Estudio de la fase cuántica por transformación de Fourier fraccionaria y sus aplicaciones a los principales estados del campo electromagnético

La correcta descripción de la fase cuántica del campo electromagnético es un problema que aín es objeto de estudio; Dirac abre la discusión de la fase cuántica proponiendo una relación entre los operadores aniquilación, creación y la fase, pero el modelo de Dirac posee dificultades matemáticas. Estu...

Full description

Autores:
Galeano Rodriguez, Diego Armando
Tipo de recurso:
http://purl.org/coar/version/c_b1a7d7d4d402bcce
Fecha de publicación:
2016
Institución:
Universidad Industrial de Santander
Repositorio:
Repositorio UIS
Idioma:
spa
OAI Identifier:
oai:noesis.uis.edu.co:20.500.14071/35359
Acceso en línea:
https://noesis.uis.edu.co/handle/20.500.14071/35359
https://noesis.uis.edu.co
Palabra clave:
Fase Cuántica
Transformación De Fourier Fraccionaria
Estados Número De Fotones
Estados Térmicos
Estados Coherentes
Estados Estrangulados (Squeezed)
Distribución De Fase Cuántica.
The correct description of the quantum phase of the electromagnetic field is a problem that is still under study; Dirac opens the discussion of quantum phase proposing a relationship between annihilation creation and phase operators
but the model has Dirac mathematical difficulties. Subsequent studies by Sussking and Glogower propose complexes non-unitary phase exponential operators
leading to infer that the quantum phase is not a Hermitian operator
and imply the existence of several phase operators
for this reason they evade the problem of phase operator and they focus on phase distributions
finally Pegg and Barnett study phase in a subspace of the Hilbert space where the phase becomes a Hermitian operator and well defined. Based on the phase states of Sussking and Glogower and Pegg and Barnett suggests the existence of fractional Fourier transformation which opens a new way to study the phase. Here and from operator phase Pegg and Barnett operator Hermitian phase where the transformation of fractional Fourier present is formulated
the operator is of great use to determine statistical phase state number ( Fock states)
coherent
thermal and squeezed of the electromagnetic field and shown to completely reproduce the statistics already known to the eigenstates of the aforementioned electromagnetic field.
Rights
License
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
Description
Summary:La correcta descripción de la fase cuántica del campo electromagnético es un problema que aín es objeto de estudio; Dirac abre la discusión de la fase cuántica proponiendo una relación entre los operadores aniquilación, creación y la fase, pero el modelo de Dirac posee dificultades matemáticas. Estudios subsecuentes hechos por Sussking y Glogower proponen operadores exponenciales complejos de fase no unitarios, que conllevan a inferir que la fase cuántica no es un operador Hermítico, e implican la existencia de varios operadores de fase, por tal razón evaden el problema del operador de fase y se concentran en las distribuciones de fase, por íltimo Pegg y Barnett estudian la fase en un subespacio del espacio de Hilbert donde la fase llega a ser un operador Hermítico y bien definido. Con base en los estados de fase de Sussking y Glogower y Pegg y Barnett, se deduce la existencia de la transformación de Fourier fraccionaria lo cual abre un nuevo camino para estudiar la fase. A continuación y a partir del operador de fase de Pegg y Barnett se formula un operador de fase Hermítico donde está presente la transformación de Fourier fraccionaria, éste operador es de gran uso para determinar la estadística de fase de los estados nímero (estados de Fock), coherentes, térmicos y estrangulados (squeezed) del campo electromagnético y se demuestra que reproducen completamente la estadística ya conocida para los estados propios del campo electromagnético mencionados.