.edu.co/bitstream/20.500.12749/12427/4/2020_Tesis_Diana_Cristina_Garcia_Rivero.pdf.jpg18d43e507939e889396f00e673cadb08MD54open access2020_Licencia_Diana_Cristina_Garcia_Rivero.pdf.jpg2020_Licencia_Diana_Cristina_Garcia_Rivero.pdf.jpgIM Thumbnailimage/jpeg9651https://repository.unab.edu.co/bitstream/20.500.12749/12427/5/2020_Licencia_Diana_Cristina_Garcia_Rivero.pdf.jpgcd52f35eb680e09a61e04749d0a65f86MD55metadata only access20.500.12749/12427oai:repository.unab.edu.co:20.500.12749/124272023-11-25 04:08:51.887open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=