Estudio de la familia (la, sr)n+1 (mn, ni) no3n+-1 de estructura ruddlesden-popper (n=1 y 2) como material de ánodo para celdas de combustible sofc
Las celdas de combustible son dispositivos electroquímicos para la conversión directa de energía química almacenada en combustibles en energía eléctrica. Pueden ser clasificadas de acuerdo a su temperatura de operación, la cual dicta el tipo de electrolito utilizado. En el rango de temperatura entre...
- Autores:
-
Florez Yepes, Silvia Juliana
Palencia Ruiz, Santiago
- Tipo de recurso:
- http://purl.org/coar/version/c_b1a7d7d4d402bcce
- Fecha de publicación:
- 2016
- Institución:
- Universidad Industrial de Santander
- Repositorio:
- Repositorio UIS
- Idioma:
- spa
- OAI Identifier:
- oai:noesis.uis.edu.co:20.500.14071/34313
- Palabra clave:
- Sofc
Manganitas
Estructura Ruddlesden Popper N=1 Y 2
Ánodo Y Exsolución De Níquel.
Fuel cells are electrochemical devices for direct conversion of chemical energy stored in fuels into electric energy. They can be classified according to the temperature of operation
which dictates the kind of electrolyte used. In the temperature range between 600 and 1000ºC
it can be found using solid oxide electrolyte
fuel cells known as SOFC (Solid Oxide Fuel Cell). This work focus on this kind of cells
for which there was prepared by Sol-Gel route
composites of Ruddlesden-Popper structure n=1 Sr2-xLaxMn1-yNiyO (x=0.6-0.75 y y=0.1
0.2) and n=2 La1.5Sr1.5Mn1.5Ni0.5O. The study of these phases under oxidizing conditions confirms their stability at high temperatures (up to T=1200ºC) by ATG analysis
and an X Ray thermodiffraction study allowed to determinate that thermal expansion coefficients (TEC) are in good match with CGO electrolyte. On the other hand
materials characterization in diluted hydrogen (H2) showed instability RP n=1 phases
whereas La1.5Sr1.5Mn1.5Ni0.5O phase exhibited the formation of RP n=1 phase besides exsolution of nickel nanoparticles over the surface (confirmed by Transmission Electronic Microscopy). Finally
under reducing environment
the same phase displayed good chemical compatibility with CGO electrolyte. This performance in general of La1.5Sr1.5Mn1.5Ni0.5O7 let the phase be considered as a promising material to be used as electrode on SOFC.
- Rights
- License
- Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
id |
UISANTADR2_cc506ef8a06d61767cbca2f83b13a9a8 |
---|---|
oai_identifier_str |
oai:noesis.uis.edu.co:20.500.14071/34313 |
network_acronym_str |
UISANTADR2 |
network_name_str |
Repositorio UIS |
repository_id_str |
|
dc.title.none.fl_str_mv |
Estudio de la familia (la, sr)n+1 (mn, ni) no3n+-1 de estructura ruddlesden-popper (n=1 y 2) como material de ánodo para celdas de combustible sofc |
dc.title.english.none.fl_str_mv |
Sofc, Manganites, Ruddlesden-Popper Structure N=1 Y 2, Anode And Nickel Exsolution. |
title |
Estudio de la familia (la, sr)n+1 (mn, ni) no3n+-1 de estructura ruddlesden-popper (n=1 y 2) como material de ánodo para celdas de combustible sofc |
spellingShingle |
Estudio de la familia (la, sr)n+1 (mn, ni) no3n+-1 de estructura ruddlesden-popper (n=1 y 2) como material de ánodo para celdas de combustible sofc Sofc Manganitas Estructura Ruddlesden Popper N=1 Y 2 Ánodo Y Exsolución De Níquel. Fuel cells are electrochemical devices for direct conversion of chemical energy stored in fuels into electric energy. They can be classified according to the temperature of operation which dictates the kind of electrolyte used. In the temperature range between 600 and 1000ºC it can be found using solid oxide electrolyte fuel cells known as SOFC (Solid Oxide Fuel Cell). This work focus on this kind of cells for which there was prepared by Sol-Gel route composites of Ruddlesden-Popper structure n=1 Sr2-xLaxMn1-yNiyO (x=0.6-0.75 y y=0.1 0.2) and n=2 La1.5Sr1.5Mn1.5Ni0.5O. The study of these phases under oxidizing conditions confirms their stability at high temperatures (up to T=1200ºC) by ATG analysis and an X Ray thermodiffraction study allowed to determinate that thermal expansion coefficients (TEC) are in good match with CGO electrolyte. On the other hand materials characterization in diluted hydrogen (H2) showed instability RP n=1 phases whereas La1.5Sr1.5Mn1.5Ni0.5O phase exhibited the formation of RP n=1 phase besides exsolution of nickel nanoparticles over the surface (confirmed by Transmission Electronic Microscopy). Finally under reducing environment the same phase displayed good chemical compatibility with CGO electrolyte. This performance in general of La1.5Sr1.5Mn1.5Ni0.5O7 let the phase be considered as a promising material to be used as electrode on SOFC. |
title_short |
Estudio de la familia (la, sr)n+1 (mn, ni) no3n+-1 de estructura ruddlesden-popper (n=1 y 2) como material de ánodo para celdas de combustible sofc |
title_full |
Estudio de la familia (la, sr)n+1 (mn, ni) no3n+-1 de estructura ruddlesden-popper (n=1 y 2) como material de ánodo para celdas de combustible sofc |
title_fullStr |
Estudio de la familia (la, sr)n+1 (mn, ni) no3n+-1 de estructura ruddlesden-popper (n=1 y 2) como material de ánodo para celdas de combustible sofc |
title_full_unstemmed |
Estudio de la familia (la, sr)n+1 (mn, ni) no3n+-1 de estructura ruddlesden-popper (n=1 y 2) como material de ánodo para celdas de combustible sofc |
title_sort |
Estudio de la familia (la, sr)n+1 (mn, ni) no3n+-1 de estructura ruddlesden-popper (n=1 y 2) como material de ánodo para celdas de combustible sofc |
dc.creator.fl_str_mv |
Florez Yepes, Silvia Juliana Palencia Ruiz, Santiago |
dc.contributor.advisor.none.fl_str_mv |
Gauthier, Gilles Henri Pirovano, Caroline Sandoval, Monica Viviana |
dc.contributor.author.none.fl_str_mv |
Florez Yepes, Silvia Juliana Palencia Ruiz, Santiago |
dc.subject.none.fl_str_mv |
Sofc Manganitas Estructura Ruddlesden Popper N=1 Y 2 Ánodo Y Exsolución De Níquel. |
topic |
Sofc Manganitas Estructura Ruddlesden Popper N=1 Y 2 Ánodo Y Exsolución De Níquel. Fuel cells are electrochemical devices for direct conversion of chemical energy stored in fuels into electric energy. They can be classified according to the temperature of operation which dictates the kind of electrolyte used. In the temperature range between 600 and 1000ºC it can be found using solid oxide electrolyte fuel cells known as SOFC (Solid Oxide Fuel Cell). This work focus on this kind of cells for which there was prepared by Sol-Gel route composites of Ruddlesden-Popper structure n=1 Sr2-xLaxMn1-yNiyO (x=0.6-0.75 y y=0.1 0.2) and n=2 La1.5Sr1.5Mn1.5Ni0.5O. The study of these phases under oxidizing conditions confirms their stability at high temperatures (up to T=1200ºC) by ATG analysis and an X Ray thermodiffraction study allowed to determinate that thermal expansion coefficients (TEC) are in good match with CGO electrolyte. On the other hand materials characterization in diluted hydrogen (H2) showed instability RP n=1 phases whereas La1.5Sr1.5Mn1.5Ni0.5O phase exhibited the formation of RP n=1 phase besides exsolution of nickel nanoparticles over the surface (confirmed by Transmission Electronic Microscopy). Finally under reducing environment the same phase displayed good chemical compatibility with CGO electrolyte. This performance in general of La1.5Sr1.5Mn1.5Ni0.5O7 let the phase be considered as a promising material to be used as electrode on SOFC. |
dc.subject.keyword.none.fl_str_mv |
Fuel cells are electrochemical devices for direct conversion of chemical energy stored in fuels into electric energy. They can be classified according to the temperature of operation which dictates the kind of electrolyte used. In the temperature range between 600 and 1000ºC it can be found using solid oxide electrolyte fuel cells known as SOFC (Solid Oxide Fuel Cell). This work focus on this kind of cells for which there was prepared by Sol-Gel route composites of Ruddlesden-Popper structure n=1 Sr2-xLaxMn1-yNiyO (x=0.6-0.75 y y=0.1 0.2) and n=2 La1.5Sr1.5Mn1.5Ni0.5O. The study of these phases under oxidizing conditions confirms their stability at high temperatures (up to T=1200ºC) by ATG analysis and an X Ray thermodiffraction study allowed to determinate that thermal expansion coefficients (TEC) are in good match with CGO electrolyte. On the other hand materials characterization in diluted hydrogen (H2) showed instability RP n=1 phases whereas La1.5Sr1.5Mn1.5Ni0.5O phase exhibited the formation of RP n=1 phase besides exsolution of nickel nanoparticles over the surface (confirmed by Transmission Electronic Microscopy). Finally under reducing environment the same phase displayed good chemical compatibility with CGO electrolyte. This performance in general of La1.5Sr1.5Mn1.5Ni0.5O7 let the phase be considered as a promising material to be used as electrode on SOFC. |
description |
Las celdas de combustible son dispositivos electroquímicos para la conversión directa de energía química almacenada en combustibles en energía eléctrica. Pueden ser clasificadas de acuerdo a su temperatura de operación, la cual dicta el tipo de electrolito utilizado. En el rango de temperatura entre 600 y 1000ºC se encuentran las celdas de combustible de electrolito óxido sólido conocidas como SOFC (Solid Oxide Fuel Cell). Este trabajo se enfoca en este tipo de celdas, para las cuales se elaboraron por el método Sol-gel los compuestos de estructura Ruddlesden-Popper n=1 Sr2-xLaxMn1-yNiyO (x=0.6-0.75 y y=0.1-0.2) y n=2 La1.5Sr1.5Mn1.5Ni0.5O. El estudio de estas fases en medio oxidante confirmó su estabilidad a altas temperaturas (hasta T=1200ºC) por medio de un análisis ATG, y un estudio por termodifracción de RX, permitió la determinación de coeficientes de expansión térmica (CET) compatibles con el electrolito GDC. Por otro lado, la caracterización de los materiales en hidrógeno (H2) diluido demostró la inestabilidad de las fases tipo RP n=1 en medio reductor mientras que, para la fase La1.5Sr1.5Mn1.5Ni0.5O, se evidenció la formación de una fase de tipo RP n=1 además de la exsolución de nanopartículas de níquel sobre la superficie (verificada por Microscopía Electrónica de Transmisión). Finalmente, en medio reductor, la misma fase presenta una buena compatibilidad química con el electrolito GDC. Este desempeño en general de la fase La1.5Sr1.5Mn1.5Ni0.5O conlleva a pensar que pueda ser considerada como un prometedor material de electrodo de celdas de combustible SOFC. |
publishDate |
2016 |
dc.date.available.none.fl_str_mv |
2016 2024-03-03T22:36:46Z |
dc.date.created.none.fl_str_mv |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2024-03-03T22:36:46Z |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.hasversion.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
format |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.identifier.uri.none.fl_str_mv |
https://noesis.uis.edu.co/handle/20.500.14071/34313 |
dc.identifier.instname.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.reponame.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.repourl.none.fl_str_mv |
https://noesis.uis.edu.co |
url |
https://noesis.uis.edu.co/handle/20.500.14071/34313 https://noesis.uis.edu.co |
identifier_str_mv |
Universidad Industrial de Santander |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.none.fl_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0 |
dc.rights.creativecommons.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by-nc/4.0 Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Industrial de Santander |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingenierías Fisicoquímicas |
dc.publisher.program.none.fl_str_mv |
Ingeniería Química |
dc.publisher.school.none.fl_str_mv |
Escuela de Ingeniería Química |
publisher.none.fl_str_mv |
Universidad Industrial de Santander |
institution |
Universidad Industrial de Santander |
bitstream.url.fl_str_mv |
https://noesis.uis.edu.co/bitstreams/da188939-dbb6-4905-94d6-3293e018d138/download https://noesis.uis.edu.co/bitstreams/d48a4fc8-85a8-4770-863d-f5102f219920/download https://noesis.uis.edu.co/bitstreams/2b83051f-7ec4-4489-9cb9-47b163e72137/download |
bitstream.checksum.fl_str_mv |
fd71a0d56cb5f419344b3a6220f7753d 9d70202862cbfc152ecfce6dff539e64 5a4e2ddf42f868d60f14680bae2db89a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace at UIS |
repository.mail.fl_str_mv |
noesis@uis.edu.co |
_version_ |
1831929690917437440 |
spelling |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by-nc/4.0Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Gauthier, Gilles HenriPirovano, CarolineSandoval, Monica VivianaFlorez Yepes, Silvia JulianaPalencia Ruiz, Santiago2024-03-03T22:36:46Z20162024-03-03T22:36:46Z20162016https://noesis.uis.edu.co/handle/20.500.14071/34313Universidad Industrial de SantanderUniversidad Industrial de Santanderhttps://noesis.uis.edu.coLas celdas de combustible son dispositivos electroquímicos para la conversión directa de energía química almacenada en combustibles en energía eléctrica. Pueden ser clasificadas de acuerdo a su temperatura de operación, la cual dicta el tipo de electrolito utilizado. En el rango de temperatura entre 600 y 1000ºC se encuentran las celdas de combustible de electrolito óxido sólido conocidas como SOFC (Solid Oxide Fuel Cell). Este trabajo se enfoca en este tipo de celdas, para las cuales se elaboraron por el método Sol-gel los compuestos de estructura Ruddlesden-Popper n=1 Sr2-xLaxMn1-yNiyO (x=0.6-0.75 y y=0.1-0.2) y n=2 La1.5Sr1.5Mn1.5Ni0.5O. El estudio de estas fases en medio oxidante confirmó su estabilidad a altas temperaturas (hasta T=1200ºC) por medio de un análisis ATG, y un estudio por termodifracción de RX, permitió la determinación de coeficientes de expansión térmica (CET) compatibles con el electrolito GDC. Por otro lado, la caracterización de los materiales en hidrógeno (H2) diluido demostró la inestabilidad de las fases tipo RP n=1 en medio reductor mientras que, para la fase La1.5Sr1.5Mn1.5Ni0.5O, se evidenció la formación de una fase de tipo RP n=1 además de la exsolución de nanopartículas de níquel sobre la superficie (verificada por Microscopía Electrónica de Transmisión). Finalmente, en medio reductor, la misma fase presenta una buena compatibilidad química con el electrolito GDC. Este desempeño en general de la fase La1.5Sr1.5Mn1.5Ni0.5O conlleva a pensar que pueda ser considerada como un prometedor material de electrodo de celdas de combustible SOFC.PregradoIngeniero QuímicoStudy of the family (la,sr)n+1(mn,ni)no3n±1 of ruddlesden-popper structure (n=1 y 2) as anode material for fuel cells sofc.application/pdfspaUniversidad Industrial de SantanderFacultad de Ingenierías FisicoquímicasIngeniería QuímicaEscuela de Ingeniería QuímicaSofcManganitasEstructura Ruddlesden Popper N=1 Y 2Ánodo Y Exsolución De Níquel.Fuel cells are electrochemical devices for direct conversion of chemical energy stored in fuels into electric energy. They can be classified according to the temperature of operationwhich dictates the kind of electrolyte used. In the temperature range between 600 and 1000ºCit can be found using solid oxide electrolytefuel cells known as SOFC (Solid Oxide Fuel Cell). This work focus on this kind of cellsfor which there was prepared by Sol-Gel routecomposites of Ruddlesden-Popper structure n=1 Sr2-xLaxMn1-yNiyO (x=0.6-0.75 y y=0.10.2) and n=2 La1.5Sr1.5Mn1.5Ni0.5O. The study of these phases under oxidizing conditions confirms their stability at high temperatures (up to T=1200ºC) by ATG analysisand an X Ray thermodiffraction study allowed to determinate that thermal expansion coefficients (TEC) are in good match with CGO electrolyte. On the other handmaterials characterization in diluted hydrogen (H2) showed instability RP n=1 phaseswhereas La1.5Sr1.5Mn1.5Ni0.5O phase exhibited the formation of RP n=1 phase besides exsolution of nickel nanoparticles over the surface (confirmed by Transmission Electronic Microscopy). Finallyunder reducing environmentthe same phase displayed good chemical compatibility with CGO electrolyte. This performance in general of La1.5Sr1.5Mn1.5Ni0.5O7 let the phase be considered as a promising material to be used as electrode on SOFC.Estudio de la familia (la, sr)n+1 (mn, ni) no3n+-1 de estructura ruddlesden-popper (n=1 y 2) como material de ánodo para celdas de combustible sofcSofc, Manganites, Ruddlesden-Popper Structure N=1 Y 2, Anode And Nickel Exsolution.Tesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_b1a7d7d4d402bcceORIGINALCarta de autorización.pdfapplication/pdf423221https://noesis.uis.edu.co/bitstreams/da188939-dbb6-4905-94d6-3293e018d138/downloadfd71a0d56cb5f419344b3a6220f7753dMD51Documento.pdfapplication/pdf3750817https://noesis.uis.edu.co/bitstreams/d48a4fc8-85a8-4770-863d-f5102f219920/download9d70202862cbfc152ecfce6dff539e64MD52Nota de proyecto.pdfapplication/pdf275681https://noesis.uis.edu.co/bitstreams/2b83051f-7ec4-4489-9cb9-47b163e72137/download5a4e2ddf42f868d60f14680bae2db89aMD5320.500.14071/34313oai:noesis.uis.edu.co:20.500.14071/343132024-03-03 17:36:46.095http://creativecommons.org/licenses/by-nc/4.0http://creativecommons.org/licenses/by/4.0/open.accesshttps://noesis.uis.edu.coDSpace at UISnoesis@uis.edu.co |