Estudio del desempeño energético de las tecnologías convencionales y mejoradas con granulación alba para la cosecha de microalgas cultivadas en el tratamiento de aguas residuales con fines de producción de biogás

Las microalgas ofrecen muchas ventajas en la producción de biocombustibles al no competir con tierras agrícolas para su cultivo y favorecer la captura de CO2 evitando su emisión a la atmósfera; además son la alternativa más factible para el tratamiento de aguas residuales por el aprovechamiento de c...

Full description

Autores:
Cruz Torrado, Giselle Marian
Camargo Gómez, Kevin Adrián
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/11932
Acceso en línea:
http://hdl.handle.net/20.500.12749/11932
Palabra clave:
Energy engineering
Technological innovations
Energy
Microalgae
Biofuels
Renewable energy
Microorganisms
Aquatic resources
Sewage water
Ingeniería en energía
Innovaciones tecnológicas
Energía
Microorganismos
Recursos acuáticos
Aguas residuales
Microalgas
Biocombustibles
Energía renovable
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UNAB2_019345f6f35c1e4bfc7df6d91813eac2
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/11932
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Estudio del desempeño energético de las tecnologías convencionales y mejoradas con granulación alba para la cosecha de microalgas cultivadas en el tratamiento de aguas residuales con fines de producción de biogás
dc.title.translated.spa.fl_str_mv Study of the energy performance of conventional and improved technologies with alba granulation for the harvest of microalgae cultivated in the treatment of wastewater for biogas production purposes
title Estudio del desempeño energético de las tecnologías convencionales y mejoradas con granulación alba para la cosecha de microalgas cultivadas en el tratamiento de aguas residuales con fines de producción de biogás
spellingShingle Estudio del desempeño energético de las tecnologías convencionales y mejoradas con granulación alba para la cosecha de microalgas cultivadas en el tratamiento de aguas residuales con fines de producción de biogás
Energy engineering
Technological innovations
Energy
Microalgae
Biofuels
Renewable energy
Microorganisms
Aquatic resources
Sewage water
Ingeniería en energía
Innovaciones tecnológicas
Energía
Microorganismos
Recursos acuáticos
Aguas residuales
Microalgas
Biocombustibles
Energía renovable
title_short Estudio del desempeño energético de las tecnologías convencionales y mejoradas con granulación alba para la cosecha de microalgas cultivadas en el tratamiento de aguas residuales con fines de producción de biogás
title_full Estudio del desempeño energético de las tecnologías convencionales y mejoradas con granulación alba para la cosecha de microalgas cultivadas en el tratamiento de aguas residuales con fines de producción de biogás
title_fullStr Estudio del desempeño energético de las tecnologías convencionales y mejoradas con granulación alba para la cosecha de microalgas cultivadas en el tratamiento de aguas residuales con fines de producción de biogás
title_full_unstemmed Estudio del desempeño energético de las tecnologías convencionales y mejoradas con granulación alba para la cosecha de microalgas cultivadas en el tratamiento de aguas residuales con fines de producción de biogás
title_sort Estudio del desempeño energético de las tecnologías convencionales y mejoradas con granulación alba para la cosecha de microalgas cultivadas en el tratamiento de aguas residuales con fines de producción de biogás
dc.creator.fl_str_mv Cruz Torrado, Giselle Marian
Camargo Gómez, Kevin Adrián
dc.contributor.advisor.spa.fl_str_mv Meneses Jácome, Alexander
dc.contributor.author.spa.fl_str_mv Cruz Torrado, Giselle Marian
Camargo Gómez, Kevin Adrián
dc.contributor.cvlac.*.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000326020
dc.contributor.scopus.*.fl_str_mv https://www.scopus.com/authid/detail.uri?authorId=56433490100
dc.contributor.researchgate.*.fl_str_mv https://www.researchgate.net/profile/Alexander_Meneses_Jacome
dc.subject.keywords.eng.fl_str_mv Energy engineering
Technological innovations
Energy
Microalgae
Biofuels
Renewable energy
Microorganisms
Aquatic resources
Sewage water
topic Energy engineering
Technological innovations
Energy
Microalgae
Biofuels
Renewable energy
Microorganisms
Aquatic resources
Sewage water
Ingeniería en energía
Innovaciones tecnológicas
Energía
Microorganismos
Recursos acuáticos
Aguas residuales
Microalgas
Biocombustibles
Energía renovable
dc.subject.lemb.spa.fl_str_mv Ingeniería en energía
Innovaciones tecnológicas
Energía
Microorganismos
Recursos acuáticos
Aguas residuales
dc.subject.proposal.spa.fl_str_mv Microalgas
Biocombustibles
Energía renovable
description Las microalgas ofrecen muchas ventajas en la producción de biocombustibles al no competir con tierras agrícolas para su cultivo y favorecer la captura de CO2 evitando su emisión a la atmósfera; además son la alternativa más factible para el tratamiento de aguas residuales por el aprovechamiento de contaminantes de las aguas, como el nitrógeno (N) y fosforo (P), como nutrientes para su crecimiento, y por su alta capacidad fotosintética. A pesar del prometedor rol de las microalgas en los escenarios de biocombustibles y energía renovable, algunas etapas de la producción consumen mucha energía haciendo ineficiente el sistema, como la etapa de cosecha y pretratamiento de la biomasa cosechada para su conversión al producto deseado. Este proyecto se enfoca en la etapa de cosecha, revisando y analizando la literatura para establecer rangos de consumo de energía para cada tecnología reportada de la etapa de cosecha de sistemas convencionales de producción de biogás a partir de microalgas. También se revisan los parámetros de sedimentación de sistemas convencionales para compararlos, junto con los rangos de consumo de energía previamente establecidos, con el escenario de un sistema mejorado mediante la técnica de granulación ALBA en el cultivo de microalgas, en donde se busca formar consorcios entre las microalgas y las bacterias agregadas para facilitar la sedimentación natural y/o reducir el uso de más tecnologías para la cosecha, minimizando así el consumo de energía y el impacto del consumo de dicha etapa en el sistema.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-12-15T15:58:37Z
dc.date.available.none.fl_str_mv 2020-12-15T15:58:37Z
dc.date.issued.none.fl_str_mv 2020
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.local.spa.fl_str_mv Trabajo de Grado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/11932
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UNAB
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unab.edu.co
url http://hdl.handle.net/20.500.12749/11932
identifier_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
reponame:Repositorio Institucional UNAB
repourl:https://repository.unab.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [1] P. Collet, A. Hélias Arnaud, L. Lardon, M. Ras, R. A. Goy, and J. P. Steyer, “Life-cycle assessment of microalgae culture coupled to biogas production,” Bioresour. Technol., vol. 102, no. 1, pp. 207–214, 2011, doi: 10.1016/j.biortech.2010.06.154.
[2] H. H. Khoo, P. N. Sharratt, P. Das, R. K. Balasubramanian, P. K. Naraharisetti, and S. Shaik, “Life cycle energy and CO2 analysis of microalgae-to-biodiesel: Preliminary results and comparisons,” Bioresour. Technol., vol. 102, no. 10, pp. 5800–5807, 2011, doi: 10.1016/j.biortech.2011.02.055.
[3] E. P. Bennion, D. M. Ginosar, J. Moses, F. Agblevor, and J. C. Quinn, “Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways,” Appl. Energy, vol. 154, pp. 1062–1071, 2015, doi: 10.1016/j.apenergy.2014.12.009.
[4] J. Yuan, A. Kendall, and Y. Zhang, “Mass balance and life cycle assessment of biodiesel from microalgae incorporated with nutrient recycling options and technology uncertainties,” GCB Bioenergy, vol. 7, no. 6, pp. 1245–1259, 2015, doi: 10.1111/gcbb.12229
[5] L. Xu, D. W. F. Wim Brilman, J. A. M. Withag, G. Brem, and S. Kersten, “Assessment of a dry and a wet route for the production of biofuels from microalgae: Energy balance analysis,” Bioresour. Technol., vol. 102, no. 8, pp. 5113–5122, 2011, doi: 10.1016/j.biortech.2011.01.066.
[6] L. F. Razon and R. R. Tan, “Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis,” Appl. Energy, vol. 88, no. 10, pp. 3507–3514, 2011, doi: 10.1016/j.apenergy.2010.12.052
[7] I. Udom et al., “Harvesting microalgae grown on wastewater,” Bioresour. Technol., vol. 139, pp. 101–106, 2013, doi: 10.1016/j.biortech.2013.04.002
[8] J. R. Seth and P. P. Wangikar, “Challenges and opportunities for microalgae-mediated CO2 capture and biorefinery,” Biotechnol. Bioeng., vol. 112, no. 7, pp. 1281–1296, 2015, doi: 10.1002/bit.25619.
[9] R. R. Soomro, T. Ndikubwimana, X. Zeng, Y. Lu, L. Lin, and M. K. Danquah, “Development of a two-stage microalgae dewatering process – A life cycle assessment approach,” Front. Plant Sci., vol. 7, no. FEB2016, pp. 1–12, 2016, doi: 10.3389/fpls.2016.00113.
[10] M. K. Weschler, W. J. Barr, W. F. Harper, and A. E. Landis, “Process energy comparison for the production and harvesting of algal biomass as a biofuel feedstock,” Bioresour. Technol., vol. 153, pp. 108–115, 2014, doi: 10.1016/j.biortech.2013.11.008.
[11] P. Collet, A. Hélias, L. Lardon, J. P. Steyer, and O. Bernard, “Recommendations for Life Cycle Assessment of algal fuels,” Appl. Energy, vol. 154, pp. 1089–1102, 2015, doi: 10.1016/j.apenergy.2015.03.056
[12] J. Lee, D. H. Cho, R. Ramanan, B. H. Kim, H. M. Oh, and H. S. Kim, “Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris,” Bioresour. Technol., vol. 131, pp. 195–201, 2013, doi: 10.1016/j.biortech.2012.11.130.
[13] D. Maga, “Life cycle assessment of biomethane produced from microalgae grown in municipal waste water,” Biomass Convers. Biorefinery, vol. 7, no. 1, pp. 1–10, 2017, doi: 10.1007/s13399-016-0208-8.
[14] N. Deconinck, K. Muylaert, W. Ivens, and D. Vandamme, “Innovative harvesting processes for microalgae biomass production: A perspective from patent literature,” Algal Res., vol. 31, no. September 2017, pp. 469–477, 2018, doi: 10.1016/j.algal.2018.01.016.
[15] O. Tiron, C. Bumbac, E. Manea, M. Stefanescu, and M. N. Lazar, “Overcoming Microalgae Harvesting Barrier by Activated Algae Granules,” Sci. Rep., vol. 7, no.
[16] E. J. Olguín, “Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a Biorefinery,” Biotechnol. Adv., vol. 30, no. 5, pp. 1031–1046, 2012, doi: 10.1016/j.biotechadv.2012.05.001.
[17] N. Préat, S. E. Taelman, S. De Meester, F. Allais, and J. Dewulf, “Identification of microalgae biorefinery scenarios and development of mass and energy balance flowsheets,” Algal Res., vol. 45, no. June 2019, p. 101737, 2020, doi: 10.1016/j.algal.2019.101737.[17] N. Préat, S. E. Taelman, S. De Meester, F. Allais, and J. Dewulf, “Identification of microalgae biorefinery scenarios and development of mass and energy balance flowsheets,” Algal Res., vol. 45, no. June 2019, p. 101[17] N. Préat, S. E. Taelman, S. De Meester, F. Allais, and J. Dewulf, “Identification of microalgae biorefinery scenarios and development of mass and energy balance flowsheets,” Algal Res., vol. 45, no. June 2019, p. 101737, 2020, doi: 10.1016/j.algal.2019.101737.[17] N. Préat, S. E. Taelman, S. De Meester, F. Allais, and J. Dewulf, “Identification of microalgae biorefinery scenarios and development of mass and energy balance flowsheets,” Algal Res., vol. 45, no. June 2019, p. 101737, 2020, doi: 10.1016/j.algal.2019.101737.737, 2020, doi: 10.1016/j.algal.2019.101737.
[18] P. Collet et al., “Biodiesel from microalgae - Life cycle assessment and recommendations for potential improvements,” Renew. Energy, vol. 71, pp. 525–533, 2014, doi: 10.1016/j.renene.2014.06.009.
[19] A. H. Shimako et al., “Environmental assessment of bioenergy production from microalgae based systems,” J. Clean. Prod., vol. 139, no. 2016, pp. 51–60, 2016, doi: 10.1016/j.jclepro.2016.08.003
[20] R. Octavio, “Eliminación de nutrientes para el tratamiento biológico de agua residual en crecimiento autotrófico, heterotrófico y mixotrófico.,” 2009.
[21] P. Soriano, “Planta demostración de depuración de aguas residuales con microalgas,” pp. 1–22, 2014.
[22] J. A. Posada, L. B. Brentner, A. Ramirez, and M. K. Patel, “Conceptual 49 design of sustainable integrated microalgae biorefineries: Parametric analysis of energy use, greenhouse gas emissions and techno-economics,” Algal Res., vol. 17, pp. 113–131, 2016, doi: 10.1016/j.algal.2016.04.022.
[23] N. Pragya and K. K. Pandey, “Life cycle assessment of green diesel production from microalgae,” Renew. Energy, vol. 86, pp. 623–632, 2016, doi: 10.1016/j.renene.2015.08.064
[24] A. Hernández-Pérez and J. I. Labbé, “Microalgas, cultivo y beneficios,” Rev. Biol. Mar. Oceanogr., vol. 49, no. 2, pp. 157–173, 2014, doi: 10.4067/S0718-19572014000200001.
[25] H. C. Greenwell, L. M. L. Laurens, R. J. Shields, R. W. Lovitt, and K. J. Flynn, “Placing microalgae on the biofuels priority list: A review of the technological challenges,” J. R. Soc. Interface, vol. 7, no. 46, pp. 703–726, 2010, doi: 10.1098/rsif.2009.0322
[26] Gobierno de España, Aplicaciones de las microalgas: estado de la técnica, AST Ingeni. Gijón, Asturias, 2013
[27] H. Mendoza, A. De la Jara, and E. Portillo, Planta Piloto De Cultivo De Microalgas, no. June 2016. 2011
[28] B. B. Marangon, T. A. Silva, M. L. Calijuri, S. do C. Alves, V. J. dos Santos, and A. P. de S. Oliveira, “Reuse of treated municipal wastewater in productive activities in Brazil’s semi-arid regions,” J. Water Process Eng., vol. 37, no. June, p. 101483, 2020, doi: 10.1016/j.jwpe.2020.101483.
[29] G. G. Zaimes and V. Khanna, Life cycle sustainability aspects of microalgal biofuels. Elsevier Inc., 2015.
[30] F. Arcigni, R. Friso, M. Collu, and M. Venturini, “Harmonized and systematic assessment of microalgae energy potential for biodiesel production,” Renew. Sustain. Energy Rev., vol. 101, no. February 2018, pp. 614–624, 2019, doi: 10.1016/j.rser.2018.11.024
[31] A. Friedl, E. Padouvas, H. Rotter, and K. Varmuza, “Prediction of heating values of biomass fuel from elemental composition,” Anal. Chim. Acta, vol. 544, no. 1-2 SPEC. ISS., pp. 191–198, 2005, doi: 10.1016/j.aca.2005.01.041.
[32] D. Fozer, N. Valentinyi, L. Racz, and P. Mizsey, “Evaluation of microalgae-based biorefinery alternatives,” Clean Technol. Environ. Policy, vol. 19, no. 2, pp. 501–515, 2017, doi: 10.1007/s10098-016-1242-8.
[33] V. V. Unnithan, A. Unc, and G. B. Smith, “Mini-review: A priori considerations for bacteria-algae interactions in algal biofuel systems receiving municipal wastewaters,” Algal Res., vol. 4, no. 1, pp. 35–40, 2014, doi: 10.1016/j.algal.2013.11.009.
[34] J. C. M. Pires, M. C. M. Alvim-Ferraz, F. G. Martins, and M. Simões, “Wastewater treatment to enhance the economic viability of microalgae culture,” Environ. Sci. Pollut. Res., vol. 20, no. 8, pp. 5096–5105, 2013, doi: 10.1007/s11356-013-1791-x.
[35] E. Posadas, P. A. García-Encina, A. Soltau, A. Domínguez, I. Díaz, and R. Muñoz, “Carbon and nutrient removal from centrates and domestic wastewater using algal-bacterial biofilm bioreactors,” Bioresour. Technol., vol. 139, pp. 50–58, 2013, doi: 10.1016/j.biortech.2013.04.008.
[36] I. A. Perera, S. Abinandan, S. R. Subashchandrabose, K. Venkateswarlu, R. Naidu, and M. Megharaj, “Advances in the technologies for studying consortia of bacteria and cyanobacteria/microalgae in wastewaters,” Crit. Rev. Biotechnol., vol. 39, no. 5, pp. 709–731, 2019, doi: 10.1080/07388551.2019.1597828.
[37] A. Mark Ibekwe, S. E. Murinda, M. A. Murry, G. Schwartz, and T. Lundquist, “Microbial community structures in high rate algae ponds for bioconversion of agricultural wastes from livestock industry for feed production,” Sci. Total Environ., vol. 580, pp. 1185–1196, 2017, doi: 10.1016/j.scitotenv.2016.12.076.
[38] L. Liu, H. Fan, Y. Liu, C. Liu, and X. Huang, “Development of algae-bacteria granular consortia in photo-sequencing batch reactor,” Bioresour. Technol., vol. 232, pp. 64–71, 2017, doi: 10.1016/j.biortech.2017.02.025.
[39] K. Paranjape, G. B. Leite, and P. C. Hallenbeck, “Effect of nitrogen regime on microalgal lipid production during mixotrophic growth with glycerol,” Bioresour. Technol., vol. 214, pp. 778–786, 2016, doi: 10.1016/j.biortech.201
[40] R. J. Powell and R. T. Hill, “Rapid Aggregation of Biofuel-Producing Algae by the Bacterium Bacillus sp. Strain RP1137,” Appl. Environ. Microbiol., vol. 79, no. 19, pp. 6093–60101, 2013, doi: 10.1128/AEM.01496-13.
[41] J. S. Arcila and G. Buitrón, “Microalgae–bacteria aggregates: effect of the hydraulic retention time on the municipal wastewater treatment, biomass settleability and methane potential,” J. Chem. Technol. Biotechnol., vol. 91, no. 11, pp. 2862–2870, 2016, doi: 10.1002/jctb.4901.
[42] J. M. Valigore, P. A. Gostomski, D. G. Wareham, and A. D. O’Sullivan, “Effects of hydraulic and solids retention times on productivity and settleability of microbial (microalgal-bacterial) biomass grown on primary treated wastewater as a biofuel feedstock,” Water Res., vol. 46, no. 9, pp. 2957–2964, 2012, doi: 10.1016/j.watres.2012.03.023.
[43] J. F. López, “Medidas de dispersión,” Economipedia. https://economipedia.com/definiciones/medidas-de-dispersion.html.
[44] Flottweg, “Modo de funcionamiento de una centrífuga decantadora.” https://www.flottweg.com/es/la-gama-de-productos/centrifugas/funcionamiento-de-las-centrifugas/.
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial-SinDerivadas 2.5 Colombia
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Colombia
dc.publisher.grantor.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.program.spa.fl_str_mv Pregrado Ingeniería en Energía
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/11932/1/2020_Tesis_Giselle_Cruz.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/11932/4/2020_Licencia_Giselle_Camargo.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/11932/3/license.txt
https://repository.unab.edu.co/bitstream/20.500.12749/11932/5/2020_Tesis_Giselle_Cruz.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/11932/6/2020_Licencia_Giselle_Camargo.pdf.jpg
bitstream.checksum.fl_str_mv 02796be476f6c957814595416d67e5c5
07379a008ef38f2ba32ff6e60d27ef5b
8a4605be74aa9ea9d79846c1fba20a33
ac873724da8d24e121be49370e9d5ed4
4466a92f4150676a92902382bf4e0a24
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1814277336803049472
spelling Meneses Jácome, AlexanderCruz Torrado, Giselle MarianCamargo Gómez, Kevin Adriánhttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000326020https://www.scopus.com/authid/detail.uri?authorId=56433490100https://www.researchgate.net/profile/Alexander_Meneses_JacomeColombia2020-12-15T15:58:37Z2020-12-15T15:58:37Z2020http://hdl.handle.net/20.500.12749/11932instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coLas microalgas ofrecen muchas ventajas en la producción de biocombustibles al no competir con tierras agrícolas para su cultivo y favorecer la captura de CO2 evitando su emisión a la atmósfera; además son la alternativa más factible para el tratamiento de aguas residuales por el aprovechamiento de contaminantes de las aguas, como el nitrógeno (N) y fosforo (P), como nutrientes para su crecimiento, y por su alta capacidad fotosintética. A pesar del prometedor rol de las microalgas en los escenarios de biocombustibles y energía renovable, algunas etapas de la producción consumen mucha energía haciendo ineficiente el sistema, como la etapa de cosecha y pretratamiento de la biomasa cosechada para su conversión al producto deseado. Este proyecto se enfoca en la etapa de cosecha, revisando y analizando la literatura para establecer rangos de consumo de energía para cada tecnología reportada de la etapa de cosecha de sistemas convencionales de producción de biogás a partir de microalgas. También se revisan los parámetros de sedimentación de sistemas convencionales para compararlos, junto con los rangos de consumo de energía previamente establecidos, con el escenario de un sistema mejorado mediante la técnica de granulación ALBA en el cultivo de microalgas, en donde se busca formar consorcios entre las microalgas y las bacterias agregadas para facilitar la sedimentación natural y/o reducir el uso de más tecnologías para la cosecha, minimizando así el consumo de energía y el impacto del consumo de dicha etapa en el sistema.RESUMEN ..................................................................................................................... 3 1. INTRODUCCIÓN .................................................................................................... 4 2. MARCO REFERENCIAL ......................................................................................... 6 2.1. Estado del arte ............................................................................................. 6 2.2. Conceptos Fundamentales ............................................................................ 7 2.2.1. Cultivo ................................................................................................... 7 2.2.2. Cosecha .............................................................................................. 10 2.2.3. Conversión .......................................................................................... 12 2.3. Planteamiento del problema ........................................................................ 15 3. OBJETIVOS ......................................................................................................... 16 3.1. Objetivo general ......................................................................................... 16 3.2. Objetivos específicos (OE) .......................................................................... 16 4. METODOLOGÍA ................................................................................................... 17 4.1. Organización y enfoque .............................................................................. 17 4.2. Aspectos instrumentales ............................................................................. 18 5. RESULTADOS ..................................................................................................... 19 5.1. Etapas y parámetros determinantes del desempeño energético de los sistemas de microalgas. ........................................................................................... 19 5.2. Análisis de las secciones y parámetros definidos para los sistemas de microalgas ............................................................................................................... 22 5.2.1. Etapa de cultivo ................................................................................... 22 5.2.1.1. Tipo de biomasa .............................................................................. 26 5.2.2. Etapa de Cosecha ................................................................................ 29 5.2.2.1. Consumo de energía de la(s) tecnología(s) de cosecha .................... 29 5.2.2.2. Sedimentación de la biomasa........................................................... 33 5.2.3. Etapa de conversión de la biomasa cosechada ..................................... 37 5.3. Técnica de Granulación ALBA como alternativa de mejoramiento de sistemas convencionales de microalgas .................................................................................. 40 5.3.1. Consorcio de microalgas y bacterias .................................................... 40 5.3.2. Escenario alternativo para la(s) tecnología(s) de cosecha ..................... 41 5.3.3. Comparación entre sistemas que poseen implementación ALBA y los convencionales .................................................................................................... 42 6. CONCLUSIONES ................................................................................................. 44 7. RECOMENDACIONES .......................................................................................... 46 8. BIBLIOGRAFÍA ..................................................................................................... 47 9. ANEXOS .............................................................................................................. 52 9.1. Método estadístico para el análisis de datos ..................................................... 52PregradoMicroalgae offer many advantages in the production of biofuels as they do not compete with agricultural land for cultivation and favor the capture of CO2, avoiding its emission into the atmosphere. Furthermore, they are the most feasible alternative for wastewater treatment because of the use of water pollutants such as nitrogen (N) and phosphorus (P) as nutrients for your growth, and because of their high photosynthetic capacity. Despite the promising role of microalgae in the biofuel and renewable energy scenarios, some stages of production are energy intensive making the system inefficient, such as the harvesting stage and pre-treatment of the harvested biomass for conversion to biofuel. This project focuses on the harvesting stage, reviewing and analyzing the literature to establish energy consumption ranges for each technology reported from the harvesting stage of conventional microalgae-based biogas production systems. The sedimentation parameters of conventional systems are also reviewed to compare them, together with the previously established energy consumption ranges, with the scenario of an improved system using the ALBA granulation technique in microalgae culture, where it is sought to form consortia between microalgae and bacteria added to facilitate natural sedimentation and/or reduce the use of more technologies for harvesting, thus minimizing energy consumption and the impact of the consumption of that stage in the system.application/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-SinDerivadas 2.5 ColombiaEstudio del desempeño energético de las tecnologías convencionales y mejoradas con granulación alba para la cosecha de microalgas cultivadas en el tratamiento de aguas residuales con fines de producción de biogásStudy of the energy performance of conventional and improved technologies with alba granulation for the harvest of microalgae cultivated in the treatment of wastewater for biogas production purposesIngeniero en EnergíaUniversidad Autónoma de Bucaramanga UNABPregrado Ingeniería en Energíainfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/redcol/resource_type/TPEnergy engineeringTechnological innovationsEnergyMicroalgaeBiofuelsRenewable energyMicroorganismsAquatic resourcesSewage waterIngeniería en energíaInnovaciones tecnológicasEnergíaMicroorganismosRecursos acuáticosAguas residualesMicroalgasBiocombustiblesEnergía renovable[1] P. Collet, A. Hélias Arnaud, L. Lardon, M. Ras, R. A. Goy, and J. P. Steyer, “Life-cycle assessment of microalgae culture coupled to biogas production,” Bioresour. Technol., vol. 102, no. 1, pp. 207–214, 2011, doi: 10.1016/j.biortech.2010.06.154.[2] H. H. Khoo, P. N. Sharratt, P. Das, R. K. Balasubramanian, P. K. Naraharisetti, and S. Shaik, “Life cycle energy and CO2 analysis of microalgae-to-biodiesel: Preliminary results and comparisons,” Bioresour. Technol., vol. 102, no. 10, pp. 5800–5807, 2011, doi: 10.1016/j.biortech.2011.02.055.[3] E. P. Bennion, D. M. Ginosar, J. Moses, F. Agblevor, and J. C. Quinn, “Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways,” Appl. Energy, vol. 154, pp. 1062–1071, 2015, doi: 10.1016/j.apenergy.2014.12.009.[4] J. Yuan, A. Kendall, and Y. Zhang, “Mass balance and life cycle assessment of biodiesel from microalgae incorporated with nutrient recycling options and technology uncertainties,” GCB Bioenergy, vol. 7, no. 6, pp. 1245–1259, 2015, doi: 10.1111/gcbb.12229[5] L. Xu, D. W. F. Wim Brilman, J. A. M. Withag, G. Brem, and S. Kersten, “Assessment of a dry and a wet route for the production of biofuels from microalgae: Energy balance analysis,” Bioresour. Technol., vol. 102, no. 8, pp. 5113–5122, 2011, doi: 10.1016/j.biortech.2011.01.066.[6] L. F. Razon and R. R. Tan, “Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis,” Appl. Energy, vol. 88, no. 10, pp. 3507–3514, 2011, doi: 10.1016/j.apenergy.2010.12.052[7] I. Udom et al., “Harvesting microalgae grown on wastewater,” Bioresour. Technol., vol. 139, pp. 101–106, 2013, doi: 10.1016/j.biortech.2013.04.002[8] J. R. Seth and P. P. Wangikar, “Challenges and opportunities for microalgae-mediated CO2 capture and biorefinery,” Biotechnol. Bioeng., vol. 112, no. 7, pp. 1281–1296, 2015, doi: 10.1002/bit.25619.[9] R. R. Soomro, T. Ndikubwimana, X. Zeng, Y. Lu, L. Lin, and M. K. Danquah, “Development of a two-stage microalgae dewatering process – A life cycle assessment approach,” Front. Plant Sci., vol. 7, no. FEB2016, pp. 1–12, 2016, doi: 10.3389/fpls.2016.00113.[10] M. K. Weschler, W. J. Barr, W. F. Harper, and A. E. Landis, “Process energy comparison for the production and harvesting of algal biomass as a biofuel feedstock,” Bioresour. Technol., vol. 153, pp. 108–115, 2014, doi: 10.1016/j.biortech.2013.11.008.[11] P. Collet, A. Hélias, L. Lardon, J. P. Steyer, and O. Bernard, “Recommendations for Life Cycle Assessment of algal fuels,” Appl. Energy, vol. 154, pp. 1089–1102, 2015, doi: 10.1016/j.apenergy.2015.03.056[12] J. Lee, D. H. Cho, R. Ramanan, B. H. Kim, H. M. Oh, and H. S. Kim, “Microalgae-associated bacteria play a key role in the flocculation of Chlorella vulgaris,” Bioresour. Technol., vol. 131, pp. 195–201, 2013, doi: 10.1016/j.biortech.2012.11.130.[13] D. Maga, “Life cycle assessment of biomethane produced from microalgae grown in municipal waste water,” Biomass Convers. Biorefinery, vol. 7, no. 1, pp. 1–10, 2017, doi: 10.1007/s13399-016-0208-8.[14] N. Deconinck, K. Muylaert, W. Ivens, and D. Vandamme, “Innovative harvesting processes for microalgae biomass production: A perspective from patent literature,” Algal Res., vol. 31, no. September 2017, pp. 469–477, 2018, doi: 10.1016/j.algal.2018.01.016.[15] O. Tiron, C. Bumbac, E. Manea, M. Stefanescu, and M. N. Lazar, “Overcoming Microalgae Harvesting Barrier by Activated Algae Granules,” Sci. Rep., vol. 7, no.[16] E. J. Olguín, “Dual purpose microalgae-bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a Biorefinery,” Biotechnol. Adv., vol. 30, no. 5, pp. 1031–1046, 2012, doi: 10.1016/j.biotechadv.2012.05.001.[17] N. Préat, S. E. Taelman, S. De Meester, F. Allais, and J. Dewulf, “Identification of microalgae biorefinery scenarios and development of mass and energy balance flowsheets,” Algal Res., vol. 45, no. June 2019, p. 101737, 2020, doi: 10.1016/j.algal.2019.101737.[17] N. Préat, S. E. Taelman, S. De Meester, F. Allais, and J. Dewulf, “Identification of microalgae biorefinery scenarios and development of mass and energy balance flowsheets,” Algal Res., vol. 45, no. June 2019, p. 101[17] N. Préat, S. E. Taelman, S. De Meester, F. Allais, and J. Dewulf, “Identification of microalgae biorefinery scenarios and development of mass and energy balance flowsheets,” Algal Res., vol. 45, no. June 2019, p. 101737, 2020, doi: 10.1016/j.algal.2019.101737.[17] N. Préat, S. E. Taelman, S. De Meester, F. Allais, and J. Dewulf, “Identification of microalgae biorefinery scenarios and development of mass and energy balance flowsheets,” Algal Res., vol. 45, no. June 2019, p. 101737, 2020, doi: 10.1016/j.algal.2019.101737.737, 2020, doi: 10.1016/j.algal.2019.101737.[18] P. Collet et al., “Biodiesel from microalgae - Life cycle assessment and recommendations for potential improvements,” Renew. Energy, vol. 71, pp. 525–533, 2014, doi: 10.1016/j.renene.2014.06.009.[19] A. H. Shimako et al., “Environmental assessment of bioenergy production from microalgae based systems,” J. Clean. Prod., vol. 139, no. 2016, pp. 51–60, 2016, doi: 10.1016/j.jclepro.2016.08.003[20] R. Octavio, “Eliminación de nutrientes para el tratamiento biológico de agua residual en crecimiento autotrófico, heterotrófico y mixotrófico.,” 2009.[21] P. Soriano, “Planta demostración de depuración de aguas residuales con microalgas,” pp. 1–22, 2014.[22] J. A. Posada, L. B. Brentner, A. Ramirez, and M. K. Patel, “Conceptual 49 design of sustainable integrated microalgae biorefineries: Parametric analysis of energy use, greenhouse gas emissions and techno-economics,” Algal Res., vol. 17, pp. 113–131, 2016, doi: 10.1016/j.algal.2016.04.022.[23] N. Pragya and K. K. Pandey, “Life cycle assessment of green diesel production from microalgae,” Renew. Energy, vol. 86, pp. 623–632, 2016, doi: 10.1016/j.renene.2015.08.064[24] A. Hernández-Pérez and J. I. Labbé, “Microalgas, cultivo y beneficios,” Rev. Biol. Mar. Oceanogr., vol. 49, no. 2, pp. 157–173, 2014, doi: 10.4067/S0718-19572014000200001.[25] H. C. Greenwell, L. M. L. Laurens, R. J. Shields, R. W. Lovitt, and K. J. Flynn, “Placing microalgae on the biofuels priority list: A review of the technological challenges,” J. R. Soc. Interface, vol. 7, no. 46, pp. 703–726, 2010, doi: 10.1098/rsif.2009.0322[26] Gobierno de España, Aplicaciones de las microalgas: estado de la técnica, AST Ingeni. Gijón, Asturias, 2013[27] H. Mendoza, A. De la Jara, and E. Portillo, Planta Piloto De Cultivo De Microalgas, no. June 2016. 2011[28] B. B. Marangon, T. A. Silva, M. L. Calijuri, S. do C. Alves, V. J. dos Santos, and A. P. de S. Oliveira, “Reuse of treated municipal wastewater in productive activities in Brazil’s semi-arid regions,” J. Water Process Eng., vol. 37, no. June, p. 101483, 2020, doi: 10.1016/j.jwpe.2020.101483.[29] G. G. Zaimes and V. Khanna, Life cycle sustainability aspects of microalgal biofuels. Elsevier Inc., 2015.[30] F. Arcigni, R. Friso, M. Collu, and M. Venturini, “Harmonized and systematic assessment of microalgae energy potential for biodiesel production,” Renew. Sustain. Energy Rev., vol. 101, no. February 2018, pp. 614–624, 2019, doi: 10.1016/j.rser.2018.11.024[31] A. Friedl, E. Padouvas, H. Rotter, and K. Varmuza, “Prediction of heating values of biomass fuel from elemental composition,” Anal. Chim. Acta, vol. 544, no. 1-2 SPEC. ISS., pp. 191–198, 2005, doi: 10.1016/j.aca.2005.01.041.[32] D. Fozer, N. Valentinyi, L. Racz, and P. Mizsey, “Evaluation of microalgae-based biorefinery alternatives,” Clean Technol. Environ. Policy, vol. 19, no. 2, pp. 501–515, 2017, doi: 10.1007/s10098-016-1242-8.[33] V. V. Unnithan, A. Unc, and G. B. Smith, “Mini-review: A priori considerations for bacteria-algae interactions in algal biofuel systems receiving municipal wastewaters,” Algal Res., vol. 4, no. 1, pp. 35–40, 2014, doi: 10.1016/j.algal.2013.11.009.[34] J. C. M. Pires, M. C. M. Alvim-Ferraz, F. G. Martins, and M. Simões, “Wastewater treatment to enhance the economic viability of microalgae culture,” Environ. Sci. Pollut. Res., vol. 20, no. 8, pp. 5096–5105, 2013, doi: 10.1007/s11356-013-1791-x.[35] E. Posadas, P. A. García-Encina, A. Soltau, A. Domínguez, I. Díaz, and R. Muñoz, “Carbon and nutrient removal from centrates and domestic wastewater using algal-bacterial biofilm bioreactors,” Bioresour. Technol., vol. 139, pp. 50–58, 2013, doi: 10.1016/j.biortech.2013.04.008.[36] I. A. Perera, S. Abinandan, S. R. Subashchandrabose, K. Venkateswarlu, R. Naidu, and M. Megharaj, “Advances in the technologies for studying consortia of bacteria and cyanobacteria/microalgae in wastewaters,” Crit. Rev. Biotechnol., vol. 39, no. 5, pp. 709–731, 2019, doi: 10.1080/07388551.2019.1597828.[37] A. Mark Ibekwe, S. E. Murinda, M. A. Murry, G. Schwartz, and T. Lundquist, “Microbial community structures in high rate algae ponds for bioconversion of agricultural wastes from livestock industry for feed production,” Sci. Total Environ., vol. 580, pp. 1185–1196, 2017, doi: 10.1016/j.scitotenv.2016.12.076.[38] L. Liu, H. Fan, Y. Liu, C. Liu, and X. Huang, “Development of algae-bacteria granular consortia in photo-sequencing batch reactor,” Bioresour. Technol., vol. 232, pp. 64–71, 2017, doi: 10.1016/j.biortech.2017.02.025.[39] K. Paranjape, G. B. Leite, and P. C. Hallenbeck, “Effect of nitrogen regime on microalgal lipid production during mixotrophic growth with glycerol,” Bioresour. Technol., vol. 214, pp. 778–786, 2016, doi: 10.1016/j.biortech.201[40] R. J. Powell and R. T. Hill, “Rapid Aggregation of Biofuel-Producing Algae by the Bacterium Bacillus sp. Strain RP1137,” Appl. Environ. Microbiol., vol. 79, no. 19, pp. 6093–60101, 2013, doi: 10.1128/AEM.01496-13.[41] J. S. Arcila and G. Buitrón, “Microalgae–bacteria aggregates: effect of the hydraulic retention time on the municipal wastewater treatment, biomass settleability and methane potential,” J. Chem. Technol. Biotechnol., vol. 91, no. 11, pp. 2862–2870, 2016, doi: 10.1002/jctb.4901.[42] J. M. Valigore, P. A. Gostomski, D. G. Wareham, and A. D. O’Sullivan, “Effects of hydraulic and solids retention times on productivity and settleability of microbial (microalgal-bacterial) biomass grown on primary treated wastewater as a biofuel feedstock,” Water Res., vol. 46, no. 9, pp. 2957–2964, 2012, doi: 10.1016/j.watres.2012.03.023.[43] J. F. López, “Medidas de dispersión,” Economipedia. https://economipedia.com/definiciones/medidas-de-dispersion.html.[44] Flottweg, “Modo de funcionamiento de una centrífuga decantadora.” https://www.flottweg.com/es/la-gama-de-productos/centrifugas/funcionamiento-de-las-centrifugas/.ORIGINAL2020_Tesis_Giselle_Cruz.pdf2020_Tesis_Giselle_Cruz.pdfTesisapplication/pdf828085https://repository.unab.edu.co/bitstream/20.500.12749/11932/1/2020_Tesis_Giselle_Cruz.pdf02796be476f6c957814595416d67e5c5MD51open access2020_Licencia_Giselle_Camargo.pdf2020_Licencia_Giselle_Camargo.pdfLicenciaapplication/pdf2749881https://repository.unab.edu.co/bitstream/20.500.12749/11932/4/2020_Licencia_Giselle_Camargo.pdf07379a008ef38f2ba32ff6e60d27ef5bMD54metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.unab.edu.co/bitstream/20.500.12749/11932/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53open accessTHUMBNAIL2020_Tesis_Giselle_Cruz.pdf.jpg2020_Tesis_Giselle_Cruz.pdf.jpgIM Thumbnailimage/jpeg6629https://repository.unab.edu.co/bitstream/20.500.12749/11932/5/2020_Tesis_Giselle_Cruz.pdf.jpgac873724da8d24e121be49370e9d5ed4MD55open access2020_Licencia_Giselle_Camargo.pdf.jpg2020_Licencia_Giselle_Camargo.pdf.jpgIM Thumbnailimage/jpeg10912https://repository.unab.edu.co/bitstream/20.500.12749/11932/6/2020_Licencia_Giselle_Camargo.pdf.jpg4466a92f4150676a92902382bf4e0a24MD56open access20.500.12749/11932oai:repository.unab.edu.co:20.500.12749/119322021-04-29 09:03:46.751open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=