Estudio de la familia (la, sr)n+1 (mn, ni) no3n+-1 de estructura ruddlesden-popper (n=1 y 2) como material de ánodo para celdas de combustible sofc

Las celdas de combustible son dispositivos electroquímicos para la conversión directa de energía química almacenada en combustibles en energía eléctrica. Pueden ser clasificadas de acuerdo a su temperatura de operación, la cual dicta el tipo de electrolito utilizado. En el rango de temperatura entre...

Full description

Autores:
Florez Yepes, Silvia Juliana
Palencia Ruiz, Santiago
Tipo de recurso:
http://purl.org/coar/version/c_b1a7d7d4d402bcce
Fecha de publicación:
2016
Institución:
Universidad Industrial de Santander
Repositorio:
Repositorio UIS
Idioma:
spa
OAI Identifier:
oai:noesis.uis.edu.co:20.500.14071/34313
Acceso en línea:
https://noesis.uis.edu.co/handle/20.500.14071/34313
https://noesis.uis.edu.co
Palabra clave:
Sofc
Manganitas
Estructura Ruddlesden Popper N=1 Y 2
Ánodo Y Exsolución De Níquel.
Fuel cells are electrochemical devices for direct conversion of chemical energy stored in fuels into electric energy. They can be classified according to the temperature of operation
which dictates the kind of electrolyte used. In the temperature range between 600 and 1000ºC
it can be found using solid oxide electrolyte
fuel cells known as SOFC (Solid Oxide Fuel Cell). This work focus on this kind of cells
for which there was prepared by Sol-Gel route
composites of Ruddlesden-Popper structure n=1 Sr2-xLaxMn1-yNiyO (x=0.6-0.75 y y=0.1
0.2) and n=2 La1.5Sr1.5Mn1.5Ni0.5O. The study of these phases under oxidizing conditions confirms their stability at high temperatures (up to T=1200ºC) by ATG analysis
and an X Ray thermodiffraction study allowed to determinate that thermal expansion coefficients (TEC) are in good match with CGO electrolyte. On the other hand
materials characterization in diluted hydrogen (H2) showed instability RP n=1 phases
whereas La1.5Sr1.5Mn1.5Ni0.5O phase exhibited the formation of RP n=1 phase besides exsolution of nickel nanoparticles over the surface (confirmed by Transmission Electronic Microscopy). Finally
under reducing environment
the same phase displayed good chemical compatibility with CGO electrolyte. This performance in general of La1.5Sr1.5Mn1.5Ni0.5O7 let the phase be considered as a promising material to be used as electrode on SOFC.
Rights
License
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
id UISANTADR2_cc506ef8a06d61767cbca2f83b13a9a8
oai_identifier_str oai:noesis.uis.edu.co:20.500.14071/34313
network_acronym_str UISANTADR2
network_name_str Repositorio UIS
repository_id_str
dc.title.none.fl_str_mv Estudio de la familia (la, sr)n+1 (mn, ni) no3n+-1 de estructura ruddlesden-popper (n=1 y 2) como material de ánodo para celdas de combustible sofc
dc.title.english.none.fl_str_mv Sofc, Manganites, Ruddlesden-Popper Structure N=1 Y 2, Anode And Nickel Exsolution.
title Estudio de la familia (la, sr)n+1 (mn, ni) no3n+-1 de estructura ruddlesden-popper (n=1 y 2) como material de ánodo para celdas de combustible sofc
spellingShingle Estudio de la familia (la, sr)n+1 (mn, ni) no3n+-1 de estructura ruddlesden-popper (n=1 y 2) como material de ánodo para celdas de combustible sofc
Sofc
Manganitas
Estructura Ruddlesden Popper N=1 Y 2
Ánodo Y Exsolución De Níquel.
Fuel cells are electrochemical devices for direct conversion of chemical energy stored in fuels into electric energy. They can be classified according to the temperature of operation
which dictates the kind of electrolyte used. In the temperature range between 600 and 1000ºC
it can be found using solid oxide electrolyte
fuel cells known as SOFC (Solid Oxide Fuel Cell). This work focus on this kind of cells
for which there was prepared by Sol-Gel route
composites of Ruddlesden-Popper structure n=1 Sr2-xLaxMn1-yNiyO (x=0.6-0.75 y y=0.1
0.2) and n=2 La1.5Sr1.5Mn1.5Ni0.5O. The study of these phases under oxidizing conditions confirms their stability at high temperatures (up to T=1200ºC) by ATG analysis
and an X Ray thermodiffraction study allowed to determinate that thermal expansion coefficients (TEC) are in good match with CGO electrolyte. On the other hand
materials characterization in diluted hydrogen (H2) showed instability RP n=1 phases
whereas La1.5Sr1.5Mn1.5Ni0.5O phase exhibited the formation of RP n=1 phase besides exsolution of nickel nanoparticles over the surface (confirmed by Transmission Electronic Microscopy). Finally
under reducing environment
the same phase displayed good chemical compatibility with CGO electrolyte. This performance in general of La1.5Sr1.5Mn1.5Ni0.5O7 let the phase be considered as a promising material to be used as electrode on SOFC.
title_short Estudio de la familia (la, sr)n+1 (mn, ni) no3n+-1 de estructura ruddlesden-popper (n=1 y 2) como material de ánodo para celdas de combustible sofc
title_full Estudio de la familia (la, sr)n+1 (mn, ni) no3n+-1 de estructura ruddlesden-popper (n=1 y 2) como material de ánodo para celdas de combustible sofc
title_fullStr Estudio de la familia (la, sr)n+1 (mn, ni) no3n+-1 de estructura ruddlesden-popper (n=1 y 2) como material de ánodo para celdas de combustible sofc
title_full_unstemmed Estudio de la familia (la, sr)n+1 (mn, ni) no3n+-1 de estructura ruddlesden-popper (n=1 y 2) como material de ánodo para celdas de combustible sofc
title_sort Estudio de la familia (la, sr)n+1 (mn, ni) no3n+-1 de estructura ruddlesden-popper (n=1 y 2) como material de ánodo para celdas de combustible sofc
dc.creator.fl_str_mv Florez Yepes, Silvia Juliana
Palencia Ruiz, Santiago
dc.contributor.advisor.none.fl_str_mv Gauthier, Gilles Henri
Pirovano, Caroline
Sandoval, Monica Viviana
dc.contributor.author.none.fl_str_mv Florez Yepes, Silvia Juliana
Palencia Ruiz, Santiago
dc.subject.none.fl_str_mv Sofc
Manganitas
Estructura Ruddlesden Popper N=1 Y 2
Ánodo Y Exsolución De Níquel.
topic Sofc
Manganitas
Estructura Ruddlesden Popper N=1 Y 2
Ánodo Y Exsolución De Níquel.
Fuel cells are electrochemical devices for direct conversion of chemical energy stored in fuels into electric energy. They can be classified according to the temperature of operation
which dictates the kind of electrolyte used. In the temperature range between 600 and 1000ºC
it can be found using solid oxide electrolyte
fuel cells known as SOFC (Solid Oxide Fuel Cell). This work focus on this kind of cells
for which there was prepared by Sol-Gel route
composites of Ruddlesden-Popper structure n=1 Sr2-xLaxMn1-yNiyO (x=0.6-0.75 y y=0.1
0.2) and n=2 La1.5Sr1.5Mn1.5Ni0.5O. The study of these phases under oxidizing conditions confirms their stability at high temperatures (up to T=1200ºC) by ATG analysis
and an X Ray thermodiffraction study allowed to determinate that thermal expansion coefficients (TEC) are in good match with CGO electrolyte. On the other hand
materials characterization in diluted hydrogen (H2) showed instability RP n=1 phases
whereas La1.5Sr1.5Mn1.5Ni0.5O phase exhibited the formation of RP n=1 phase besides exsolution of nickel nanoparticles over the surface (confirmed by Transmission Electronic Microscopy). Finally
under reducing environment
the same phase displayed good chemical compatibility with CGO electrolyte. This performance in general of La1.5Sr1.5Mn1.5Ni0.5O7 let the phase be considered as a promising material to be used as electrode on SOFC.
dc.subject.keyword.none.fl_str_mv Fuel cells are electrochemical devices for direct conversion of chemical energy stored in fuels into electric energy. They can be classified according to the temperature of operation
which dictates the kind of electrolyte used. In the temperature range between 600 and 1000ºC
it can be found using solid oxide electrolyte
fuel cells known as SOFC (Solid Oxide Fuel Cell). This work focus on this kind of cells
for which there was prepared by Sol-Gel route
composites of Ruddlesden-Popper structure n=1 Sr2-xLaxMn1-yNiyO (x=0.6-0.75 y y=0.1
0.2) and n=2 La1.5Sr1.5Mn1.5Ni0.5O. The study of these phases under oxidizing conditions confirms their stability at high temperatures (up to T=1200ºC) by ATG analysis
and an X Ray thermodiffraction study allowed to determinate that thermal expansion coefficients (TEC) are in good match with CGO electrolyte. On the other hand
materials characterization in diluted hydrogen (H2) showed instability RP n=1 phases
whereas La1.5Sr1.5Mn1.5Ni0.5O phase exhibited the formation of RP n=1 phase besides exsolution of nickel nanoparticles over the surface (confirmed by Transmission Electronic Microscopy). Finally
under reducing environment
the same phase displayed good chemical compatibility with CGO electrolyte. This performance in general of La1.5Sr1.5Mn1.5Ni0.5O7 let the phase be considered as a promising material to be used as electrode on SOFC.
description Las celdas de combustible son dispositivos electroquímicos para la conversión directa de energía química almacenada en combustibles en energía eléctrica. Pueden ser clasificadas de acuerdo a su temperatura de operación, la cual dicta el tipo de electrolito utilizado. En el rango de temperatura entre 600 y 1000ºC se encuentran las celdas de combustible de electrolito óxido sólido conocidas como SOFC (Solid Oxide Fuel Cell). Este trabajo se enfoca en este tipo de celdas, para las cuales se elaboraron por el método Sol-gel los compuestos de estructura Ruddlesden-Popper n=1 Sr2-xLaxMn1-yNiyO (x=0.6-0.75 y y=0.1-0.2) y n=2 La1.5Sr1.5Mn1.5Ni0.5O. El estudio de estas fases en medio oxidante confirmó su estabilidad a altas temperaturas (hasta T=1200ºC) por medio de un análisis ATG, y un estudio por termodifracción de RX, permitió la determinación de coeficientes de expansión térmica (CET) compatibles con el electrolito GDC. Por otro lado, la caracterización de los materiales en hidrógeno (H2) diluido demostró la inestabilidad de las fases tipo RP n=1 en medio reductor mientras que, para la fase La1.5Sr1.5Mn1.5Ni0.5O, se evidenció la formación de una fase de tipo RP n=1 además de la exsolución de nanopartículas de níquel sobre la superficie (verificada por Microscopía Electrónica de Transmisión). Finalmente, en medio reductor, la misma fase presenta una buena compatibilidad química con el electrolito GDC. Este desempeño en general de la fase La1.5Sr1.5Mn1.5Ni0.5O conlleva a pensar que pueda ser considerada como un prometedor material de electrodo de celdas de combustible SOFC.
publishDate 2016
dc.date.available.none.fl_str_mv 2016
2024-03-03T22:36:46Z
dc.date.created.none.fl_str_mv 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2024-03-03T22:36:46Z
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.hasversion.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coar.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
format http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.identifier.uri.none.fl_str_mv https://noesis.uis.edu.co/handle/20.500.14071/34313
dc.identifier.instname.none.fl_str_mv Universidad Industrial de Santander
dc.identifier.reponame.none.fl_str_mv Universidad Industrial de Santander
dc.identifier.repourl.none.fl_str_mv https://noesis.uis.edu.co
url https://noesis.uis.edu.co/handle/20.500.14071/34313
https://noesis.uis.edu.co
identifier_str_mv Universidad Industrial de Santander
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0
dc.rights.creativecommons.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-nc/4.0
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Industrial de Santander
dc.publisher.faculty.none.fl_str_mv Facultad de Ingenierías Fisicoquímicas
dc.publisher.program.none.fl_str_mv Ingeniería Química
dc.publisher.school.none.fl_str_mv Escuela de Ingeniería Química
publisher.none.fl_str_mv Universidad Industrial de Santander
institution Universidad Industrial de Santander
bitstream.url.fl_str_mv https://noesis.uis.edu.co/bitstreams/da188939-dbb6-4905-94d6-3293e018d138/download
https://noesis.uis.edu.co/bitstreams/d48a4fc8-85a8-4770-863d-f5102f219920/download
https://noesis.uis.edu.co/bitstreams/2b83051f-7ec4-4489-9cb9-47b163e72137/download
bitstream.checksum.fl_str_mv fd71a0d56cb5f419344b3a6220f7753d
9d70202862cbfc152ecfce6dff539e64
5a4e2ddf42f868d60f14680bae2db89a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace at UIS
repository.mail.fl_str_mv noesis@uis.edu.co
_version_ 1812187056279912448
spelling Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by-nc/4.0Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Gauthier, Gilles HenriPirovano, CarolineSandoval, Monica VivianaFlorez Yepes, Silvia JulianaPalencia Ruiz, Santiago2024-03-03T22:36:46Z20162024-03-03T22:36:46Z20162016https://noesis.uis.edu.co/handle/20.500.14071/34313Universidad Industrial de SantanderUniversidad Industrial de Santanderhttps://noesis.uis.edu.coLas celdas de combustible son dispositivos electroquímicos para la conversión directa de energía química almacenada en combustibles en energía eléctrica. Pueden ser clasificadas de acuerdo a su temperatura de operación, la cual dicta el tipo de electrolito utilizado. En el rango de temperatura entre 600 y 1000ºC se encuentran las celdas de combustible de electrolito óxido sólido conocidas como SOFC (Solid Oxide Fuel Cell). Este trabajo se enfoca en este tipo de celdas, para las cuales se elaboraron por el método Sol-gel los compuestos de estructura Ruddlesden-Popper n=1 Sr2-xLaxMn1-yNiyO (x=0.6-0.75 y y=0.1-0.2) y n=2 La1.5Sr1.5Mn1.5Ni0.5O. El estudio de estas fases en medio oxidante confirmó su estabilidad a altas temperaturas (hasta T=1200ºC) por medio de un análisis ATG, y un estudio por termodifracción de RX, permitió la determinación de coeficientes de expansión térmica (CET) compatibles con el electrolito GDC. Por otro lado, la caracterización de los materiales en hidrógeno (H2) diluido demostró la inestabilidad de las fases tipo RP n=1 en medio reductor mientras que, para la fase La1.5Sr1.5Mn1.5Ni0.5O, se evidenció la formación de una fase de tipo RP n=1 además de la exsolución de nanopartículas de níquel sobre la superficie (verificada por Microscopía Electrónica de Transmisión). Finalmente, en medio reductor, la misma fase presenta una buena compatibilidad química con el electrolito GDC. Este desempeño en general de la fase La1.5Sr1.5Mn1.5Ni0.5O conlleva a pensar que pueda ser considerada como un prometedor material de electrodo de celdas de combustible SOFC.PregradoIngeniero QuímicoStudy of the family (la,sr)n+1(mn,ni)no3n±1 of ruddlesden-popper structure (n=1 y 2) as anode material for fuel cells sofc.application/pdfspaUniversidad Industrial de SantanderFacultad de Ingenierías FisicoquímicasIngeniería QuímicaEscuela de Ingeniería QuímicaSofcManganitasEstructura Ruddlesden Popper N=1 Y 2Ánodo Y Exsolución De Níquel.Fuel cells are electrochemical devices for direct conversion of chemical energy stored in fuels into electric energy. They can be classified according to the temperature of operationwhich dictates the kind of electrolyte used. In the temperature range between 600 and 1000ºCit can be found using solid oxide electrolytefuel cells known as SOFC (Solid Oxide Fuel Cell). This work focus on this kind of cellsfor which there was prepared by Sol-Gel routecomposites of Ruddlesden-Popper structure n=1 Sr2-xLaxMn1-yNiyO (x=0.6-0.75 y y=0.10.2) and n=2 La1.5Sr1.5Mn1.5Ni0.5O. The study of these phases under oxidizing conditions confirms their stability at high temperatures (up to T=1200ºC) by ATG analysisand an X Ray thermodiffraction study allowed to determinate that thermal expansion coefficients (TEC) are in good match with CGO electrolyte. On the other handmaterials characterization in diluted hydrogen (H2) showed instability RP n=1 phaseswhereas La1.5Sr1.5Mn1.5Ni0.5O phase exhibited the formation of RP n=1 phase besides exsolution of nickel nanoparticles over the surface (confirmed by Transmission Electronic Microscopy). Finallyunder reducing environmentthe same phase displayed good chemical compatibility with CGO electrolyte. This performance in general of La1.5Sr1.5Mn1.5Ni0.5O7 let the phase be considered as a promising material to be used as electrode on SOFC.Estudio de la familia (la, sr)n+1 (mn, ni) no3n+-1 de estructura ruddlesden-popper (n=1 y 2) como material de ánodo para celdas de combustible sofcSofc, Manganites, Ruddlesden-Popper Structure N=1 Y 2, Anode And Nickel Exsolution.Tesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_b1a7d7d4d402bcceORIGINALCarta de autorización.pdfapplication/pdf423221https://noesis.uis.edu.co/bitstreams/da188939-dbb6-4905-94d6-3293e018d138/downloadfd71a0d56cb5f419344b3a6220f7753dMD51Documento.pdfapplication/pdf3750817https://noesis.uis.edu.co/bitstreams/d48a4fc8-85a8-4770-863d-f5102f219920/download9d70202862cbfc152ecfce6dff539e64MD52Nota de proyecto.pdfapplication/pdf275681https://noesis.uis.edu.co/bitstreams/2b83051f-7ec4-4489-9cb9-47b163e72137/download5a4e2ddf42f868d60f14680bae2db89aMD5320.500.14071/34313oai:noesis.uis.edu.co:20.500.14071/343132024-03-03 17:36:46.095http://creativecommons.org/licenses/by-nc/4.0http://creativecommons.org/licenses/by/4.0/open.accesshttps://noesis.uis.edu.coDSpace at UISnoesis@uis.edu.co