Estrategia de aprendizaje profundo para la segmentación no supervisada en patología digital

La histopatología es área fundamental de la medicina que se ocupa del estudio de las enfermedades a través de la observación microscópica de tejidos y células. Utilizando técnicas de tinción y análisis microscópico, los histopatólogos examinan muestras de tejido obtenidas mediante biopsias, autopsia...

Full description

Autores:
Camacho Torres, Julián Camilo
Díaz Gutiérrez, Juan Sebastián
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad Industrial de Santander
Repositorio:
Repositorio UIS
Idioma:
spa
OAI Identifier:
oai:noesis.uis.edu.co:20.500.14071/42417
Acceso en línea:
https://noesis.uis.edu.co/handle/20.500.14071/42417
https://noesis.uis.edu.co
Palabra clave:
Aprendizaje profundo
patología digital
segmentación no supervisada
Deep Learning
digital pathology
unsupervised segmentation
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)
id UISANTADR2_ea55b2ba55de3635221dcd251c68bced
oai_identifier_str oai:noesis.uis.edu.co:20.500.14071/42417
network_acronym_str UISANTADR2
network_name_str Repositorio UIS
repository_id_str
dc.title.none.fl_str_mv Estrategia de aprendizaje profundo para la segmentación no supervisada en patología digital
dc.title.english.none.fl_str_mv Deep learning strategy for unsupervised segmentation in digital pathology
title Estrategia de aprendizaje profundo para la segmentación no supervisada en patología digital
spellingShingle Estrategia de aprendizaje profundo para la segmentación no supervisada en patología digital
Aprendizaje profundo
patología digital
segmentación no supervisada
Deep Learning
digital pathology
unsupervised segmentation
title_short Estrategia de aprendizaje profundo para la segmentación no supervisada en patología digital
title_full Estrategia de aprendizaje profundo para la segmentación no supervisada en patología digital
title_fullStr Estrategia de aprendizaje profundo para la segmentación no supervisada en patología digital
title_full_unstemmed Estrategia de aprendizaje profundo para la segmentación no supervisada en patología digital
title_sort Estrategia de aprendizaje profundo para la segmentación no supervisada en patología digital
dc.creator.fl_str_mv Camacho Torres, Julián Camilo
Díaz Gutiérrez, Juan Sebastián
dc.contributor.advisor.none.fl_str_mv Romo Bucheli, David Edmundo
dc.contributor.author.none.fl_str_mv Camacho Torres, Julián Camilo
Díaz Gutiérrez, Juan Sebastián
dc.contributor.evaluator.none.fl_str_mv Moreno Tarazona, Alejandra
Martínez Carrillo, Fabio
dc.subject.none.fl_str_mv Aprendizaje profundo
patología digital
segmentación no supervisada
topic Aprendizaje profundo
patología digital
segmentación no supervisada
Deep Learning
digital pathology
unsupervised segmentation
dc.subject.keyword.none.fl_str_mv Deep Learning
digital pathology
unsupervised segmentation
description La histopatología es área fundamental de la medicina que se ocupa del estudio de las enfermedades a través de la observación microscópica de tejidos y células. Utilizando técnicas de tinción y análisis microscópico, los histopatólogos examinan muestras de tejido obtenidas mediante biopsias, autopsias o cirugías para identificar y diagnosticar enfermedades. Por otro lado, la inteligencia artificial (IA) ha demostrado ser una herramienta valiosa en el campo de la histopatología al mejorar la precisión y eficiencia en el análisis de muestras de tejido. Mediante algoritmos de aprendizaje automático, la IA puede ayudar en la detección y clasificación de células y estructuras patológicas, permitiendo una identificación más rápida y precisa de enfermedades. Con este trabajo, esperamos explorar la capacidad de generalización y robustez de una representación obtenida a través de modelos de segmentación no supervisada en el área de la histopatología. Esta técnica puede mejorar el tiempo en el diagnóstico de los pacientes debido a que los métodos no supervisados no requieren de etiquetas para generar una representación que tiene potencialmente una mejor generalización.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-05-17T13:25:25Z
dc.date.available.none.fl_str_mv 2024-05-17T13:25:25Z
dc.date.created.none.fl_str_mv 2024-05-09
dc.date.issued.none.fl_str_mv 2024-05-09
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.hasversion.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv https://noesis.uis.edu.co/handle/20.500.14071/42417
dc.identifier.instname.none.fl_str_mv Universidad Industrial de Santander
dc.identifier.reponame.none.fl_str_mv Universidad Industrial de Santander
dc.identifier.repourl.none.fl_str_mv https://noesis.uis.edu.co
url https://noesis.uis.edu.co/handle/20.500.14071/42417
https://noesis.uis.edu.co
identifier_str_mv Universidad Industrial de Santander
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.license.none.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Industrial de Santander
dc.publisher.faculty.none.fl_str_mv Facultad de Ingeníerias Fisicomecánicas
dc.publisher.program.none.fl_str_mv Ingeniería de Sistemas
dc.publisher.school.none.fl_str_mv Escuela de Ingeniería de Sistemas e Informática
publisher.none.fl_str_mv Universidad Industrial de Santander
institution Universidad Industrial de Santander
bitstream.url.fl_str_mv https://noesis.uis.edu.co/bitstreams/65cdf0ab-2183-46b8-9f2e-29b935c4f698/download
https://noesis.uis.edu.co/bitstreams/74a954f0-20e6-42e2-91ed-3e4dab4eaf09/download
https://noesis.uis.edu.co/bitstreams/4901ec7e-67a5-425d-ade6-745ea7f8a78d/download
https://noesis.uis.edu.co/bitstreams/8ff73e85-2265-4c6a-aec9-f01dad3f3735/download
bitstream.checksum.fl_str_mv 56406185a9106c2fd440c9828c8307c9
7f8e33fe6d5c3b26876a51b748adb644
4f9016e0c2f5c046cfa9e686ab90535e
d6298274a8378d319ac744759540b71b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv DSpace at UIS
repository.mail.fl_str_mv noesis@uis.edu.co
_version_ 1814095236573429760
spelling Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)Romo Bucheli, David EdmundoCamacho Torres, Julián CamiloDíaz Gutiérrez, Juan SebastiánMoreno Tarazona, AlejandraMartínez Carrillo, Fabio2024-05-17T13:25:25Z2024-05-17T13:25:25Z2024-05-092024-05-09https://noesis.uis.edu.co/handle/20.500.14071/42417Universidad Industrial de SantanderUniversidad Industrial de Santanderhttps://noesis.uis.edu.coLa histopatología es área fundamental de la medicina que se ocupa del estudio de las enfermedades a través de la observación microscópica de tejidos y células. Utilizando técnicas de tinción y análisis microscópico, los histopatólogos examinan muestras de tejido obtenidas mediante biopsias, autopsias o cirugías para identificar y diagnosticar enfermedades. Por otro lado, la inteligencia artificial (IA) ha demostrado ser una herramienta valiosa en el campo de la histopatología al mejorar la precisión y eficiencia en el análisis de muestras de tejido. Mediante algoritmos de aprendizaje automático, la IA puede ayudar en la detección y clasificación de células y estructuras patológicas, permitiendo una identificación más rápida y precisa de enfermedades. Con este trabajo, esperamos explorar la capacidad de generalización y robustez de una representación obtenida a través de modelos de segmentación no supervisada en el área de la histopatología. Esta técnica puede mejorar el tiempo en el diagnóstico de los pacientes debido a que los métodos no supervisados no requieren de etiquetas para generar una representación que tiene potencialmente una mejor generalización.PregradoIngeniero de SistemasHistopathology is a fundamental area of medicine that deals with the study of disease through microscopic observation of tissues and cells. Using microscopic staining and analysis techniques, histopathologists examine tissue samples obtained by biopsy, autopsy or surgery to identify and diagnose disease. On the other hand, artificial intelligence (AI) has proven to be a valuable tool in the field of histopathology by improving accuracy and efficiency in the analysis of tissue samples. Through machine learning algorithms, AI can aid in the detection and classification of pathological cells and structures, enabling faster and more accurate identification of diseases. With this work, we hope to explore the generalizability and robustness of a Representation obtained through unsupervised segmentation models in the area of histopathology. This technique can improve efficiency and objectivity in it diagnosis of patients because unsupervised methods do not require labels to generate a representation that potentially has better generalization.application/pdfspaUniversidad Industrial de SantanderFacultad de Ingeníerias FisicomecánicasIngeniería de SistemasEscuela de Ingeniería de Sistemas e InformáticaAprendizaje profundopatología digitalsegmentación no supervisadaDeep Learningdigital pathologyunsupervised segmentationEstrategia de aprendizaje profundo para la segmentación no supervisada en patología digitalDeep learning strategy for unsupervised segmentation in digital pathologyTesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_7a1fORIGINALNota de proyecto.pdfNota de proyecto.pdfapplication/pdf293525https://noesis.uis.edu.co/bitstreams/65cdf0ab-2183-46b8-9f2e-29b935c4f698/download56406185a9106c2fd440c9828c8307c9MD52Carta de autorización.pdfCarta de autorización.pdfapplication/pdf114148https://noesis.uis.edu.co/bitstreams/74a954f0-20e6-42e2-91ed-3e4dab4eaf09/download7f8e33fe6d5c3b26876a51b748adb644MD54Documento.pdfDocumento.pdfapplication/pdf4233493https://noesis.uis.edu.co/bitstreams/4901ec7e-67a5-425d-ade6-745ea7f8a78d/download4f9016e0c2f5c046cfa9e686ab90535eMD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82237https://noesis.uis.edu.co/bitstreams/8ff73e85-2265-4c6a-aec9-f01dad3f3735/downloadd6298274a8378d319ac744759540b71bMD5320.500.14071/42417oai:noesis.uis.edu.co:20.500.14071/424172024-05-17 08:25:28.321http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessembargohttps://noesis.uis.edu.coDSpace at UISnoesis@uis.edu.coRWwgc3VzY3JpdG8gQVVUT1Ig4oCTIEVTVFVESUFOVEUsIGlkZW50aWZpY2FkbyBjb21vIGFwYXJlY2UgYWwgcGllIGRlIG1pIGZpcm1hLCBhY3R1YW5kbyBlbiBub21icmUgcHJvcGlvLCB5IGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgZ3JhZG8sIGRlbCB0cmFiYWpvIGRlIGludmVzdGlnYWNpw7NuLCBvIGRlIGxhIHRlc2lzIGRlbm9taW5hZGEgY29tbyBzZSBlc3BlY2lmaWNhIGVuIGVsIGNhbXBvIOKAmFTDrXR1bG/igJksIHBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIGF1dG9yaXpvIGEgbGEgVU5JVkVSU0lEQUQgSU5EVVNUUklBTCBERSBTQU5UQU5ERVIsIHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBsYSBMZXkgNDQgZGUgMTk5MywgZWwgRGVjcmV0byA0NjAgZGUgMTk5NSwgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBkZXJlY2hvcyBkZSBhdXRvciwgcmVhbGljZSBsYSByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuIHDDumJsaWNhLCBlZGljacOzbiwgZGlzdHJpYnVjacOzbiBiYWpvIGxhIG1vZGFsaWRhZCBkZSBhbHF1aWxlciwgcHLDqXN0YW1vIHDDumJsaWNvIG8gaW1wb3J0YWNpw7NuIGVuIGZvcm1hdG8gaW1wcmVzbyB5IGRpZ2l0YWwsIGxhIHRyYW5zZm9ybWFjacOzbiwgbGEgcHVibGljYWNpw7NuIGNvbW8gb2JyYSBsaXRlcmFyaWEsIGxpYnJvIGVsZWN0csOzbmljbyAoZS1Cb29rKSBvIHJldmlzdGEgZWxlY3Ryw7NuaWNhLCBpbmNsdXllbmRvIGxhIHBvc2liaWxpZGFkIGRlIGRpc3RyaWJ1aXJsYSBwb3IgbWVkaW9zIHRyYWRpY2lvbmFsZXMgbyBwb3IgSW50ZXJuZXQgYSBjdWFscXVpZXIgdMOtdHVsbyAgcG9yIGxhIFVuaXZlcnNpZGFkIHkgY29uIHF1aWVuIHRlbmdhIGNvbnZlbmlvIHBhcmEgZWxsbywgaW5jbHV5ZW5kbyBsYSBwb3NpYmlsaWRhZCBkZSBoYWNlciBhZGFwdGFjaW9uZXMsIGFjdHVhbGl6YWNpb25lcyB5IHRyYWR1Y2Npb25lcyBlbiB0b2RvcyBsb3MgaWRpb21hczsgbGEgaW5jb3Jwb3JhY2nDs24gYSB1bmEgY29sZWNjacOzbiBvIGNvbXBpbGFjacOzbiwgbGEgdHJhZHVjY2nDs24sIGZpamFjacOzbiBlbiBmb25vZ3JhbWEsIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBmb3JtYXRvIGFuw6Fsb2dvLCBkaWdpdGFsLCBhdWRpb3Zpc3VhbCwgbWFnbsOpdGljbywgeSwgZW4gZ2VuZXJhbCwgbG9zIGZvcm1hdG9zIGVuICBxdWUgc2UgcHVlZGEgcmVwcm9kdWNpciB5IGNvbXVuaWNhciAgZGUgbWFuZXJhIHRvdGFsIHkgcGFyY2lhbCBtaSB0cmFiYWpvIGRlIGdyYWRvIG8gdGVzaXMuIAoKTGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBzZSBoYWNlIGV4dGVuc2l2YSBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgYW7DoWxvZ28sIGZvcm1hdG8gdmlydHVhbCwgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCDDs3B0aWNvLCB1c28gZW4gcmVkLCBJbnRlcm5ldCwgZXh0cmFuZXQsIGludHJhbmV0LCBlbnRyZSBvdHJvcyBmb3JtYXRvcyB5IG1lZGlvcy4KCkVsIEFVVE9SIOKAkyBFU1RVRElBTlRFLCBtYW5pZmllc3RhIHF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIGVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvciBsbyB0YW50bywgbGEgb2JyYSBlcyBkZSBzdSBleGNsdXNpdmEgYXV0b3LDrWEgeSBkZXRlbnRhIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAgCgpQYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIFVOSVZFUlNJREFEIElORFVTVFJJQUwgREUgU0FOVEFOREVSIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmU7IGVuIGNvbnNlY3VlbmNpYSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVsIEFVVE9SIOKAkyBFU1RVRElBTlRFLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zLgo=