4- # 1089 SELECCIÓN DE VARIABLES Y FORMA FUNCIONAL USANDO ANÁLISIS ENVOLVENTE DE DATOS
Los modelos DEA, Data Envelopment Analysis, combinan diferentes tipos de variables para obtener una comparación relativa de la eficiencia de un objeto frente a otros (Cooper, Seiford, & Tone, 2000). Sin embargo, poco se dice acerca de los métodos y procedimientos para la selección de variabl...
- Autores:
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Industrial de Santander
- Repositorio:
- Repositorio UIS
- Idioma:
- spa
- OAI Identifier:
- oai:noesis.uis.edu.co:20.500.14071/5433
- Acceso en línea:
- https://revistas.uis.edu.co/index.php/memoriasuis/article/view/10373
https://noesis.uis.edu.co/handle/20.500.14071/5433
- Palabra clave:
- Rights
- openAccess
- License
- Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
Summary: | Los modelos DEA, Data Envelopment Analysis, combinan diferentes tipos de variables para obtener una comparación relativa de la eficiencia de un objeto frente a otros (Cooper, Seiford, & Tone, 2000). Sin embargo, poco se dice acerca de los métodos y procedimientos para la selección de variables a ser incluidas o eliminadas de un modelo (Edirisingle & Zhang, 2010); tampoco se identifica la posibilidad de disponer de una forma funcional que vincule las variables de entrada y salida (Dyson, y otros, 2001).Este texto recopila y propone lineamientos para identificar la forma funcional que vincula a diferentes variables de entrada y salida (Khezrimotlagh, Zhu, Cook, & Toloo, 2019), su consistencia dimensional, así como un conjunto de criterios para la clasificación, comprensión, selección e inclusión de variables y su interpretación (Cakrr, 2017). Esto se toma sobre el modelo DEA Translogarítmico para la descripción de desempeño de un conjunto prestadores de servicios de Justicia en Cundinamarca, Colombia entre 2007 a 2016 (Lacko, Humy, & Razkosová, 2017). |
---|