Convergencia y espacios de Banach
Los espacios normados son de gran importancia en el estudio del análisis matemático; noobstante cuando se adentra más allá y se miran criterios que se pueden utilizar en ellos,como son los de convergencia, se llega a otros espacios llamados espacios de Banach, que sonespacios normados completos, los...
- Autores:
-
Parra Buitrago, John Edwin
- Tipo de recurso:
- http://purl.org/coar/version/c_b1a7d7d4d402bcce
- Fecha de publicación:
- 2006
- Institución:
- Universidad Industrial de Santander
- Repositorio:
- Repositorio UIS
- Idioma:
- spa
- OAI Identifier:
- oai:noesis.uis.edu.co:20.500.14071/18835
- Palabra clave:
- Espacio vectorial
Espacio métrico
Espacio normado
Espacio de Banach
Espacio dual
sucesión
serie
funcional lineal
convergencia.
Vectorial space
Metric space
Normed space
Banach space
Sequence
series
linear functional
convergence.
- Rights
- License
- Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
Summary: | Los espacios normados son de gran importancia en el estudio del análisis matemático; noobstante cuando se adentra más allá y se miran criterios que se pueden utilizar en ellos,como son los de convergencia, se llega a otros espacios llamados espacios de Banach, que sonespacios normados completos, los cuales son de gran importancia en el estudio del análisisfuncional. La convergencia es un concepto muy importante en la matemática, el cual se trabaja enalgunos cursos de pregrado como el cálculo y el análisis matemático; sobre los espacios deBanach, usualmente sólo se menciona su definición y se muestran pocos ejemplos. Elproposito de esta monografía es recopilar información de diferentes fuentes bibliográficas sobreconceptos y ejemplos fundamentales de Espacios de Banach y de convergencia en espaciosnormados, presentando las diferentes nociones de convergencia y algunas relaciones básicas entreellas. El presente trabajo está dividido de la siguiente forma: En el primer capítulo se muestran los conceptos fundamentales sobre espacios vectoriales,espacios métricos y espacios normados. Los cuales son de importancia en el desarrollo de lossiguientes capítulos. El segundo capítulo habla sobre espacios de Banach, se muestra su definición y algunos ejemplosque permiten visualizar lo que es un espacio de Banach, así como también se muestra el conceptode serie en dichos espacios. En el tercer capítulo se hace una exposición sobre espacio dual de un espacio normado,convergencia débil y fuerte, transformaciones lineales acotadas y convergencia en B(X, Y).Se muestran algunas propiedades básicas y se hacen comparaciones entre los dos criterios deconvergencia fuerte y débil buscando alguna relación entre ellos. |
---|