Estudio de la transformación de d-l limoneno a compuestos aromáticos de valor industrial utilizando catalizadores heteropoliácidos soportados

El presente trabajo muestra los resultados de la conversión catalítica del DL-limoneno a partir de catalizadores heteropoliácidos (HPAs) soportados, en compuestos aromáticos de alto valor industrial. Se realizaron pruebas experimentales para elegir la mejor fase activa, el mejor soporte y evaluar la...

Full description

Autores:
Lemus Rodriguez, Jony Alejandro
Parra Diaz, Diana Marcela
Tipo de recurso:
http://purl.org/coar/version/c_b1a7d7d4d402bcce
Fecha de publicación:
2016
Institución:
Universidad Industrial de Santander
Repositorio:
Repositorio UIS
Idioma:
spa
OAI Identifier:
oai:noesis.uis.edu.co:20.500.14071/34386
Acceso en línea:
https://noesis.uis.edu.co/handle/20.500.14071/34386
https://noesis.uis.edu.co
Palabra clave:
Dl-Limoneno
Conversión Catalítica
Catalizadores
Heteropoliácidos (Hpas)
Compuestos Aromáticos.
This paper shows the results of the catalytic conversion of DL-limonene using heteropolyacids catalysts (HPAs) supported for the production of aromatic compounds oh high industrial value. The experimental tests were performed for select the best active phase
the best support and in addition to evaluate the influence of temperature
for conversion and selectivity; experimental tests were carrier out in a tubular fixed bed reactor
in operational conditions of temperature of 180
250 and 350 ºC
flow of inert gas of 155 Nml/min
relative pressure 0.5 bar
space velocity of 0.4
mass flow of DL-limonene (98% purity) 6.3854 g/min
vaporization temperature of 280 ºC
and reaction time of 5 minutes. Four types of catalyst were used in the catalytic test. The results showed that the active phase H4PMo11VO40 had the best conversion
and the best support was SBA-15. It was found that larger pore size and surface area of the support selectivity is better
greater number of Lewis acid sites and acidity increase greater conversion to aromatic compounds at the same temperature. Comparing both the acidity of the catalyst and the conversion of the molecule (DL-limonene) to aromatic compounds at different temperatures
it was obtained that at a moderate acidity with a temperature of 250 ºC the conversion and selectivity are favored
Rights
License
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
id UISANTADR2_ddee157c541da53c6bb6e383975f4d92
oai_identifier_str oai:noesis.uis.edu.co:20.500.14071/34386
network_acronym_str UISANTADR2
network_name_str Repositorio UIS
repository_id_str
dc.title.none.fl_str_mv Estudio de la transformación de d-l limoneno a compuestos aromáticos de valor industrial utilizando catalizadores heteropoliácidos soportados
dc.title.english.none.fl_str_mv Dl-Limonene, Catalytic Conversion, Catalysts, Heteropolyacids, Compounds Aromatics.
title Estudio de la transformación de d-l limoneno a compuestos aromáticos de valor industrial utilizando catalizadores heteropoliácidos soportados
spellingShingle Estudio de la transformación de d-l limoneno a compuestos aromáticos de valor industrial utilizando catalizadores heteropoliácidos soportados
Dl-Limoneno
Conversión Catalítica
Catalizadores
Heteropoliácidos (Hpas)
Compuestos Aromáticos.
This paper shows the results of the catalytic conversion of DL-limonene using heteropolyacids catalysts (HPAs) supported for the production of aromatic compounds oh high industrial value. The experimental tests were performed for select the best active phase
the best support and in addition to evaluate the influence of temperature
for conversion and selectivity; experimental tests were carrier out in a tubular fixed bed reactor
in operational conditions of temperature of 180
250 and 350 ºC
flow of inert gas of 155 Nml/min
relative pressure 0.5 bar
space velocity of 0.4
mass flow of DL-limonene (98% purity) 6.3854 g/min
vaporization temperature of 280 ºC
and reaction time of 5 minutes. Four types of catalyst were used in the catalytic test. The results showed that the active phase H4PMo11VO40 had the best conversion
and the best support was SBA-15. It was found that larger pore size and surface area of the support selectivity is better
greater number of Lewis acid sites and acidity increase greater conversion to aromatic compounds at the same temperature. Comparing both the acidity of the catalyst and the conversion of the molecule (DL-limonene) to aromatic compounds at different temperatures
it was obtained that at a moderate acidity with a temperature of 250 ºC the conversion and selectivity are favored
title_short Estudio de la transformación de d-l limoneno a compuestos aromáticos de valor industrial utilizando catalizadores heteropoliácidos soportados
title_full Estudio de la transformación de d-l limoneno a compuestos aromáticos de valor industrial utilizando catalizadores heteropoliácidos soportados
title_fullStr Estudio de la transformación de d-l limoneno a compuestos aromáticos de valor industrial utilizando catalizadores heteropoliácidos soportados
title_full_unstemmed Estudio de la transformación de d-l limoneno a compuestos aromáticos de valor industrial utilizando catalizadores heteropoliácidos soportados
title_sort Estudio de la transformación de d-l limoneno a compuestos aromáticos de valor industrial utilizando catalizadores heteropoliácidos soportados
dc.creator.fl_str_mv Lemus Rodriguez, Jony Alejandro
Parra Diaz, Diana Marcela
dc.contributor.advisor.none.fl_str_mv Maradei García, María Paola
Tavera Ruiz, Claudia Patricia
dc.contributor.author.none.fl_str_mv Lemus Rodriguez, Jony Alejandro
Parra Diaz, Diana Marcela
dc.subject.none.fl_str_mv Dl-Limoneno
Conversión Catalítica
Catalizadores
Heteropoliácidos (Hpas)
Compuestos Aromáticos.
topic Dl-Limoneno
Conversión Catalítica
Catalizadores
Heteropoliácidos (Hpas)
Compuestos Aromáticos.
This paper shows the results of the catalytic conversion of DL-limonene using heteropolyacids catalysts (HPAs) supported for the production of aromatic compounds oh high industrial value. The experimental tests were performed for select the best active phase
the best support and in addition to evaluate the influence of temperature
for conversion and selectivity; experimental tests were carrier out in a tubular fixed bed reactor
in operational conditions of temperature of 180
250 and 350 ºC
flow of inert gas of 155 Nml/min
relative pressure 0.5 bar
space velocity of 0.4
mass flow of DL-limonene (98% purity) 6.3854 g/min
vaporization temperature of 280 ºC
and reaction time of 5 minutes. Four types of catalyst were used in the catalytic test. The results showed that the active phase H4PMo11VO40 had the best conversion
and the best support was SBA-15. It was found that larger pore size and surface area of the support selectivity is better
greater number of Lewis acid sites and acidity increase greater conversion to aromatic compounds at the same temperature. Comparing both the acidity of the catalyst and the conversion of the molecule (DL-limonene) to aromatic compounds at different temperatures
it was obtained that at a moderate acidity with a temperature of 250 ºC the conversion and selectivity are favored
dc.subject.keyword.none.fl_str_mv This paper shows the results of the catalytic conversion of DL-limonene using heteropolyacids catalysts (HPAs) supported for the production of aromatic compounds oh high industrial value. The experimental tests were performed for select the best active phase
the best support and in addition to evaluate the influence of temperature
for conversion and selectivity; experimental tests were carrier out in a tubular fixed bed reactor
in operational conditions of temperature of 180
250 and 350 ºC
flow of inert gas of 155 Nml/min
relative pressure 0.5 bar
space velocity of 0.4
mass flow of DL-limonene (98% purity) 6.3854 g/min
vaporization temperature of 280 ºC
and reaction time of 5 minutes. Four types of catalyst were used in the catalytic test. The results showed that the active phase H4PMo11VO40 had the best conversion
and the best support was SBA-15. It was found that larger pore size and surface area of the support selectivity is better
greater number of Lewis acid sites and acidity increase greater conversion to aromatic compounds at the same temperature. Comparing both the acidity of the catalyst and the conversion of the molecule (DL-limonene) to aromatic compounds at different temperatures
it was obtained that at a moderate acidity with a temperature of 250 ºC the conversion and selectivity are favored
description El presente trabajo muestra los resultados de la conversión catalítica del DL-limoneno a partir de catalizadores heteropoliácidos (HPAs) soportados, en compuestos aromáticos de alto valor industrial. Se realizaron pruebas experimentales para elegir la mejor fase activa, el mejor soporte y evaluar la influencia de la temperatura; las pruebas experimentales se desarrollaron en un reactor tubular de lecho fijo, en condiciones operacionales de temperatura de 180, 250 y 350 ºC, flujo de gas inerte (nitrógeno) de 155 Nml/min, presión relativa de 0.5 bar, velocidad espacial de 0.4 s-1, flujo másico de DL-limoneno (98% de pureza) de 6.3854 g/min, temperatura de vaporización de 280ºC y tiempo de reacción de 5 minutos; en las pruebas de reacción catalítica se utilizaron cuatro tipos de catalizadores. Se obtuvieron resultados de mejor fase activa con el catalizador H4PMo11VO40 y mejor soporte con SBA-15. Se encontró que a mayor tamaño de poro y área superficial la selectividad del soporte es mejor; mayor número de sitios ácidos de tipo Lewis y mayor acidez aumentan la conversión hacia los compuestos aromáticos a la misma temperatura, en comparación con el soporte MCM-41. Comparando tanto la acidez del catalizador como la transformación de la molécula (DL-limoneno) a compuestos aromáticos en diferentes temperaturas, se obtuvo que a una acidez moderada con una temperatura de 250ºC la conversión y selectividad se ven favorecidas
publishDate 2016
dc.date.available.none.fl_str_mv 2016
2024-03-03T22:36:59Z
dc.date.created.none.fl_str_mv 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2024-03-03T22:36:59Z
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.hasversion.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coar.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
format http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.identifier.uri.none.fl_str_mv https://noesis.uis.edu.co/handle/20.500.14071/34386
dc.identifier.instname.none.fl_str_mv Universidad Industrial de Santander
dc.identifier.reponame.none.fl_str_mv Universidad Industrial de Santander
dc.identifier.repourl.none.fl_str_mv https://noesis.uis.edu.co
url https://noesis.uis.edu.co/handle/20.500.14071/34386
https://noesis.uis.edu.co
identifier_str_mv Universidad Industrial de Santander
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0
dc.rights.creativecommons.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-nc/4.0
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Industrial de Santander
dc.publisher.faculty.none.fl_str_mv Facultad de Ingenierías Fisicoquímicas
dc.publisher.program.none.fl_str_mv Ingeniería Química
dc.publisher.school.none.fl_str_mv Escuela de Ingeniería Química
publisher.none.fl_str_mv Universidad Industrial de Santander
institution Universidad Industrial de Santander
bitstream.url.fl_str_mv https://noesis.uis.edu.co/bitstreams/7bbc7495-db6a-4682-b39f-3ed6b3e46ae7/download
https://noesis.uis.edu.co/bitstreams/1ea7e312-e753-420e-ae8d-6cb4d4970f9d/download
https://noesis.uis.edu.co/bitstreams/decbcb6b-61a8-4e08-983f-c62631573163/download
bitstream.checksum.fl_str_mv 39843be5c70a9090d41f7e75b31f0350
325917193f58ff77dfe5c18916366a11
2fe0a9f6eca892dea03d1cdd62d46192
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace at UIS
repository.mail.fl_str_mv noesis@uis.edu.co
_version_ 1814095182090469376
spelling Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by-nc/4.0Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Maradei García, María PaolaTavera Ruiz, Claudia PatriciaLemus Rodriguez, Jony AlejandroParra Diaz, Diana Marcela2024-03-03T22:36:59Z20162024-03-03T22:36:59Z20162016https://noesis.uis.edu.co/handle/20.500.14071/34386Universidad Industrial de SantanderUniversidad Industrial de Santanderhttps://noesis.uis.edu.coEl presente trabajo muestra los resultados de la conversión catalítica del DL-limoneno a partir de catalizadores heteropoliácidos (HPAs) soportados, en compuestos aromáticos de alto valor industrial. Se realizaron pruebas experimentales para elegir la mejor fase activa, el mejor soporte y evaluar la influencia de la temperatura; las pruebas experimentales se desarrollaron en un reactor tubular de lecho fijo, en condiciones operacionales de temperatura de 180, 250 y 350 ºC, flujo de gas inerte (nitrógeno) de 155 Nml/min, presión relativa de 0.5 bar, velocidad espacial de 0.4 s-1, flujo másico de DL-limoneno (98% de pureza) de 6.3854 g/min, temperatura de vaporización de 280ºC y tiempo de reacción de 5 minutos; en las pruebas de reacción catalítica se utilizaron cuatro tipos de catalizadores. Se obtuvieron resultados de mejor fase activa con el catalizador H4PMo11VO40 y mejor soporte con SBA-15. Se encontró que a mayor tamaño de poro y área superficial la selectividad del soporte es mejor; mayor número de sitios ácidos de tipo Lewis y mayor acidez aumentan la conversión hacia los compuestos aromáticos a la misma temperatura, en comparación con el soporte MCM-41. Comparando tanto la acidez del catalizador como la transformación de la molécula (DL-limoneno) a compuestos aromáticos en diferentes temperaturas, se obtuvo que a una acidez moderada con una temperatura de 250ºC la conversión y selectividad se ven favorecidasPregradoIngeniero QuímicoStudy of dl-limonene transformation to aromatics compounds of industrial value using heteropolyacids supported catalysts.application/pdfspaUniversidad Industrial de SantanderFacultad de Ingenierías FisicoquímicasIngeniería QuímicaEscuela de Ingeniería QuímicaDl-LimonenoConversión CatalíticaCatalizadoresHeteropoliácidos (Hpas)Compuestos Aromáticos.This paper shows the results of the catalytic conversion of DL-limonene using heteropolyacids catalysts (HPAs) supported for the production of aromatic compounds oh high industrial value. The experimental tests were performed for select the best active phasethe best support and in addition to evaluate the influence of temperaturefor conversion and selectivity; experimental tests were carrier out in a tubular fixed bed reactorin operational conditions of temperature of 180250 and 350 ºCflow of inert gas of 155 Nml/minrelative pressure 0.5 barspace velocity of 0.4mass flow of DL-limonene (98% purity) 6.3854 g/minvaporization temperature of 280 ºCand reaction time of 5 minutes. Four types of catalyst were used in the catalytic test. The results showed that the active phase H4PMo11VO40 had the best conversionand the best support was SBA-15. It was found that larger pore size and surface area of the support selectivity is bettergreater number of Lewis acid sites and acidity increase greater conversion to aromatic compounds at the same temperature. Comparing both the acidity of the catalyst and the conversion of the molecule (DL-limonene) to aromatic compounds at different temperaturesit was obtained that at a moderate acidity with a temperature of 250 ºC the conversion and selectivity are favoredEstudio de la transformación de d-l limoneno a compuestos aromáticos de valor industrial utilizando catalizadores heteropoliácidos soportadosDl-Limonene, Catalytic Conversion, Catalysts, Heteropolyacids, Compounds Aromatics.Tesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_b1a7d7d4d402bcceORIGINALCarta de autorización.pdfapplication/pdf287726https://noesis.uis.edu.co/bitstreams/7bbc7495-db6a-4682-b39f-3ed6b3e46ae7/download39843be5c70a9090d41f7e75b31f0350MD51Documento.pdfapplication/pdf2095773https://noesis.uis.edu.co/bitstreams/1ea7e312-e753-420e-ae8d-6cb4d4970f9d/download325917193f58ff77dfe5c18916366a11MD52Nota de proyecto.pdfapplication/pdf175211https://noesis.uis.edu.co/bitstreams/decbcb6b-61a8-4e08-983f-c62631573163/download2fe0a9f6eca892dea03d1cdd62d46192MD5320.500.14071/34386oai:noesis.uis.edu.co:20.500.14071/343862024-03-03 17:36:59.843http://creativecommons.org/licenses/by-nc/4.0http://creativecommons.org/licenses/by/4.0/open.accesshttps://noesis.uis.edu.coDSpace at UISnoesis@uis.edu.co