Estrategia de aprendizaje profundo para la segmentación no supervisada en patología digital
La histopatología es área fundamental de la medicina que se ocupa del estudio de las enfermedades a través de la observación microscópica de tejidos y células. Utilizando técnicas de tinción y análisis microscópico, los histopatólogos examinan muestras de tejido obtenidas mediante biopsias, autopsia...
- Autores:
-
Camacho Torres, Julián Camilo
Díaz Gutiérrez, Juan Sebastián
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad Industrial de Santander
- Repositorio:
- Repositorio UIS
- Idioma:
- spa
- OAI Identifier:
- oai:noesis.uis.edu.co:20.500.14071/42417
- Palabra clave:
- Aprendizaje profundo
patología digital
segmentación no supervisada
Deep Learning
digital pathology
unsupervised segmentation
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)
Summary: | La histopatología es área fundamental de la medicina que se ocupa del estudio de las enfermedades a través de la observación microscópica de tejidos y células. Utilizando técnicas de tinción y análisis microscópico, los histopatólogos examinan muestras de tejido obtenidas mediante biopsias, autopsias o cirugías para identificar y diagnosticar enfermedades. Por otro lado, la inteligencia artificial (IA) ha demostrado ser una herramienta valiosa en el campo de la histopatología al mejorar la precisión y eficiencia en el análisis de muestras de tejido. Mediante algoritmos de aprendizaje automático, la IA puede ayudar en la detección y clasificación de células y estructuras patológicas, permitiendo una identificación más rápida y precisa de enfermedades. Con este trabajo, esperamos explorar la capacidad de generalización y robustez de una representación obtenida a través de modelos de segmentación no supervisada en el área de la histopatología. Esta técnica puede mejorar el tiempo en el diagnóstico de los pacientes debido a que los métodos no supervisados no requieren de etiquetas para generar una representación que tiene potencialmente una mejor generalización. |
---|