Diseño de un framework de clasificación supervisada para mejorar la gestión de cobranza de los asociados de la cartera microfinanzas de una cooperativa financiera

La cartera de microcréditos registra los mayores niveles de riesgo para las entidades financieras en comparación con otras unidades de negocio, son créditos para clientes con bajos ingresos, patrimonio limitado y no ofrecen garantías que respalden la operación contractual. Cuando estos incumplen o r...

Full description

Autores:
Granda Rodriguez, Oscar Anibal
Niño Hernandez, Juan Manuel
Tipo de recurso:
http://purl.org/coar/version/c_b1a7d7d4d402bcce
Fecha de publicación:
2016
Institución:
Universidad Industrial de Santander
Repositorio:
Repositorio UIS
Idioma:
spa
OAI Identifier:
oai:noesis.uis.edu.co:20.500.14071/35512
Acceso en línea:
https://noesis.uis.edu.co/handle/20.500.14071/35512
https://noesis.uis.edu.co
Palabra clave:
Microfinanzas
Riesgo De Crédito
Cobranza
Default De Cartera
Scoring De Seguimiento
Análisis Discriminante
Regresión Logística.
The microloan portfolio has the highest level of risk for financial institutions compared to other business units as they are credits for customers with low income
limited patrimony and don´t provide guarantees to support the contractual operation and
when they fail or they are late in the payments require greater use of collection tools. Microcredit clients pay their obligation by a few days late and still intensity in the collection is very high causing upset in the borrower affecting future business relationships and excesses of operating loads collection for the entity that generates little effectiveness of collection strategies and limited resource allocation. This work improves collection strategy in microfinance portfolio of a cooperative financial institution in nature by using statistical tools. It starts from a base of partners (customers) with sociodemographic historical information
financial variables
granting and credit behavior
from which it´s explained the probability that a customer in default. The entire process to determine the improvement in collection strategy using statistical methods generates the design of a framework covering ten steps. Initially it part from the selection of a target portfolio
in this case the business unit microfinance
it is defined the historical frame of information
the explanatory variables are obtained and the information is purged
then the default or failure is calculated as that there is no single criterion for defining which client is good and which client is bad; then the variables are analyzed with descriptive statistics. Then it uses statistical tools as Classification Trees
Discriminant Analysis and Logistic Regression was applied using SPSS software
the model that best explains the data using diagnostic test is selected. Subsequently
a collection scoring is designed by calculating the probability of default distributed in percentiles or "score distribution" that give an expected risk to finally design a differential collection strategy.
Rights
License
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
id UISANTADR2_edfaf8153b36c167343845aaebe7b54e
oai_identifier_str oai:noesis.uis.edu.co:20.500.14071/35512
network_acronym_str UISANTADR2
network_name_str Repositorio UIS
repository_id_str
dc.title.none.fl_str_mv Diseño de un framework de clasificación supervisada para mejorar la gestión de cobranza de los asociados de la cartera microfinanzas de una cooperativa financiera
dc.title.english.none.fl_str_mv Microfinance, Credit Risk, Collections, Default Portfolio, Monitor Scoring, Discriminant Analysis, Logistic Regression.
title Diseño de un framework de clasificación supervisada para mejorar la gestión de cobranza de los asociados de la cartera microfinanzas de una cooperativa financiera
spellingShingle Diseño de un framework de clasificación supervisada para mejorar la gestión de cobranza de los asociados de la cartera microfinanzas de una cooperativa financiera
Microfinanzas
Riesgo De Crédito
Cobranza
Default De Cartera
Scoring De Seguimiento
Análisis Discriminante
Regresión Logística.
The microloan portfolio has the highest level of risk for financial institutions compared to other business units as they are credits for customers with low income
limited patrimony and don´t provide guarantees to support the contractual operation and
when they fail or they are late in the payments require greater use of collection tools. Microcredit clients pay their obligation by a few days late and still intensity in the collection is very high causing upset in the borrower affecting future business relationships and excesses of operating loads collection for the entity that generates little effectiveness of collection strategies and limited resource allocation. This work improves collection strategy in microfinance portfolio of a cooperative financial institution in nature by using statistical tools. It starts from a base of partners (customers) with sociodemographic historical information
financial variables
granting and credit behavior
from which it´s explained the probability that a customer in default. The entire process to determine the improvement in collection strategy using statistical methods generates the design of a framework covering ten steps. Initially it part from the selection of a target portfolio
in this case the business unit microfinance
it is defined the historical frame of information
the explanatory variables are obtained and the information is purged
then the default or failure is calculated as that there is no single criterion for defining which client is good and which client is bad; then the variables are analyzed with descriptive statistics. Then it uses statistical tools as Classification Trees
Discriminant Analysis and Logistic Regression was applied using SPSS software
the model that best explains the data using diagnostic test is selected. Subsequently
a collection scoring is designed by calculating the probability of default distributed in percentiles or "score distribution" that give an expected risk to finally design a differential collection strategy.
title_short Diseño de un framework de clasificación supervisada para mejorar la gestión de cobranza de los asociados de la cartera microfinanzas de una cooperativa financiera
title_full Diseño de un framework de clasificación supervisada para mejorar la gestión de cobranza de los asociados de la cartera microfinanzas de una cooperativa financiera
title_fullStr Diseño de un framework de clasificación supervisada para mejorar la gestión de cobranza de los asociados de la cartera microfinanzas de una cooperativa financiera
title_full_unstemmed Diseño de un framework de clasificación supervisada para mejorar la gestión de cobranza de los asociados de la cartera microfinanzas de una cooperativa financiera
title_sort Diseño de un framework de clasificación supervisada para mejorar la gestión de cobranza de los asociados de la cartera microfinanzas de una cooperativa financiera
dc.creator.fl_str_mv Granda Rodriguez, Oscar Anibal
Niño Hernandez, Juan Manuel
dc.contributor.advisor.none.fl_str_mv Lamos Diaz, Henry
dc.contributor.author.none.fl_str_mv Granda Rodriguez, Oscar Anibal
Niño Hernandez, Juan Manuel
dc.subject.none.fl_str_mv Microfinanzas
Riesgo De Crédito
Cobranza
Default De Cartera
Scoring De Seguimiento
Análisis Discriminante
Regresión Logística.
topic Microfinanzas
Riesgo De Crédito
Cobranza
Default De Cartera
Scoring De Seguimiento
Análisis Discriminante
Regresión Logística.
The microloan portfolio has the highest level of risk for financial institutions compared to other business units as they are credits for customers with low income
limited patrimony and don´t provide guarantees to support the contractual operation and
when they fail or they are late in the payments require greater use of collection tools. Microcredit clients pay their obligation by a few days late and still intensity in the collection is very high causing upset in the borrower affecting future business relationships and excesses of operating loads collection for the entity that generates little effectiveness of collection strategies and limited resource allocation. This work improves collection strategy in microfinance portfolio of a cooperative financial institution in nature by using statistical tools. It starts from a base of partners (customers) with sociodemographic historical information
financial variables
granting and credit behavior
from which it´s explained the probability that a customer in default. The entire process to determine the improvement in collection strategy using statistical methods generates the design of a framework covering ten steps. Initially it part from the selection of a target portfolio
in this case the business unit microfinance
it is defined the historical frame of information
the explanatory variables are obtained and the information is purged
then the default or failure is calculated as that there is no single criterion for defining which client is good and which client is bad; then the variables are analyzed with descriptive statistics. Then it uses statistical tools as Classification Trees
Discriminant Analysis and Logistic Regression was applied using SPSS software
the model that best explains the data using diagnostic test is selected. Subsequently
a collection scoring is designed by calculating the probability of default distributed in percentiles or "score distribution" that give an expected risk to finally design a differential collection strategy.
dc.subject.keyword.none.fl_str_mv The microloan portfolio has the highest level of risk for financial institutions compared to other business units as they are credits for customers with low income
limited patrimony and don´t provide guarantees to support the contractual operation and
when they fail or they are late in the payments require greater use of collection tools. Microcredit clients pay their obligation by a few days late and still intensity in the collection is very high causing upset in the borrower affecting future business relationships and excesses of operating loads collection for the entity that generates little effectiveness of collection strategies and limited resource allocation. This work improves collection strategy in microfinance portfolio of a cooperative financial institution in nature by using statistical tools. It starts from a base of partners (customers) with sociodemographic historical information
financial variables
granting and credit behavior
from which it´s explained the probability that a customer in default. The entire process to determine the improvement in collection strategy using statistical methods generates the design of a framework covering ten steps. Initially it part from the selection of a target portfolio
in this case the business unit microfinance
it is defined the historical frame of information
the explanatory variables are obtained and the information is purged
then the default or failure is calculated as that there is no single criterion for defining which client is good and which client is bad; then the variables are analyzed with descriptive statistics. Then it uses statistical tools as Classification Trees
Discriminant Analysis and Logistic Regression was applied using SPSS software
the model that best explains the data using diagnostic test is selected. Subsequently
a collection scoring is designed by calculating the probability of default distributed in percentiles or "score distribution" that give an expected risk to finally design a differential collection strategy.
description La cartera de microcréditos registra los mayores niveles de riesgo para las entidades financieras en comparación con otras unidades de negocio, son créditos para clientes con bajos ingresos, patrimonio limitado y no ofrecen garantías que respalden la operación contractual. Cuando estos incumplen o retrasa los pagos, requieren de mayores herramientas de cobranza. La mayoría de los clientes de microcréditos pagan su obligación presentando unos pocos días de retraso, pese a eso la intensidad del cobro es elevada ocasionando disguste en el prestatario, afectando relaciones comerciales futuras y generando excesos de cargas operativas para la entidad, disminuyendo la efectividad en las estrategias de cobranza y limitando la asignación de recursos. Este trabajo mejora la estrategia de cobranza de la cartera microfinanzas de una cooperativa financiera usando herramientas estadísticas. Parte de una base de asociados (clientes) con información histórica de variables sociodemográficas, financiera, otorgamiento y comportamiento crediticio, para explicar la probabilidad de que un cliente incurra en incumplimiento. El proceso para determinar el mejoramiento en la estrategia de cobranza genera el diseño de un framework abarcando diez pasos. Inicialmente la selección de una cartera objetivo, en este caso la unidad de negocios microfinanzas, define un marco histórico, obtiene las variables explicativas y depura la información, posteriormente calcula el default o incumplimiento dado que no existe un criterio único para definir qué cliente es bueno y cuál malo; luego analiza las variables mediante estadísticos descriptivos, aplica herramientas estadísticas de árboles de clasificación, análisis discriminante y regresión logística utilizando el software SPSS, selecciona el modelo que mejor explique los datos usando pruebas diagnósticas. Posteriormente, se diseña un scoring de cobranza mediante el cálculo de la probabilidad de incumplimiento distribuida en perce permite otorgar un puntaje o calificación asociada al riesgo esperado. Finalmente diseña una estrategia de cobro diferencial.
publishDate 2016
dc.date.available.none.fl_str_mv 2016
2024-03-03T22:50:00Z
dc.date.created.none.fl_str_mv 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2024-03-03T22:50:00Z
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.hasversion.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coar.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
format http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.identifier.uri.none.fl_str_mv https://noesis.uis.edu.co/handle/20.500.14071/35512
dc.identifier.instname.none.fl_str_mv Universidad Industrial de Santander
dc.identifier.reponame.none.fl_str_mv Universidad Industrial de Santander
dc.identifier.repourl.none.fl_str_mv https://noesis.uis.edu.co
url https://noesis.uis.edu.co/handle/20.500.14071/35512
https://noesis.uis.edu.co
identifier_str_mv Universidad Industrial de Santander
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0
dc.rights.creativecommons.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-nc/4.0
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Industrial de Santander
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.program.none.fl_str_mv Especialización en Estadística
dc.publisher.school.none.fl_str_mv Escuela de Matemáticas
publisher.none.fl_str_mv Universidad Industrial de Santander
institution Universidad Industrial de Santander
bitstream.url.fl_str_mv https://noesis.uis.edu.co/bitstreams/dda3ce0d-6df9-4f90-83ea-255b450f0752/download
https://noesis.uis.edu.co/bitstreams/e87e0fe7-204f-4ecf-b381-2ef3002845c4/download
https://noesis.uis.edu.co/bitstreams/6e4314b3-5b7d-4bd9-ada4-04e3e10bedfd/download
bitstream.checksum.fl_str_mv 775ebb9d7d2898d6112a6f3c14ed2321
f527ea25e4254e5e166fb329a8f4d30c
5787086cbb0e3e757c4b750602bec666
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace at UIS
repository.mail.fl_str_mv noesis@uis.edu.co
_version_ 1814095185470029824
spelling Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by-nc/4.0Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Lamos Diaz, HenryGranda Rodriguez, Oscar AnibalNiño Hernandez, Juan Manuel2024-03-03T22:50:00Z20162024-03-03T22:50:00Z20162016https://noesis.uis.edu.co/handle/20.500.14071/35512Universidad Industrial de SantanderUniversidad Industrial de Santanderhttps://noesis.uis.edu.coLa cartera de microcréditos registra los mayores niveles de riesgo para las entidades financieras en comparación con otras unidades de negocio, son créditos para clientes con bajos ingresos, patrimonio limitado y no ofrecen garantías que respalden la operación contractual. Cuando estos incumplen o retrasa los pagos, requieren de mayores herramientas de cobranza. La mayoría de los clientes de microcréditos pagan su obligación presentando unos pocos días de retraso, pese a eso la intensidad del cobro es elevada ocasionando disguste en el prestatario, afectando relaciones comerciales futuras y generando excesos de cargas operativas para la entidad, disminuyendo la efectividad en las estrategias de cobranza y limitando la asignación de recursos. Este trabajo mejora la estrategia de cobranza de la cartera microfinanzas de una cooperativa financiera usando herramientas estadísticas. Parte de una base de asociados (clientes) con información histórica de variables sociodemográficas, financiera, otorgamiento y comportamiento crediticio, para explicar la probabilidad de que un cliente incurra en incumplimiento. El proceso para determinar el mejoramiento en la estrategia de cobranza genera el diseño de un framework abarcando diez pasos. Inicialmente la selección de una cartera objetivo, en este caso la unidad de negocios microfinanzas, define un marco histórico, obtiene las variables explicativas y depura la información, posteriormente calcula el default o incumplimiento dado que no existe un criterio único para definir qué cliente es bueno y cuál malo; luego analiza las variables mediante estadísticos descriptivos, aplica herramientas estadísticas de árboles de clasificación, análisis discriminante y regresión logística utilizando el software SPSS, selecciona el modelo que mejor explique los datos usando pruebas diagnósticas. Posteriormente, se diseña un scoring de cobranza mediante el cálculo de la probabilidad de incumplimiento distribuida en perce permite otorgar un puntaje o calificación asociada al riesgo esperado. Finalmente diseña una estrategia de cobro diferencial.EspecializaciónEspecialista en EstadísticaDesign of a framework of supervised classification to improve the collection management of microloans portfolio in a financial cooperativeapplication/pdfspaUniversidad Industrial de SantanderFacultad de CienciasEspecialización en EstadísticaEscuela de MatemáticasMicrofinanzasRiesgo De CréditoCobranzaDefault De CarteraScoring De SeguimientoAnálisis DiscriminanteRegresión Logística.The microloan portfolio has the highest level of risk for financial institutions compared to other business units as they are credits for customers with low incomelimited patrimony and don´t provide guarantees to support the contractual operation andwhen they fail or they are late in the payments require greater use of collection tools. Microcredit clients pay their obligation by a few days late and still intensity in the collection is very high causing upset in the borrower affecting future business relationships and excesses of operating loads collection for the entity that generates little effectiveness of collection strategies and limited resource allocation. This work improves collection strategy in microfinance portfolio of a cooperative financial institution in nature by using statistical tools. It starts from a base of partners (customers) with sociodemographic historical informationfinancial variablesgranting and credit behaviorfrom which it´s explained the probability that a customer in default. The entire process to determine the improvement in collection strategy using statistical methods generates the design of a framework covering ten steps. Initially it part from the selection of a target portfolioin this case the business unit microfinanceit is defined the historical frame of informationthe explanatory variables are obtained and the information is purgedthen the default or failure is calculated as that there is no single criterion for defining which client is good and which client is bad; then the variables are analyzed with descriptive statistics. Then it uses statistical tools as Classification TreesDiscriminant Analysis and Logistic Regression was applied using SPSS softwarethe model that best explains the data using diagnostic test is selected. Subsequentlya collection scoring is designed by calculating the probability of default distributed in percentiles or "score distribution" that give an expected risk to finally design a differential collection strategy.Diseño de un framework de clasificación supervisada para mejorar la gestión de cobranza de los asociados de la cartera microfinanzas de una cooperativa financieraMicrofinance, Credit Risk, Collections, Default Portfolio, Monitor Scoring, Discriminant Analysis, Logistic Regression.Tesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_b1a7d7d4d402bcceORIGINALCarta de autorización.pdfapplication/pdf77224https://noesis.uis.edu.co/bitstreams/dda3ce0d-6df9-4f90-83ea-255b450f0752/download775ebb9d7d2898d6112a6f3c14ed2321MD51Documento.pdfapplication/pdf3902267https://noesis.uis.edu.co/bitstreams/e87e0fe7-204f-4ecf-b381-2ef3002845c4/downloadf527ea25e4254e5e166fb329a8f4d30cMD52Nota de proyecto.pdfapplication/pdf131614https://noesis.uis.edu.co/bitstreams/6e4314b3-5b7d-4bd9-ada4-04e3e10bedfd/download5787086cbb0e3e757c4b750602bec666MD5320.500.14071/35512oai:noesis.uis.edu.co:20.500.14071/355122024-03-03 17:50:00.654http://creativecommons.org/licenses/by-nc/4.0http://creativecommons.org/licenses/by/4.0/open.accesshttps://noesis.uis.edu.coDSpace at UISnoesis@uis.edu.co