Estudio de la transformación de d-l limoneno a compuestos aromáticos de valor industrial utilizando catalizadores heteropoliácidos soportados
El presente trabajo muestra los resultados de la conversión catalítica del DL-limoneno a partir de catalizadores heteropoliácidos (HPAs) soportados, en compuestos aromáticos de alto valor industrial. Se realizaron pruebas experimentales para elegir la mejor fase activa, el mejor soporte y evaluar la...
- Autores:
-
Lemus Rodriguez, Jony Alejandro
Parra Diaz, Diana Marcela
- Tipo de recurso:
- http://purl.org/coar/version/c_b1a7d7d4d402bcce
- Fecha de publicación:
- 2016
- Institución:
- Universidad Industrial de Santander
- Repositorio:
- Repositorio UIS
- Idioma:
- spa
- OAI Identifier:
- oai:noesis.uis.edu.co:20.500.14071/34386
- Palabra clave:
- Dl-Limoneno
Conversión Catalítica
Catalizadores
Heteropoliácidos (Hpas)
Compuestos Aromáticos.
This paper shows the results of the catalytic conversion of DL-limonene using heteropolyacids catalysts (HPAs) supported for the production of aromatic compounds oh high industrial value. The experimental tests were performed for select the best active phase
the best support and in addition to evaluate the influence of temperature
for conversion and selectivity; experimental tests were carrier out in a tubular fixed bed reactor
in operational conditions of temperature of 180
250 and 350 ºC
flow of inert gas of 155 Nml/min
relative pressure 0.5 bar
space velocity of 0.4
mass flow of DL-limonene (98% purity) 6.3854 g/min
vaporization temperature of 280 ºC
and reaction time of 5 minutes. Four types of catalyst were used in the catalytic test. The results showed that the active phase H4PMo11VO40 had the best conversion
and the best support was SBA-15. It was found that larger pore size and surface area of the support selectivity is better
greater number of Lewis acid sites and acidity increase greater conversion to aromatic compounds at the same temperature. Comparing both the acidity of the catalyst and the conversion of the molecule (DL-limonene) to aromatic compounds at different temperatures
it was obtained that at a moderate acidity with a temperature of 250 ºC the conversion and selectivity are favored
- Rights
- License
- Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
id |
UISANTADR2_ddee157c541da53c6bb6e383975f4d92 |
---|---|
oai_identifier_str |
oai:noesis.uis.edu.co:20.500.14071/34386 |
network_acronym_str |
UISANTADR2 |
network_name_str |
Repositorio UIS |
repository_id_str |
|
dc.title.none.fl_str_mv |
Estudio de la transformación de d-l limoneno a compuestos aromáticos de valor industrial utilizando catalizadores heteropoliácidos soportados |
dc.title.english.none.fl_str_mv |
Dl-Limonene, Catalytic Conversion, Catalysts, Heteropolyacids, Compounds Aromatics. |
title |
Estudio de la transformación de d-l limoneno a compuestos aromáticos de valor industrial utilizando catalizadores heteropoliácidos soportados |
spellingShingle |
Estudio de la transformación de d-l limoneno a compuestos aromáticos de valor industrial utilizando catalizadores heteropoliácidos soportados Dl-Limoneno Conversión Catalítica Catalizadores Heteropoliácidos (Hpas) Compuestos Aromáticos. This paper shows the results of the catalytic conversion of DL-limonene using heteropolyacids catalysts (HPAs) supported for the production of aromatic compounds oh high industrial value. The experimental tests were performed for select the best active phase the best support and in addition to evaluate the influence of temperature for conversion and selectivity; experimental tests were carrier out in a tubular fixed bed reactor in operational conditions of temperature of 180 250 and 350 ºC flow of inert gas of 155 Nml/min relative pressure 0.5 bar space velocity of 0.4 mass flow of DL-limonene (98% purity) 6.3854 g/min vaporization temperature of 280 ºC and reaction time of 5 minutes. Four types of catalyst were used in the catalytic test. The results showed that the active phase H4PMo11VO40 had the best conversion and the best support was SBA-15. It was found that larger pore size and surface area of the support selectivity is better greater number of Lewis acid sites and acidity increase greater conversion to aromatic compounds at the same temperature. Comparing both the acidity of the catalyst and the conversion of the molecule (DL-limonene) to aromatic compounds at different temperatures it was obtained that at a moderate acidity with a temperature of 250 ºC the conversion and selectivity are favored |
title_short |
Estudio de la transformación de d-l limoneno a compuestos aromáticos de valor industrial utilizando catalizadores heteropoliácidos soportados |
title_full |
Estudio de la transformación de d-l limoneno a compuestos aromáticos de valor industrial utilizando catalizadores heteropoliácidos soportados |
title_fullStr |
Estudio de la transformación de d-l limoneno a compuestos aromáticos de valor industrial utilizando catalizadores heteropoliácidos soportados |
title_full_unstemmed |
Estudio de la transformación de d-l limoneno a compuestos aromáticos de valor industrial utilizando catalizadores heteropoliácidos soportados |
title_sort |
Estudio de la transformación de d-l limoneno a compuestos aromáticos de valor industrial utilizando catalizadores heteropoliácidos soportados |
dc.creator.fl_str_mv |
Lemus Rodriguez, Jony Alejandro Parra Diaz, Diana Marcela |
dc.contributor.advisor.none.fl_str_mv |
Maradei García, María Paola Tavera Ruiz, Claudia Patricia |
dc.contributor.author.none.fl_str_mv |
Lemus Rodriguez, Jony Alejandro Parra Diaz, Diana Marcela |
dc.subject.none.fl_str_mv |
Dl-Limoneno Conversión Catalítica Catalizadores Heteropoliácidos (Hpas) Compuestos Aromáticos. |
topic |
Dl-Limoneno Conversión Catalítica Catalizadores Heteropoliácidos (Hpas) Compuestos Aromáticos. This paper shows the results of the catalytic conversion of DL-limonene using heteropolyacids catalysts (HPAs) supported for the production of aromatic compounds oh high industrial value. The experimental tests were performed for select the best active phase the best support and in addition to evaluate the influence of temperature for conversion and selectivity; experimental tests were carrier out in a tubular fixed bed reactor in operational conditions of temperature of 180 250 and 350 ºC flow of inert gas of 155 Nml/min relative pressure 0.5 bar space velocity of 0.4 mass flow of DL-limonene (98% purity) 6.3854 g/min vaporization temperature of 280 ºC and reaction time of 5 minutes. Four types of catalyst were used in the catalytic test. The results showed that the active phase H4PMo11VO40 had the best conversion and the best support was SBA-15. It was found that larger pore size and surface area of the support selectivity is better greater number of Lewis acid sites and acidity increase greater conversion to aromatic compounds at the same temperature. Comparing both the acidity of the catalyst and the conversion of the molecule (DL-limonene) to aromatic compounds at different temperatures it was obtained that at a moderate acidity with a temperature of 250 ºC the conversion and selectivity are favored |
dc.subject.keyword.none.fl_str_mv |
This paper shows the results of the catalytic conversion of DL-limonene using heteropolyacids catalysts (HPAs) supported for the production of aromatic compounds oh high industrial value. The experimental tests were performed for select the best active phase the best support and in addition to evaluate the influence of temperature for conversion and selectivity; experimental tests were carrier out in a tubular fixed bed reactor in operational conditions of temperature of 180 250 and 350 ºC flow of inert gas of 155 Nml/min relative pressure 0.5 bar space velocity of 0.4 mass flow of DL-limonene (98% purity) 6.3854 g/min vaporization temperature of 280 ºC and reaction time of 5 minutes. Four types of catalyst were used in the catalytic test. The results showed that the active phase H4PMo11VO40 had the best conversion and the best support was SBA-15. It was found that larger pore size and surface area of the support selectivity is better greater number of Lewis acid sites and acidity increase greater conversion to aromatic compounds at the same temperature. Comparing both the acidity of the catalyst and the conversion of the molecule (DL-limonene) to aromatic compounds at different temperatures it was obtained that at a moderate acidity with a temperature of 250 ºC the conversion and selectivity are favored |
description |
El presente trabajo muestra los resultados de la conversión catalítica del DL-limoneno a partir de catalizadores heteropoliácidos (HPAs) soportados, en compuestos aromáticos de alto valor industrial. Se realizaron pruebas experimentales para elegir la mejor fase activa, el mejor soporte y evaluar la influencia de la temperatura; las pruebas experimentales se desarrollaron en un reactor tubular de lecho fijo, en condiciones operacionales de temperatura de 180, 250 y 350 ºC, flujo de gas inerte (nitrógeno) de 155 Nml/min, presión relativa de 0.5 bar, velocidad espacial de 0.4 s-1, flujo másico de DL-limoneno (98% de pureza) de 6.3854 g/min, temperatura de vaporización de 280ºC y tiempo de reacción de 5 minutos; en las pruebas de reacción catalítica se utilizaron cuatro tipos de catalizadores. Se obtuvieron resultados de mejor fase activa con el catalizador H4PMo11VO40 y mejor soporte con SBA-15. Se encontró que a mayor tamaño de poro y área superficial la selectividad del soporte es mejor; mayor número de sitios ácidos de tipo Lewis y mayor acidez aumentan la conversión hacia los compuestos aromáticos a la misma temperatura, en comparación con el soporte MCM-41. Comparando tanto la acidez del catalizador como la transformación de la molécula (DL-limoneno) a compuestos aromáticos en diferentes temperaturas, se obtuvo que a una acidez moderada con una temperatura de 250ºC la conversión y selectividad se ven favorecidas |
publishDate |
2016 |
dc.date.available.none.fl_str_mv |
2016 2024-03-03T22:36:59Z |
dc.date.created.none.fl_str_mv |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2024-03-03T22:36:59Z |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.hasversion.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
format |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.identifier.uri.none.fl_str_mv |
https://noesis.uis.edu.co/handle/20.500.14071/34386 |
dc.identifier.instname.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.reponame.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.repourl.none.fl_str_mv |
https://noesis.uis.edu.co |
url |
https://noesis.uis.edu.co/handle/20.500.14071/34386 https://noesis.uis.edu.co |
identifier_str_mv |
Universidad Industrial de Santander |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.none.fl_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0 |
dc.rights.creativecommons.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by-nc/4.0 Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Industrial de Santander |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingenierías Fisicoquímicas |
dc.publisher.program.none.fl_str_mv |
Ingeniería Química |
dc.publisher.school.none.fl_str_mv |
Escuela de Ingeniería Química |
publisher.none.fl_str_mv |
Universidad Industrial de Santander |
institution |
Universidad Industrial de Santander |
bitstream.url.fl_str_mv |
https://noesis.uis.edu.co/bitstreams/7bbc7495-db6a-4682-b39f-3ed6b3e46ae7/download https://noesis.uis.edu.co/bitstreams/1ea7e312-e753-420e-ae8d-6cb4d4970f9d/download https://noesis.uis.edu.co/bitstreams/decbcb6b-61a8-4e08-983f-c62631573163/download |
bitstream.checksum.fl_str_mv |
39843be5c70a9090d41f7e75b31f0350 325917193f58ff77dfe5c18916366a11 2fe0a9f6eca892dea03d1cdd62d46192 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace at UIS |
repository.mail.fl_str_mv |
noesis@uis.edu.co |
_version_ |
1814095182090469376 |
spelling |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by-nc/4.0Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Maradei García, María PaolaTavera Ruiz, Claudia PatriciaLemus Rodriguez, Jony AlejandroParra Diaz, Diana Marcela2024-03-03T22:36:59Z20162024-03-03T22:36:59Z20162016https://noesis.uis.edu.co/handle/20.500.14071/34386Universidad Industrial de SantanderUniversidad Industrial de Santanderhttps://noesis.uis.edu.coEl presente trabajo muestra los resultados de la conversión catalítica del DL-limoneno a partir de catalizadores heteropoliácidos (HPAs) soportados, en compuestos aromáticos de alto valor industrial. Se realizaron pruebas experimentales para elegir la mejor fase activa, el mejor soporte y evaluar la influencia de la temperatura; las pruebas experimentales se desarrollaron en un reactor tubular de lecho fijo, en condiciones operacionales de temperatura de 180, 250 y 350 ºC, flujo de gas inerte (nitrógeno) de 155 Nml/min, presión relativa de 0.5 bar, velocidad espacial de 0.4 s-1, flujo másico de DL-limoneno (98% de pureza) de 6.3854 g/min, temperatura de vaporización de 280ºC y tiempo de reacción de 5 minutos; en las pruebas de reacción catalítica se utilizaron cuatro tipos de catalizadores. Se obtuvieron resultados de mejor fase activa con el catalizador H4PMo11VO40 y mejor soporte con SBA-15. Se encontró que a mayor tamaño de poro y área superficial la selectividad del soporte es mejor; mayor número de sitios ácidos de tipo Lewis y mayor acidez aumentan la conversión hacia los compuestos aromáticos a la misma temperatura, en comparación con el soporte MCM-41. Comparando tanto la acidez del catalizador como la transformación de la molécula (DL-limoneno) a compuestos aromáticos en diferentes temperaturas, se obtuvo que a una acidez moderada con una temperatura de 250ºC la conversión y selectividad se ven favorecidasPregradoIngeniero QuímicoStudy of dl-limonene transformation to aromatics compounds of industrial value using heteropolyacids supported catalysts.application/pdfspaUniversidad Industrial de SantanderFacultad de Ingenierías FisicoquímicasIngeniería QuímicaEscuela de Ingeniería QuímicaDl-LimonenoConversión CatalíticaCatalizadoresHeteropoliácidos (Hpas)Compuestos Aromáticos.This paper shows the results of the catalytic conversion of DL-limonene using heteropolyacids catalysts (HPAs) supported for the production of aromatic compounds oh high industrial value. The experimental tests were performed for select the best active phasethe best support and in addition to evaluate the influence of temperaturefor conversion and selectivity; experimental tests were carrier out in a tubular fixed bed reactorin operational conditions of temperature of 180250 and 350 ºCflow of inert gas of 155 Nml/minrelative pressure 0.5 barspace velocity of 0.4mass flow of DL-limonene (98% purity) 6.3854 g/minvaporization temperature of 280 ºCand reaction time of 5 minutes. Four types of catalyst were used in the catalytic test. The results showed that the active phase H4PMo11VO40 had the best conversionand the best support was SBA-15. It was found that larger pore size and surface area of the support selectivity is bettergreater number of Lewis acid sites and acidity increase greater conversion to aromatic compounds at the same temperature. Comparing both the acidity of the catalyst and the conversion of the molecule (DL-limonene) to aromatic compounds at different temperaturesit was obtained that at a moderate acidity with a temperature of 250 ºC the conversion and selectivity are favoredEstudio de la transformación de d-l limoneno a compuestos aromáticos de valor industrial utilizando catalizadores heteropoliácidos soportadosDl-Limonene, Catalytic Conversion, Catalysts, Heteropolyacids, Compounds Aromatics.Tesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_b1a7d7d4d402bcceORIGINALCarta de autorización.pdfapplication/pdf287726https://noesis.uis.edu.co/bitstreams/7bbc7495-db6a-4682-b39f-3ed6b3e46ae7/download39843be5c70a9090d41f7e75b31f0350MD51Documento.pdfapplication/pdf2095773https://noesis.uis.edu.co/bitstreams/1ea7e312-e753-420e-ae8d-6cb4d4970f9d/download325917193f58ff77dfe5c18916366a11MD52Nota de proyecto.pdfapplication/pdf175211https://noesis.uis.edu.co/bitstreams/decbcb6b-61a8-4e08-983f-c62631573163/download2fe0a9f6eca892dea03d1cdd62d46192MD5320.500.14071/34386oai:noesis.uis.edu.co:20.500.14071/343862024-03-03 17:36:59.843http://creativecommons.org/licenses/by-nc/4.0http://creativecommons.org/licenses/by/4.0/open.accesshttps://noesis.uis.edu.coDSpace at UISnoesis@uis.edu.co |