Evaluación del potencial de diferenciación osteogénico de células madre mesenquimales in vitro en medio suplementado con plasma pobre en plaquetas como posible terapia en aplicaciones óseas
El proceso de curación óseo puede verse limitado debido a condiciones y patologías como la edad, la diabetes, o la anemia severa. Esto hace que no haya una cicatrización efectiva, causando una fractura ósea no consolidada. Tradicionalmente se han empleado métodos quirúrgicos y no quirúrgicos que pue...
- Autores:
-
Arenas Rodríguez, Duván Camilo
Luque Acevedo, Luisa Fernanda
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/21075
- Acceso en línea:
- http://hdl.handle.net/20.500.12749/21075
- Palabra clave:
- Mesenchymal Stem Cells
Osteoblasts
Cellular differentiation
Platelet poor plasma (PPP)
Fetal bovine serum (FBS)
Biomedical engineering
Engineering
Biophysics bioengineering
Medicine biomedical
Blood cells
Blood platelets
Cell culture
Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Biomédica
Células sanguíneas
Plaquetas sanguíneas
Cultivo de células
Osteoblastos
Diferenciación
Células madre mesenquimales (MSC)
Plasma pobre en plaquetas (PPP)
Suero fetal de bovino (FBS)
- Rights
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
UNAB2_00bcdf44de6d4e7eeb0fcdaa12bdf459 |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/21075 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación del potencial de diferenciación osteogénico de células madre mesenquimales in vitro en medio suplementado con plasma pobre en plaquetas como posible terapia en aplicaciones óseas |
dc.title.translated.spa.fl_str_mv |
Evaluation of the osteogenic differentiation potential of mesenchymal stem cells in vitro in medium supplemented with platelet-poor plasma as a potential therapy in bone applications |
title |
Evaluación del potencial de diferenciación osteogénico de células madre mesenquimales in vitro en medio suplementado con plasma pobre en plaquetas como posible terapia en aplicaciones óseas |
spellingShingle |
Evaluación del potencial de diferenciación osteogénico de células madre mesenquimales in vitro en medio suplementado con plasma pobre en plaquetas como posible terapia en aplicaciones óseas Mesenchymal Stem Cells Osteoblasts Cellular differentiation Platelet poor plasma (PPP) Fetal bovine serum (FBS) Biomedical engineering Engineering Biophysics bioengineering Medicine biomedical Blood cells Blood platelets Cell culture Ingeniería biomédica Ingeniería Biofísica Bioingeniería Medicina Biomédica Células sanguíneas Plaquetas sanguíneas Cultivo de células Osteoblastos Diferenciación Células madre mesenquimales (MSC) Plasma pobre en plaquetas (PPP) Suero fetal de bovino (FBS) |
title_short |
Evaluación del potencial de diferenciación osteogénico de células madre mesenquimales in vitro en medio suplementado con plasma pobre en plaquetas como posible terapia en aplicaciones óseas |
title_full |
Evaluación del potencial de diferenciación osteogénico de células madre mesenquimales in vitro en medio suplementado con plasma pobre en plaquetas como posible terapia en aplicaciones óseas |
title_fullStr |
Evaluación del potencial de diferenciación osteogénico de células madre mesenquimales in vitro en medio suplementado con plasma pobre en plaquetas como posible terapia en aplicaciones óseas |
title_full_unstemmed |
Evaluación del potencial de diferenciación osteogénico de células madre mesenquimales in vitro en medio suplementado con plasma pobre en plaquetas como posible terapia en aplicaciones óseas |
title_sort |
Evaluación del potencial de diferenciación osteogénico de células madre mesenquimales in vitro en medio suplementado con plasma pobre en plaquetas como posible terapia en aplicaciones óseas |
dc.creator.fl_str_mv |
Arenas Rodríguez, Duván Camilo Luque Acevedo, Luisa Fernanda |
dc.contributor.advisor.none.fl_str_mv |
Becerra Bayona, Silvia Milena Solarte David, Víctor Alfonso |
dc.contributor.author.none.fl_str_mv |
Arenas Rodríguez, Duván Camilo Luque Acevedo, Luisa Fernanda |
dc.contributor.cvlac.spa.fl_str_mv |
Arenas Rodríguez, Duván Camilo [1007693728] Luque Acevedo, Luisa Fernanda [1005335356] Becerra Bayona, Silvia Milena [0001568861] Solarte David, Víctor Alfonso [0001329391] |
dc.contributor.googlescholar.spa.fl_str_mv |
Becerra Bayona, Silvia Milena [es&oi=ao] |
dc.contributor.orcid.spa.fl_str_mv |
Becerra Bayona, Silvia Milena [0000-0002-4499-5885] Solarte David, Víctor Alfonso [0000-0002-9856-1484] |
dc.contributor.researchgate.spa.fl_str_mv |
Becerra Bayona, Silvia Milena [Silvia-Becerra-Bayona] |
dc.contributor.apolounab.spa.fl_str_mv |
Becerra Bayona, Silvia Milena [silvia-milena-becerra-bayona] Solarte David, Víctor Alfonso [víctor-alfonso-solarte-david] |
dc.subject.keywords.spa.fl_str_mv |
Mesenchymal Stem Cells Osteoblasts Cellular differentiation Platelet poor plasma (PPP) Fetal bovine serum (FBS) Biomedical engineering Engineering Biophysics bioengineering Medicine biomedical Blood cells Blood platelets Cell culture |
topic |
Mesenchymal Stem Cells Osteoblasts Cellular differentiation Platelet poor plasma (PPP) Fetal bovine serum (FBS) Biomedical engineering Engineering Biophysics bioengineering Medicine biomedical Blood cells Blood platelets Cell culture Ingeniería biomédica Ingeniería Biofísica Bioingeniería Medicina Biomédica Células sanguíneas Plaquetas sanguíneas Cultivo de células Osteoblastos Diferenciación Células madre mesenquimales (MSC) Plasma pobre en plaquetas (PPP) Suero fetal de bovino (FBS) |
dc.subject.lemb.spa.fl_str_mv |
Ingeniería biomédica Ingeniería Biofísica Bioingeniería Medicina Biomédica Células sanguíneas Plaquetas sanguíneas Cultivo de células |
dc.subject.proposal.spa.fl_str_mv |
Osteoblastos Diferenciación Células madre mesenquimales (MSC) Plasma pobre en plaquetas (PPP) Suero fetal de bovino (FBS) |
description |
El proceso de curación óseo puede verse limitado debido a condiciones y patologías como la edad, la diabetes, o la anemia severa. Esto hace que no haya una cicatrización efectiva, causando una fractura ósea no consolidada. Tradicionalmente se han empleado métodos quirúrgicos y no quirúrgicos que pueden no llegar a ser del todo efectivos. Esto ha llevado a que diversas investigaciones se enfoquen en el potencial uso de Células Madre Mesenquimales (MSCs) junto a suplementos para cultivo celular, los cuales han presentado dificultades al momento de ser empleados en la proliferación y diferenciación de estas. Es por esto que se han aplicado diferentes tratamientos en la medicina regenerativa usando suplementos derivados de la sangre como es el Plasma Rico en Plaquetas (PRP), ya que, por su alto contenido de factores de crecimiento estimula la diferenciación osteogénica. Sin embargo, no se tenía en cuenta el uso de Plasma Pobre en Plaquetas (PPP) por su bajo contenido de factores a comparación del PRP. Pese a que el volumen obtenido de PPP es mayor al de PRP. Es por esto que en este proyecto se usó PPP como suplemento de cultivo celular, para evaluar y analizar el potencial de diferenciación osteogénico de MSCs in vitro. Por lo tanto, MSCs obtenidas de tejido adiposo se cultivaron y diferenciaron en medio suplementado con tres concentraciones diferentes de PPP: 5%, 10% y 15%, junto con su respectivo control. En breve, se cultivaron 4000 é /2 en generación 7 durante aproximadamente 44 días, se realizó conteo en cámara de Neubauer y se calculó la duplicación celular (NCPD), y el tiempo de duplicación (CPDT). Mientras que para el ensayo de diferenciación osteogénica se sembraron 8000 é /2 de Generación 7 y Generación final (resultante de la proliferación) por triplicado en las concentraciones ya mencionadas de PPP. La deposición de fosfatos de calcio y la morfología se evaluaron mediante tinción de Alizarin Red, Rodamina y DAPI a los 7, 14 y 21 días de diferenciación. Se obtuvo como resultado que pasado el tiempo de estudio (semana 3) la tasa de proliferación similar al control fue de 0.9158 con un intervalo de confianza de 0.0041 para el 5% de PPP, mientras que para las demás concentraciones las células redujeron su capacidad proliferativa. Adicionalmente, se evidenciaron depósitos de calcio, inducidos por las diferentes concentraciones de plasma empleadas. Se tuvo un potencial de diferenciación mayor para las concentraciones de 10% y 15%, y se presentó muerte celular en ambas generaciones evaluadas. Finalmente, en cuanto a la morfología celular, se evidenció que el fenotipo celular cambió transcurrido el tiempo de ensayo, tomando una forma más ancha y alargada en su citoplasma. El 15% de PPP produjo mayor diferenciación celular en la Generación 7 a diferencia de la Generación final. A partir de los resultados obtenidos y las recomendaciones presentadas, se hace necesario realizar más estudios, dando pie a futuras investigaciones para la curación de tejido óseo. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-08-08T16:40:09Z |
dc.date.available.none.fl_str_mv |
2023-08-08T16:40:09Z |
dc.date.issued.none.fl_str_mv |
2023-07-27 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.local.spa.fl_str_mv |
Trabajo de Grado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/21075 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UNAB |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.unab.edu.co |
url |
http://hdl.handle.net/20.500.12749/21075 |
identifier_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB reponame:Repositorio Institucional UNAB repourl:https://repository.unab.edu.co |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Almansoori, A. A., Kwon, O.-J., Nam, J.-H., Seo, Y.-K., Song, H.-R., & Lee, J.-H. (2021). Mesenchymal stem cells and platelet-rich plasma-impregnated polycaprolactone-β tricalcium phosphate bio-scaffold enhanced bone regeneration around dental implants. International Journal of Implant Dentistry, 7(1), 35. https://doi.org/10.1186/s40729-021-00317-y Amable, P. R., Carias, R. B. V., Teixeira, M. V. T., da Cruz Pacheco, Í., Corrêa do Amaral, R. J. F., Granjeiro, J. M., & Borojevic, R. (2013). Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem Cell Research & Therapy, 4(3), 67. https://doi.org/10.1186/scrt218 American Academy of Orthopaedic Surgeons. (2014). Nonunions. OrthoInfo. https://orthoinfo.aaos.org/en/diseases--conditions/nonunions/ Amrichová, J., Špaková, T., Rosocha, J., Harvanová, D., Bačenková, D., Lacko, M., & Horňák, S. (2014). Effect of PRP and PPP on proliferation and migration of human chondrocytes and synoviocytes in vitro. Open Life Sciences, 9(2), 139–148. https://doi.org/10.2478/s11535-013- 0255-0 Becerra-Bayona, S. M., Solarte, V. A., Alviar Rueda, J. D., Sossa, C. L., & Arango-Rodríguez, M. L. (2022). Effect of biomolecules derived from human platelet-rich plasma on the ex vivo expansion of human adipose-derived mesenchymal stem cells for clinical applications. Biologicals, 75, 37– 48. https://doi.org/10.1016/j.biologicals.2021.11.001 Durgam, S. S., Altmann, N. N., Coughlin, H. E., Rollins, A., & Hostnik, L. D. (2019). Insulin enhances the in vitro osteogenic capacity of flexor tendon-derived progenitor cells. Stem Cells International, 2019. https://doi.org/10.1155/2019/1602751 El-Sharkawy, H., Kantarci, A., Deady, J., Hasturk, H., Liu, H., Alshahat, M., & Van Dyke, T. E. (2007). Platelet-Rich Plasma: Growth Factors and Pro- and Anti-Inflammatory Properties. Journal of Periodontology, 78(4), 661–669. https://doi.org/10.1902/jop.2007.060302 Gómez-Barrena, E., Padilla-Eguiluz, N. G., & Rosset, P. (2020). Frontiers in non-union research. EFORT Open Reviews, 5(10), 574–583. https://doi.org/10.1302/2058-5241.5.190062 Han, S., Kim, J., Lee, G., & Kim, D. (2020). Mechanical Properties of Materials for Stem Cell Differentiation. Advanced Biosystems, 4(11), 2000247. https://doi.org/10.1002/adbi.202000247 Hanna, H., Mir, L. M., & Andre, F. M. (2018). In vitro osteoblastic differentiation of mesenchymal stem cells generates cell layers with distinct properties. Stem Cell Research & Therapy, 9(1), 203. https://doi.org/10.1186/s13287-018-0942-x Hwang, N. S., Zhang, C., Hwang, Y., & Varghese, S. (2009). Mesenchymal stem cell differentiation and roles in regenerative medicine. WIREs Systems Biology and Medicine, 1(1), 97–106. https://doi.org/10.1002/wsbm.26 Kazem-Arki, M., Kabiri, M., Rad, I., Roodbari, N. H., Hosseinpoor, H., Mirzaei, S., Parivar, K., & Hanaee-Ahvaz, H. (2018). Enhancement of osteogenic differentiation of adipose-derived stem cells by PRP modified nanofibrous scaffold. Cytotechnology, 70(6), 1487–1498. https://doi.org/10.1007/s10616-018-0226-4 Lan, Y., Huang, N., Fu, Y., Liu, K., Zhang, H., Li, Y., & Yang, S. (2022). Morphology-Based Deep Learning Approach for Predicting Osteogenic Differentiation. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.802794 Li, S., Yang, H., Duan, Q., Bao, H., Li, A., Li, W., Chen, J., & He, Y. (2022). A comparative study of the effects of platelet-rich fibrin, concentrated growth factor and platelet-poor plasma on the healing of tooth extraction sockets in rabbits. BMC Oral Health, 22(1), 87. https://doi.org/10.1186/s12903-022-02126-0 Lu, Y., & Lekszycki, T. (2015). Modeling of an initial stage of bone fracture healing. Continuum Mechanics and Thermodynamics, 27(4–5), 851–859. https://doi.org/10.1007/s00161-014-0380-7 Martínez, C. E., Gómez, R., Kalergis, A. M., & Smith, P. C. (2019). Comparative effect of plateletrich plasma, platelet-poor plasma, and fetal bovine serum on the proliferative response of periodontal ligament cell subpopulations. Clinical Oral Investigations, 23(5), 2455–2463. https://doi.org/10.1007/s00784-018-2637-1 Martínez, C. E., González, S. A., Palma, V., & Smith, P. C. (2016). Platelet-Poor and Platelet-Rich Plasma Stimulate Bone Lineage Differentiation in Periodontal Ligament Stem Cells. Journal of Periodontology, 87(2), e18–e26. https://doi.org/10.1902/jop.2015.150360 Mushahary, D., Spittler, A., Kasper, C., Weber, V., & Charwat, V. (2018). Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry Part A, 93(1), 19–31. https://doi.org/10.1002/cyto.a.23242 Naji, A., Eitoku, M., Favier, B., Deschaseaux, F., Rouas-Freiss, N., & Suganuma, N. (2019). Biological functions of mesenchymal stem cells and clinical implications. Cellular and Molecular Life Sciences, 76(17), 3323–3348. https://doi.org/10.1007/s00018-019-03125-1 Narváez-Tovar, C. A., Velasco-Peña, M. A., & Garzón-Alvarado, A. (2011). Modelos computacionales de diferenciación y adaptación ósea Computational models of bone differentiation and adaptation. Revista Cubana de Investigaciones Biomédicas, 30(1), 126–140. http://scielo.sld.cu Nicholson, J., Makaram, N., Simpson, A., & Keating, J. (2021). Fracture nonunion in long bones: A literature review of risk factors and surgical management. Injury, 52, S3–S11. https://doi.org/10.1016/j.injury.2020.11.029 Song, D., Shujaat, S., Huang, Y., Van Dessel, J., Politis, C., Lambrichts, I., & Jacobs, R. (2021). Effect of platelet-rich and platelet-poor plasma on 3D bone-to-implant contact: a preclinical micro-CT study. International Journal of Implant Dentistry, 7(1), 11. https://doi.org/10.1186/s40729-021-00291-5 Thurairajah, K., Briggs, G. D., & Balogh, Z. J. (2021). Stem cell therapy for fracture non-union: The current evidence from human studies. Journal of Orthopaedic Surgery, 29(3), 230949902110365. https://doi.org/10.1177/23094990211036545 Ullah, I., Subbarao, R. B., & Rho, G. J. (2015). Human mesenchymal stem cells - current trends and future prospective. Bioscience Reports, 35(2). https://doi.org/10.1042/BSR20150025 Universidad Complutense de Madrid. (2014). FISIOPATOLOGÍA ÓSEA CONCEPTO Y FUNCIONES. https://www.ucm.es/data/cont/docs/420-2014-02-18- 01%20fisiopatologia%20osea.pdf Weinkamer, R., Kollmannsberger, P., & Fratzl, P. (2019). Towards a Connectomic Description of the Osteocyte Lacunocanalicular Network in Bone. Current Osteoporosis Reports, 17(4), 186–194. https://doi.org/10.1007/s11914-019-00515-z Yang, Y. H. K., Ogando, C. R., Wang See, C., Chang, T. Y., & Barabino, G. A. (2018). Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Research and Therapy, 9(1). https://doi.org/10.1186/s13287-018-0876-3 Zhang, J., Zhang, J., Zhang, N., Li, T., Zhou, X., Jia, J., Liang, Y., Sun, X., & Chen, H. (2020). The Effects of Platelet-Rich and Platelet-Poor Plasma on Biological Characteristics of BM-MSCs In Vitro. Analytical Cellular Pathology, 2020, 1–11. https://doi.org/10.1155/2020/8546231 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.creativecommons.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) Atribución-NoComercial-SinDerivadas 2.5 Colombia http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.spatial.spa.fl_str_mv |
Colombia |
dc.coverage.campus.spa.fl_str_mv |
UNAB Campus Bucaramanga |
dc.publisher.grantor.spa.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.publisher.faculty.spa.fl_str_mv |
Facultad Ingeniería |
dc.publisher.program.spa.fl_str_mv |
Pregrado Ingeniería Biomédica |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/21075/2/2023_Tesis_Luisa_Luque_Duvan_Arenas.pdf https://repository.unab.edu.co/bitstream/20.500.12749/21075/6/2023_Licencia.pdf https://repository.unab.edu.co/bitstream/20.500.12749/21075/5/license.txt https://repository.unab.edu.co/bitstream/20.500.12749/21075/7/2023_Tesis_Luisa_Luque_Duvan_Arenas.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/21075/8/2023_Licencia.pdf.jpg |
bitstream.checksum.fl_str_mv |
a473c6a1e5115ea1df6f99cbcc6aaaff 10ae0e40d68a5f94ddeefb09be572088 3755c0cfdb77e29f2b9125d7a45dd316 42af10081fee4b9b0efef15109f62ac0 972bded393df2be444970dba0c7a7e59 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1814277630678007808 |
spelling |
Becerra Bayona, Silvia Milenaf59fde3b-924f-4fcc-96e9-5fd6250b2daeSolarte David, Víctor Alfonso54590e96-eda3-4b43-9ffa-14bd35ed7d08Arenas Rodríguez, Duván Camilo3b53ead6-4419-4930-b121-3c261ff6b0bbLuque Acevedo, Luisa Fernanda723ee2d4-9cd1-4c0e-8b6d-b0bc166987a1Arenas Rodríguez, Duván Camilo [1007693728]Luque Acevedo, Luisa Fernanda [1005335356]Becerra Bayona, Silvia Milena [0001568861]Solarte David, Víctor Alfonso [0001329391]Becerra Bayona, Silvia Milena [es&oi=ao]Becerra Bayona, Silvia Milena [0000-0002-4499-5885]Solarte David, Víctor Alfonso [0000-0002-9856-1484]Becerra Bayona, Silvia Milena [Silvia-Becerra-Bayona]Becerra Bayona, Silvia Milena [silvia-milena-becerra-bayona]Solarte David, Víctor Alfonso [víctor-alfonso-solarte-david]ColombiaUNAB Campus Bucaramanga2023-08-08T16:40:09Z2023-08-08T16:40:09Z2023-07-27http://hdl.handle.net/20.500.12749/21075instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coEl proceso de curación óseo puede verse limitado debido a condiciones y patologías como la edad, la diabetes, o la anemia severa. Esto hace que no haya una cicatrización efectiva, causando una fractura ósea no consolidada. Tradicionalmente se han empleado métodos quirúrgicos y no quirúrgicos que pueden no llegar a ser del todo efectivos. Esto ha llevado a que diversas investigaciones se enfoquen en el potencial uso de Células Madre Mesenquimales (MSCs) junto a suplementos para cultivo celular, los cuales han presentado dificultades al momento de ser empleados en la proliferación y diferenciación de estas. Es por esto que se han aplicado diferentes tratamientos en la medicina regenerativa usando suplementos derivados de la sangre como es el Plasma Rico en Plaquetas (PRP), ya que, por su alto contenido de factores de crecimiento estimula la diferenciación osteogénica. Sin embargo, no se tenía en cuenta el uso de Plasma Pobre en Plaquetas (PPP) por su bajo contenido de factores a comparación del PRP. Pese a que el volumen obtenido de PPP es mayor al de PRP. Es por esto que en este proyecto se usó PPP como suplemento de cultivo celular, para evaluar y analizar el potencial de diferenciación osteogénico de MSCs in vitro. Por lo tanto, MSCs obtenidas de tejido adiposo se cultivaron y diferenciaron en medio suplementado con tres concentraciones diferentes de PPP: 5%, 10% y 15%, junto con su respectivo control. En breve, se cultivaron 4000 é /2 en generación 7 durante aproximadamente 44 días, se realizó conteo en cámara de Neubauer y se calculó la duplicación celular (NCPD), y el tiempo de duplicación (CPDT). Mientras que para el ensayo de diferenciación osteogénica se sembraron 8000 é /2 de Generación 7 y Generación final (resultante de la proliferación) por triplicado en las concentraciones ya mencionadas de PPP. La deposición de fosfatos de calcio y la morfología se evaluaron mediante tinción de Alizarin Red, Rodamina y DAPI a los 7, 14 y 21 días de diferenciación. Se obtuvo como resultado que pasado el tiempo de estudio (semana 3) la tasa de proliferación similar al control fue de 0.9158 con un intervalo de confianza de 0.0041 para el 5% de PPP, mientras que para las demás concentraciones las células redujeron su capacidad proliferativa. Adicionalmente, se evidenciaron depósitos de calcio, inducidos por las diferentes concentraciones de plasma empleadas. Se tuvo un potencial de diferenciación mayor para las concentraciones de 10% y 15%, y se presentó muerte celular en ambas generaciones evaluadas. Finalmente, en cuanto a la morfología celular, se evidenció que el fenotipo celular cambió transcurrido el tiempo de ensayo, tomando una forma más ancha y alargada en su citoplasma. El 15% de PPP produjo mayor diferenciación celular en la Generación 7 a diferencia de la Generación final. A partir de los resultados obtenidos y las recomendaciones presentadas, se hace necesario realizar más estudios, dando pie a futuras investigaciones para la curación de tejido óseo.Capítulo 1. Problema U Oportunidad ........................................................................................................8 1.1. Planteamiento Del Problema .............................................................................................................8 1.2. Justificación.........................................................................................................................................9 1.3. Pregunta Problema...........................................................................................................................10 1.4. Objetivo General...............................................................................................................................10 1.5. Objetivos Específicos........................................................................................................................10 Capítulo 2. Marco Teórico.........................................................................................................................11 2.1. Tejido Óseo........................................................................................................................................11 2.2. Células Madre Mesenquimales........................................................................................................12 2.2.1 Función proliferativa ...................................................................................................................13 2.2.2 Multipotencia................................................................................................................................14 2.2.3 Funciones tróficas y de inmunosupresión ..................................................................................14 2.3. Diferenciación MSCs hacia linaje osteogénico ...............................................................................14 2.4. Plasma rico en plaquetas (PRP) y Plasma pobre en plaquetas (PPP)..........................................16 Capítulo 3. Estado del Arte .......................................................................................................................18 Capítulo 4. Metodología.............................................................................................................................21 4.1 Extracción de PPP .............................................................................................................................21 4.2 Cultivo de las MSCs...........................................................................................................................21 4.3 Ensayo de proliferación celular ........................................................................................................21 4.4 Ensayo de diferenciación osteogénica ..............................................................................................22 4.5 Ensayo de deposición de fosfatos de calcio ......................................................................................23 4.6 Estudio de morfología celular...........................................................................................................24 4.7 Análisis estadístico. ............................................................................................................................25 Capítulo 5. Resultados y Análisis de Resultados ...................................................................................266 5.1 Resultados.........................................................................................................................................266 5.1.1 Ensayo de proliferación celular...................................................................................................26 5.1.2 Ensayo de deposición de fosfatos de calcio.................................................................................30 5.1.3 Estudio de morfología celular .....................................................................................................36 5.2 Análisis de resultados ......................................................................................................................41 Capítulo 6. Conclusiones y recomendaciones ........................................................................................43 Listado de Referencias.............................................................................................................................45 Anexos .......................................................................................................................................................48PregradoThe bone healing process can be limited due to conditions and pathologies such as age, diabetes, or severe anemia. This results in ineffective healing, causing an unconsolidated bone fracture. Traditionally, surgical and non-surgical methods have been used, which may not be entirely effective. This has led several investigations to focus on the potential use of Mesenchymal Stem Cells (MSCs) together with supplements for cell culture, which have presented difficulties at the time of being used in the proliferation and differentiation of these. This is why different treatments have been applied in regenerative medicine using blood-derived supplements such as Platelet Rich Plasma (PRP), since, due to its high content of growth factors, it stimulates osteogenic differentiation. However, the use of Platelet Poor Plasma (PPP) was not taken into account due to its low content of factors compared to PRP. Despite the fact that the volume obtained from PPP is greater than that of PRP. That is why in this project PPP was used as a cell culture supplement to evaluate and analyze the osteogenic differentiation potential of MSCs in vitro. Therefore, MSCs obtained from adipose tissue were cultured and differentiated in medium supplemented with three different concentrations of PPP: 5%, 10% and 15%, together with their respective control. Briefly, 4000 nucleated cells/cm^2 were cultured in generation 7 for approximately 44 days, Neubauer chamber counting was performed and cell doubling (NCPD), and doubling time (CPDT) were calculated. While for the osteogenic differentiation assay, 8000 nucleated cells/cm^2 of Generation 7 and Final Generation (resulting from proliferation) were seeded in triplicate in the aforementioned concentrations of PPP. Calcium phosphate deposition and morphology were evaluated by Alizarin Red, Rhodamine and DAPI staining at 7, 14 and 21 days of differentiation. It was obtained as a result that after the study time (week 3) the proliferation rate similar to the control was 0.9158 with a confidence interval of 0.0041 for 5% PPP, while for the other concentrations the cells reduced their proliferative capacity. Additionally, calcium deposits were evidenced, induced by the different concentrations of plasma used. There was a higher differentiation potential for the 10% and 15% concentrations, and cell death was present in both generations evaluated. Finally, with regard to cell morphology, it was evident that the cell phenotype changed after the test time, taking a wider and more elongated shape in its cytoplasm. The 15% PPP produced greater cell differentiation in Generation 7 as opposed to the final generation. Based on the results obtained and the recommendations presented, it is necessary to carry out further studies, giving rise to future research for the healing of bone tissue.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Evaluación del potencial de diferenciación osteogénico de células madre mesenquimales in vitro en medio suplementado con plasma pobre en plaquetas como posible terapia en aplicaciones óseasEvaluation of the osteogenic differentiation potential of mesenchymal stem cells in vitro in medium supplemented with platelet-poor plasma as a potential therapy in bone applicationsIngeniero BiomédicoUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaPregrado Ingeniería Biomédicainfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/acceptedVersionhttp://purl.org/redcol/resource_type/TPMesenchymal Stem CellsOsteoblastsCellular differentiationPlatelet poor plasma (PPP)Fetal bovine serum (FBS)Biomedical engineeringEngineeringBiophysics bioengineeringMedicine biomedicalBlood cellsBlood plateletsCell cultureIngeniería biomédicaIngenieríaBiofísicaBioingenieríaMedicinaBiomédicaCélulas sanguíneasPlaquetas sanguíneasCultivo de célulasOsteoblastosDiferenciaciónCélulas madre mesenquimales (MSC)Plasma pobre en plaquetas (PPP)Suero fetal de bovino (FBS)Almansoori, A. A., Kwon, O.-J., Nam, J.-H., Seo, Y.-K., Song, H.-R., & Lee, J.-H. (2021). Mesenchymal stem cells and platelet-rich plasma-impregnated polycaprolactone-β tricalcium phosphate bio-scaffold enhanced bone regeneration around dental implants. International Journal of Implant Dentistry, 7(1), 35. https://doi.org/10.1186/s40729-021-00317-yAmable, P. R., Carias, R. B. V., Teixeira, M. V. T., da Cruz Pacheco, Í., Corrêa do Amaral, R. J. F., Granjeiro, J. M., & Borojevic, R. (2013). Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem Cell Research & Therapy, 4(3), 67. https://doi.org/10.1186/scrt218American Academy of Orthopaedic Surgeons. (2014). Nonunions. OrthoInfo. https://orthoinfo.aaos.org/en/diseases--conditions/nonunions/Amrichová, J., Špaková, T., Rosocha, J., Harvanová, D., Bačenková, D., Lacko, M., & Horňák, S. (2014). Effect of PRP and PPP on proliferation and migration of human chondrocytes and synoviocytes in vitro. Open Life Sciences, 9(2), 139–148. https://doi.org/10.2478/s11535-013- 0255-0Becerra-Bayona, S. M., Solarte, V. A., Alviar Rueda, J. D., Sossa, C. L., & Arango-Rodríguez, M. L. (2022). Effect of biomolecules derived from human platelet-rich plasma on the ex vivo expansion of human adipose-derived mesenchymal stem cells for clinical applications. Biologicals, 75, 37– 48. https://doi.org/10.1016/j.biologicals.2021.11.001Durgam, S. S., Altmann, N. N., Coughlin, H. E., Rollins, A., & Hostnik, L. D. (2019). Insulin enhances the in vitro osteogenic capacity of flexor tendon-derived progenitor cells. Stem Cells International, 2019. https://doi.org/10.1155/2019/1602751El-Sharkawy, H., Kantarci, A., Deady, J., Hasturk, H., Liu, H., Alshahat, M., & Van Dyke, T. E. (2007). Platelet-Rich Plasma: Growth Factors and Pro- and Anti-Inflammatory Properties. Journal of Periodontology, 78(4), 661–669. https://doi.org/10.1902/jop.2007.060302Gómez-Barrena, E., Padilla-Eguiluz, N. G., & Rosset, P. (2020). Frontiers in non-union research. EFORT Open Reviews, 5(10), 574–583. https://doi.org/10.1302/2058-5241.5.190062Han, S., Kim, J., Lee, G., & Kim, D. (2020). Mechanical Properties of Materials for Stem Cell Differentiation. Advanced Biosystems, 4(11), 2000247. https://doi.org/10.1002/adbi.202000247Hanna, H., Mir, L. M., & Andre, F. M. (2018). In vitro osteoblastic differentiation of mesenchymal stem cells generates cell layers with distinct properties. Stem Cell Research & Therapy, 9(1), 203. https://doi.org/10.1186/s13287-018-0942-xHwang, N. S., Zhang, C., Hwang, Y., & Varghese, S. (2009). Mesenchymal stem cell differentiation and roles in regenerative medicine. WIREs Systems Biology and Medicine, 1(1), 97–106. https://doi.org/10.1002/wsbm.26Kazem-Arki, M., Kabiri, M., Rad, I., Roodbari, N. H., Hosseinpoor, H., Mirzaei, S., Parivar, K., & Hanaee-Ahvaz, H. (2018). Enhancement of osteogenic differentiation of adipose-derived stem cells by PRP modified nanofibrous scaffold. Cytotechnology, 70(6), 1487–1498. https://doi.org/10.1007/s10616-018-0226-4Lan, Y., Huang, N., Fu, Y., Liu, K., Zhang, H., Li, Y., & Yang, S. (2022). Morphology-Based Deep Learning Approach for Predicting Osteogenic Differentiation. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.802794Li, S., Yang, H., Duan, Q., Bao, H., Li, A., Li, W., Chen, J., & He, Y. (2022). A comparative study of the effects of platelet-rich fibrin, concentrated growth factor and platelet-poor plasma on the healing of tooth extraction sockets in rabbits. BMC Oral Health, 22(1), 87. https://doi.org/10.1186/s12903-022-02126-0Lu, Y., & Lekszycki, T. (2015). Modeling of an initial stage of bone fracture healing. Continuum Mechanics and Thermodynamics, 27(4–5), 851–859. https://doi.org/10.1007/s00161-014-0380-7Martínez, C. E., Gómez, R., Kalergis, A. M., & Smith, P. C. (2019). Comparative effect of plateletrich plasma, platelet-poor plasma, and fetal bovine serum on the proliferative response of periodontal ligament cell subpopulations. Clinical Oral Investigations, 23(5), 2455–2463. https://doi.org/10.1007/s00784-018-2637-1Martínez, C. E., González, S. A., Palma, V., & Smith, P. C. (2016). Platelet-Poor and Platelet-Rich Plasma Stimulate Bone Lineage Differentiation in Periodontal Ligament Stem Cells. Journal of Periodontology, 87(2), e18–e26. https://doi.org/10.1902/jop.2015.150360Mushahary, D., Spittler, A., Kasper, C., Weber, V., & Charwat, V. (2018). Isolation, cultivation, and characterization of human mesenchymal stem cells. Cytometry Part A, 93(1), 19–31. https://doi.org/10.1002/cyto.a.23242Naji, A., Eitoku, M., Favier, B., Deschaseaux, F., Rouas-Freiss, N., & Suganuma, N. (2019). Biological functions of mesenchymal stem cells and clinical implications. Cellular and Molecular Life Sciences, 76(17), 3323–3348. https://doi.org/10.1007/s00018-019-03125-1Narváez-Tovar, C. A., Velasco-Peña, M. A., & Garzón-Alvarado, A. (2011). Modelos computacionales de diferenciación y adaptación ósea Computational models of bone differentiation and adaptation. Revista Cubana de Investigaciones Biomédicas, 30(1), 126–140. http://scielo.sld.cuNicholson, J., Makaram, N., Simpson, A., & Keating, J. (2021). Fracture nonunion in long bones: A literature review of risk factors and surgical management. Injury, 52, S3–S11. https://doi.org/10.1016/j.injury.2020.11.029Song, D., Shujaat, S., Huang, Y., Van Dessel, J., Politis, C., Lambrichts, I., & Jacobs, R. (2021). Effect of platelet-rich and platelet-poor plasma on 3D bone-to-implant contact: a preclinical micro-CT study. International Journal of Implant Dentistry, 7(1), 11. https://doi.org/10.1186/s40729-021-00291-5Thurairajah, K., Briggs, G. D., & Balogh, Z. J. (2021). Stem cell therapy for fracture non-union: The current evidence from human studies. Journal of Orthopaedic Surgery, 29(3), 230949902110365. https://doi.org/10.1177/23094990211036545Ullah, I., Subbarao, R. B., & Rho, G. J. (2015). Human mesenchymal stem cells - current trends and future prospective. Bioscience Reports, 35(2). https://doi.org/10.1042/BSR20150025Universidad Complutense de Madrid. (2014). FISIOPATOLOGÍA ÓSEA CONCEPTO Y FUNCIONES. https://www.ucm.es/data/cont/docs/420-2014-02-18- 01%20fisiopatologia%20osea.pdfWeinkamer, R., Kollmannsberger, P., & Fratzl, P. (2019). Towards a Connectomic Description of the Osteocyte Lacunocanalicular Network in Bone. Current Osteoporosis Reports, 17(4), 186–194. https://doi.org/10.1007/s11914-019-00515-zYang, Y. H. K., Ogando, C. R., Wang See, C., Chang, T. Y., & Barabino, G. A. (2018). Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Research and Therapy, 9(1). https://doi.org/10.1186/s13287-018-0876-3Zhang, J., Zhang, J., Zhang, N., Li, T., Zhou, X., Jia, J., Liang, Y., Sun, X., & Chen, H. (2020). The Effects of Platelet-Rich and Platelet-Poor Plasma on Biological Characteristics of BM-MSCs In Vitro. Analytical Cellular Pathology, 2020, 1–11. https://doi.org/10.1155/2020/8546231ORIGINAL2023_Tesis_Luisa_Luque_Duvan_Arenas.pdf2023_Tesis_Luisa_Luque_Duvan_Arenas.pdfTesisapplication/pdf1487550https://repository.unab.edu.co/bitstream/20.500.12749/21075/2/2023_Tesis_Luisa_Luque_Duvan_Arenas.pdfa473c6a1e5115ea1df6f99cbcc6aaaffMD52open access2023_Licencia.pdf2023_Licencia.pdfLicenciaapplication/pdf703210https://repository.unab.edu.co/bitstream/20.500.12749/21075/6/2023_Licencia.pdf10ae0e40d68a5f94ddeefb09be572088MD56metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8829https://repository.unab.edu.co/bitstream/20.500.12749/21075/5/license.txt3755c0cfdb77e29f2b9125d7a45dd316MD55open accessTHUMBNAIL2023_Tesis_Luisa_Luque_Duvan_Arenas.pdf.jpg2023_Tesis_Luisa_Luque_Duvan_Arenas.pdf.jpgIM Thumbnailimage/jpeg5353https://repository.unab.edu.co/bitstream/20.500.12749/21075/7/2023_Tesis_Luisa_Luque_Duvan_Arenas.pdf.jpg42af10081fee4b9b0efef15109f62ac0MD57open access2023_Licencia.pdf.jpg2023_Licencia.pdf.jpgIM Thumbnailimage/jpeg12869https://repository.unab.edu.co/bitstream/20.500.12749/21075/8/2023_Licencia.pdf.jpg972bded393df2be444970dba0c7a7e59MD58metadata only access20.500.12749/21075oai:repository.unab.edu.co:20.500.12749/210752023-08-08 22:01:06.836open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbi4gRWwgQVVUT1IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVTkFCIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpFbCBBVVRPUiBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBCdWNhcmFtYW5nYSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24uCg== |