Diseño de un framework de clasificación supervisada para mejorar la gestión de cobranza de los asociados de la cartera microfinanzas de una cooperativa financiera
La cartera de microcréditos registra los mayores niveles de riesgo para las entidades financieras en comparación con otras unidades de negocio, son créditos para clientes con bajos ingresos, patrimonio limitado y no ofrecen garantías que respalden la operación contractual. Cuando estos incumplen o r...
- Autores:
-
Granda Rodriguez, Oscar Anibal
Niño Hernandez, Juan Manuel
- Tipo de recurso:
- http://purl.org/coar/version/c_b1a7d7d4d402bcce
- Fecha de publicación:
- 2016
- Institución:
- Universidad Industrial de Santander
- Repositorio:
- Repositorio UIS
- Idioma:
- spa
- OAI Identifier:
- oai:noesis.uis.edu.co:20.500.14071/35512
- Palabra clave:
- Microfinanzas
Riesgo De Crédito
Cobranza
Default De Cartera
Scoring De Seguimiento
Análisis Discriminante
Regresión Logística.
The microloan portfolio has the highest level of risk for financial institutions compared to other business units as they are credits for customers with low income
limited patrimony and don´t provide guarantees to support the contractual operation and
when they fail or they are late in the payments require greater use of collection tools. Microcredit clients pay their obligation by a few days late and still intensity in the collection is very high causing upset in the borrower affecting future business relationships and excesses of operating loads collection for the entity that generates little effectiveness of collection strategies and limited resource allocation. This work improves collection strategy in microfinance portfolio of a cooperative financial institution in nature by using statistical tools. It starts from a base of partners (customers) with sociodemographic historical information
financial variables
granting and credit behavior
from which it´s explained the probability that a customer in default. The entire process to determine the improvement in collection strategy using statistical methods generates the design of a framework covering ten steps. Initially it part from the selection of a target portfolio
in this case the business unit microfinance
it is defined the historical frame of information
the explanatory variables are obtained and the information is purged
then the default or failure is calculated as that there is no single criterion for defining which client is good and which client is bad; then the variables are analyzed with descriptive statistics. Then it uses statistical tools as Classification Trees
Discriminant Analysis and Logistic Regression was applied using SPSS software
the model that best explains the data using diagnostic test is selected. Subsequently
a collection scoring is designed by calculating the probability of default distributed in percentiles or "score distribution" that give an expected risk to finally design a differential collection strategy.
- Rights
- License
- Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
id |
UISANTADR2_edfaf8153b36c167343845aaebe7b54e |
---|---|
oai_identifier_str |
oai:noesis.uis.edu.co:20.500.14071/35512 |
network_acronym_str |
UISANTADR2 |
network_name_str |
Repositorio UIS |
repository_id_str |
|
dc.title.none.fl_str_mv |
Diseño de un framework de clasificación supervisada para mejorar la gestión de cobranza de los asociados de la cartera microfinanzas de una cooperativa financiera |
dc.title.english.none.fl_str_mv |
Microfinance, Credit Risk, Collections, Default Portfolio, Monitor Scoring, Discriminant Analysis, Logistic Regression. |
title |
Diseño de un framework de clasificación supervisada para mejorar la gestión de cobranza de los asociados de la cartera microfinanzas de una cooperativa financiera |
spellingShingle |
Diseño de un framework de clasificación supervisada para mejorar la gestión de cobranza de los asociados de la cartera microfinanzas de una cooperativa financiera Microfinanzas Riesgo De Crédito Cobranza Default De Cartera Scoring De Seguimiento Análisis Discriminante Regresión Logística. The microloan portfolio has the highest level of risk for financial institutions compared to other business units as they are credits for customers with low income limited patrimony and don´t provide guarantees to support the contractual operation and when they fail or they are late in the payments require greater use of collection tools. Microcredit clients pay their obligation by a few days late and still intensity in the collection is very high causing upset in the borrower affecting future business relationships and excesses of operating loads collection for the entity that generates little effectiveness of collection strategies and limited resource allocation. This work improves collection strategy in microfinance portfolio of a cooperative financial institution in nature by using statistical tools. It starts from a base of partners (customers) with sociodemographic historical information financial variables granting and credit behavior from which it´s explained the probability that a customer in default. The entire process to determine the improvement in collection strategy using statistical methods generates the design of a framework covering ten steps. Initially it part from the selection of a target portfolio in this case the business unit microfinance it is defined the historical frame of information the explanatory variables are obtained and the information is purged then the default or failure is calculated as that there is no single criterion for defining which client is good and which client is bad; then the variables are analyzed with descriptive statistics. Then it uses statistical tools as Classification Trees Discriminant Analysis and Logistic Regression was applied using SPSS software the model that best explains the data using diagnostic test is selected. Subsequently a collection scoring is designed by calculating the probability of default distributed in percentiles or "score distribution" that give an expected risk to finally design a differential collection strategy. |
title_short |
Diseño de un framework de clasificación supervisada para mejorar la gestión de cobranza de los asociados de la cartera microfinanzas de una cooperativa financiera |
title_full |
Diseño de un framework de clasificación supervisada para mejorar la gestión de cobranza de los asociados de la cartera microfinanzas de una cooperativa financiera |
title_fullStr |
Diseño de un framework de clasificación supervisada para mejorar la gestión de cobranza de los asociados de la cartera microfinanzas de una cooperativa financiera |
title_full_unstemmed |
Diseño de un framework de clasificación supervisada para mejorar la gestión de cobranza de los asociados de la cartera microfinanzas de una cooperativa financiera |
title_sort |
Diseño de un framework de clasificación supervisada para mejorar la gestión de cobranza de los asociados de la cartera microfinanzas de una cooperativa financiera |
dc.creator.fl_str_mv |
Granda Rodriguez, Oscar Anibal Niño Hernandez, Juan Manuel |
dc.contributor.advisor.none.fl_str_mv |
Lamos Diaz, Henry |
dc.contributor.author.none.fl_str_mv |
Granda Rodriguez, Oscar Anibal Niño Hernandez, Juan Manuel |
dc.subject.none.fl_str_mv |
Microfinanzas Riesgo De Crédito Cobranza Default De Cartera Scoring De Seguimiento Análisis Discriminante Regresión Logística. |
topic |
Microfinanzas Riesgo De Crédito Cobranza Default De Cartera Scoring De Seguimiento Análisis Discriminante Regresión Logística. The microloan portfolio has the highest level of risk for financial institutions compared to other business units as they are credits for customers with low income limited patrimony and don´t provide guarantees to support the contractual operation and when they fail or they are late in the payments require greater use of collection tools. Microcredit clients pay their obligation by a few days late and still intensity in the collection is very high causing upset in the borrower affecting future business relationships and excesses of operating loads collection for the entity that generates little effectiveness of collection strategies and limited resource allocation. This work improves collection strategy in microfinance portfolio of a cooperative financial institution in nature by using statistical tools. It starts from a base of partners (customers) with sociodemographic historical information financial variables granting and credit behavior from which it´s explained the probability that a customer in default. The entire process to determine the improvement in collection strategy using statistical methods generates the design of a framework covering ten steps. Initially it part from the selection of a target portfolio in this case the business unit microfinance it is defined the historical frame of information the explanatory variables are obtained and the information is purged then the default or failure is calculated as that there is no single criterion for defining which client is good and which client is bad; then the variables are analyzed with descriptive statistics. Then it uses statistical tools as Classification Trees Discriminant Analysis and Logistic Regression was applied using SPSS software the model that best explains the data using diagnostic test is selected. Subsequently a collection scoring is designed by calculating the probability of default distributed in percentiles or "score distribution" that give an expected risk to finally design a differential collection strategy. |
dc.subject.keyword.none.fl_str_mv |
The microloan portfolio has the highest level of risk for financial institutions compared to other business units as they are credits for customers with low income limited patrimony and don´t provide guarantees to support the contractual operation and when they fail or they are late in the payments require greater use of collection tools. Microcredit clients pay their obligation by a few days late and still intensity in the collection is very high causing upset in the borrower affecting future business relationships and excesses of operating loads collection for the entity that generates little effectiveness of collection strategies and limited resource allocation. This work improves collection strategy in microfinance portfolio of a cooperative financial institution in nature by using statistical tools. It starts from a base of partners (customers) with sociodemographic historical information financial variables granting and credit behavior from which it´s explained the probability that a customer in default. The entire process to determine the improvement in collection strategy using statistical methods generates the design of a framework covering ten steps. Initially it part from the selection of a target portfolio in this case the business unit microfinance it is defined the historical frame of information the explanatory variables are obtained and the information is purged then the default or failure is calculated as that there is no single criterion for defining which client is good and which client is bad; then the variables are analyzed with descriptive statistics. Then it uses statistical tools as Classification Trees Discriminant Analysis and Logistic Regression was applied using SPSS software the model that best explains the data using diagnostic test is selected. Subsequently a collection scoring is designed by calculating the probability of default distributed in percentiles or "score distribution" that give an expected risk to finally design a differential collection strategy. |
description |
La cartera de microcréditos registra los mayores niveles de riesgo para las entidades financieras en comparación con otras unidades de negocio, son créditos para clientes con bajos ingresos, patrimonio limitado y no ofrecen garantías que respalden la operación contractual. Cuando estos incumplen o retrasa los pagos, requieren de mayores herramientas de cobranza. La mayoría de los clientes de microcréditos pagan su obligación presentando unos pocos días de retraso, pese a eso la intensidad del cobro es elevada ocasionando disguste en el prestatario, afectando relaciones comerciales futuras y generando excesos de cargas operativas para la entidad, disminuyendo la efectividad en las estrategias de cobranza y limitando la asignación de recursos. Este trabajo mejora la estrategia de cobranza de la cartera microfinanzas de una cooperativa financiera usando herramientas estadísticas. Parte de una base de asociados (clientes) con información histórica de variables sociodemográficas, financiera, otorgamiento y comportamiento crediticio, para explicar la probabilidad de que un cliente incurra en incumplimiento. El proceso para determinar el mejoramiento en la estrategia de cobranza genera el diseño de un framework abarcando diez pasos. Inicialmente la selección de una cartera objetivo, en este caso la unidad de negocios microfinanzas, define un marco histórico, obtiene las variables explicativas y depura la información, posteriormente calcula el default o incumplimiento dado que no existe un criterio único para definir qué cliente es bueno y cuál malo; luego analiza las variables mediante estadísticos descriptivos, aplica herramientas estadísticas de árboles de clasificación, análisis discriminante y regresión logística utilizando el software SPSS, selecciona el modelo que mejor explique los datos usando pruebas diagnósticas. Posteriormente, se diseña un scoring de cobranza mediante el cálculo de la probabilidad de incumplimiento distribuida en perce permite otorgar un puntaje o calificación asociada al riesgo esperado. Finalmente diseña una estrategia de cobro diferencial. |
publishDate |
2016 |
dc.date.available.none.fl_str_mv |
2016 2024-03-03T22:50:00Z |
dc.date.created.none.fl_str_mv |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2024-03-03T22:50:00Z |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.hasversion.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
format |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.identifier.uri.none.fl_str_mv |
https://noesis.uis.edu.co/handle/20.500.14071/35512 |
dc.identifier.instname.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.reponame.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.repourl.none.fl_str_mv |
https://noesis.uis.edu.co |
url |
https://noesis.uis.edu.co/handle/20.500.14071/35512 https://noesis.uis.edu.co |
identifier_str_mv |
Universidad Industrial de Santander |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.none.fl_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0 |
dc.rights.creativecommons.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by-nc/4.0 Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Industrial de Santander |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.program.none.fl_str_mv |
Especialización en Estadística |
dc.publisher.school.none.fl_str_mv |
Escuela de Matemáticas |
publisher.none.fl_str_mv |
Universidad Industrial de Santander |
institution |
Universidad Industrial de Santander |
bitstream.url.fl_str_mv |
https://noesis.uis.edu.co/bitstreams/dda3ce0d-6df9-4f90-83ea-255b450f0752/download https://noesis.uis.edu.co/bitstreams/e87e0fe7-204f-4ecf-b381-2ef3002845c4/download https://noesis.uis.edu.co/bitstreams/6e4314b3-5b7d-4bd9-ada4-04e3e10bedfd/download |
bitstream.checksum.fl_str_mv |
775ebb9d7d2898d6112a6f3c14ed2321 f527ea25e4254e5e166fb329a8f4d30c 5787086cbb0e3e757c4b750602bec666 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace at UIS |
repository.mail.fl_str_mv |
noesis@uis.edu.co |
_version_ |
1814095185470029824 |
spelling |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by-nc/4.0Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Lamos Diaz, HenryGranda Rodriguez, Oscar AnibalNiño Hernandez, Juan Manuel2024-03-03T22:50:00Z20162024-03-03T22:50:00Z20162016https://noesis.uis.edu.co/handle/20.500.14071/35512Universidad Industrial de SantanderUniversidad Industrial de Santanderhttps://noesis.uis.edu.coLa cartera de microcréditos registra los mayores niveles de riesgo para las entidades financieras en comparación con otras unidades de negocio, son créditos para clientes con bajos ingresos, patrimonio limitado y no ofrecen garantías que respalden la operación contractual. Cuando estos incumplen o retrasa los pagos, requieren de mayores herramientas de cobranza. La mayoría de los clientes de microcréditos pagan su obligación presentando unos pocos días de retraso, pese a eso la intensidad del cobro es elevada ocasionando disguste en el prestatario, afectando relaciones comerciales futuras y generando excesos de cargas operativas para la entidad, disminuyendo la efectividad en las estrategias de cobranza y limitando la asignación de recursos. Este trabajo mejora la estrategia de cobranza de la cartera microfinanzas de una cooperativa financiera usando herramientas estadísticas. Parte de una base de asociados (clientes) con información histórica de variables sociodemográficas, financiera, otorgamiento y comportamiento crediticio, para explicar la probabilidad de que un cliente incurra en incumplimiento. El proceso para determinar el mejoramiento en la estrategia de cobranza genera el diseño de un framework abarcando diez pasos. Inicialmente la selección de una cartera objetivo, en este caso la unidad de negocios microfinanzas, define un marco histórico, obtiene las variables explicativas y depura la información, posteriormente calcula el default o incumplimiento dado que no existe un criterio único para definir qué cliente es bueno y cuál malo; luego analiza las variables mediante estadísticos descriptivos, aplica herramientas estadísticas de árboles de clasificación, análisis discriminante y regresión logística utilizando el software SPSS, selecciona el modelo que mejor explique los datos usando pruebas diagnósticas. Posteriormente, se diseña un scoring de cobranza mediante el cálculo de la probabilidad de incumplimiento distribuida en perce permite otorgar un puntaje o calificación asociada al riesgo esperado. Finalmente diseña una estrategia de cobro diferencial.EspecializaciónEspecialista en EstadísticaDesign of a framework of supervised classification to improve the collection management of microloans portfolio in a financial cooperativeapplication/pdfspaUniversidad Industrial de SantanderFacultad de CienciasEspecialización en EstadísticaEscuela de MatemáticasMicrofinanzasRiesgo De CréditoCobranzaDefault De CarteraScoring De SeguimientoAnálisis DiscriminanteRegresión Logística.The microloan portfolio has the highest level of risk for financial institutions compared to other business units as they are credits for customers with low incomelimited patrimony and don´t provide guarantees to support the contractual operation andwhen they fail or they are late in the payments require greater use of collection tools. Microcredit clients pay their obligation by a few days late and still intensity in the collection is very high causing upset in the borrower affecting future business relationships and excesses of operating loads collection for the entity that generates little effectiveness of collection strategies and limited resource allocation. This work improves collection strategy in microfinance portfolio of a cooperative financial institution in nature by using statistical tools. It starts from a base of partners (customers) with sociodemographic historical informationfinancial variablesgranting and credit behaviorfrom which it´s explained the probability that a customer in default. The entire process to determine the improvement in collection strategy using statistical methods generates the design of a framework covering ten steps. Initially it part from the selection of a target portfolioin this case the business unit microfinanceit is defined the historical frame of informationthe explanatory variables are obtained and the information is purgedthen the default or failure is calculated as that there is no single criterion for defining which client is good and which client is bad; then the variables are analyzed with descriptive statistics. Then it uses statistical tools as Classification TreesDiscriminant Analysis and Logistic Regression was applied using SPSS softwarethe model that best explains the data using diagnostic test is selected. Subsequentlya collection scoring is designed by calculating the probability of default distributed in percentiles or "score distribution" that give an expected risk to finally design a differential collection strategy.Diseño de un framework de clasificación supervisada para mejorar la gestión de cobranza de los asociados de la cartera microfinanzas de una cooperativa financieraMicrofinance, Credit Risk, Collections, Default Portfolio, Monitor Scoring, Discriminant Analysis, Logistic Regression.Tesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_b1a7d7d4d402bcceORIGINALCarta de autorización.pdfapplication/pdf77224https://noesis.uis.edu.co/bitstreams/dda3ce0d-6df9-4f90-83ea-255b450f0752/download775ebb9d7d2898d6112a6f3c14ed2321MD51Documento.pdfapplication/pdf3902267https://noesis.uis.edu.co/bitstreams/e87e0fe7-204f-4ecf-b381-2ef3002845c4/downloadf527ea25e4254e5e166fb329a8f4d30cMD52Nota de proyecto.pdfapplication/pdf131614https://noesis.uis.edu.co/bitstreams/6e4314b3-5b7d-4bd9-ada4-04e3e10bedfd/download5787086cbb0e3e757c4b750602bec666MD5320.500.14071/35512oai:noesis.uis.edu.co:20.500.14071/355122024-03-03 17:50:00.654http://creativecommons.org/licenses/by-nc/4.0http://creativecommons.org/licenses/by/4.0/open.accesshttps://noesis.uis.edu.coDSpace at UISnoesis@uis.edu.co |