Isometric immersions into Riemannian Manifolds

This paper summarizes the basic theory of connections in principal bundles and vector bundles in order to apply these theories to the study of isometric immersions in Riemannian manifolds; by an appropriate version ofthe Frobenius theorem we show a result that generalizes the Fundamental Theorem of...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2011
Institución:
Universidad Industrial de Santander
Repositorio:
Repositorio UIS
Idioma:
spa
OAI Identifier:
oai:noesis.uis.edu.co:20.500.14071/7310
Acceso en línea:
https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/2409
https://noesis.uis.edu.co/handle/20.500.14071/7310
Palabra clave:
vector bundles
frame bundles and connections
isometric immersions
fibrados vectoriales
fibrados de referenciales y conexiones
inmersiones isométricas
Rights
openAccess
License
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
id UISANTADR2_bc80dcabc9bd991df2f260411a409b54
oai_identifier_str oai:noesis.uis.edu.co:20.500.14071/7310
network_acronym_str UISANTADR2
network_name_str Repositorio UIS
repository_id_str
spelling Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)2011-01-312022-03-14T20:23:27Z2022-03-14T20:23:27Zhttps://revistas.uis.edu.co/index.php/revistaintegracion/article/view/2409https://noesis.uis.edu.co/handle/20.500.14071/7310This paper summarizes the basic theory of connections in principal bundles and vector bundles in order to apply these theories to the study of isometric immersions in Riemannian manifolds; by an appropriate version ofthe Frobenius theorem we show a result that generalizes the Fundamental Theorem of isometric immersions.Este trabajo recapitula la teoría básica de conexiones en fibrados principales y fibrados vectoriales con el fin de aplicar tales teorías al estudio de inmersiones isométricas en variedades riemannianas; por medio de una versión apropiada del teorema de Frobenius mostramos un resultado que generaliza el teorema fundamental de las inmersiones isométricas.  application/pdfspaUniversidad Industrial de Santanderhttps://revistas.uis.edu.co/index.php/revistaintegracion/article/view/2409/2742Revista integración, temas de matemáticas; Vol. 29 Núm. 1 (2011): Revista Integración, temas de matemáticas; 31-54REVISTA INTEGRACIÓN; v. 29 n. 1 (2011): Revista Integración, temas de matemáticas; 31-542145-84720120-419Xvector bundlesframe bundles and connectionsisometric immersionsfibrados vectorialesfibrados de referenciales y conexionesinmersiones isométricasIsometric immersions into Riemannian ManifoldsInmersiones isométricas en variedades riemannianasinfo:eu-repo/semantics/articlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Marín Arango, Carlos Alberto20.500.14071/7310oai:noesis.uis.edu.co:20.500.14071/73102022-03-16 12:39:58.13metadata.onlyhttps://noesis.uis.edu.coDSpace at UISnoesis@uis.edu.co
dc.title.en-US.fl_str_mv Isometric immersions into Riemannian Manifolds
dc.title.es-ES.fl_str_mv Inmersiones isométricas en variedades riemannianas
title Isometric immersions into Riemannian Manifolds
spellingShingle Isometric immersions into Riemannian Manifolds
vector bundles
frame bundles and connections
isometric immersions
fibrados vectoriales
fibrados de referenciales y conexiones
inmersiones isométricas
title_short Isometric immersions into Riemannian Manifolds
title_full Isometric immersions into Riemannian Manifolds
title_fullStr Isometric immersions into Riemannian Manifolds
title_full_unstemmed Isometric immersions into Riemannian Manifolds
title_sort Isometric immersions into Riemannian Manifolds
dc.subject.en-US.fl_str_mv vector bundles
frame bundles and connections
isometric immersions
topic vector bundles
frame bundles and connections
isometric immersions
fibrados vectoriales
fibrados de referenciales y conexiones
inmersiones isométricas
dc.subject.es-ES.fl_str_mv fibrados vectoriales
fibrados de referenciales y conexiones
inmersiones isométricas
description This paper summarizes the basic theory of connections in principal bundles and vector bundles in order to apply these theories to the study of isometric immersions in Riemannian manifolds; by an appropriate version ofthe Frobenius theorem we show a result that generalizes the Fundamental Theorem of isometric immersions.
publishDate 2011
dc.date.accessioned.none.fl_str_mv 2022-03-14T20:23:27Z
dc.date.available.none.fl_str_mv 2022-03-14T20:23:27Z
dc.date.none.fl_str_mv 2011-01-31
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.none.fl_str_mv https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/2409
dc.identifier.uri.none.fl_str_mv https://noesis.uis.edu.co/handle/20.500.14071/7310
url https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/2409
https://noesis.uis.edu.co/handle/20.500.14071/7310
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/2409/2742
dc.rights.license.none.fl_str_mv Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.rights.coar.none.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.creativecommons.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.es-ES.fl_str_mv Universidad Industrial de Santander
dc.source.es-ES.fl_str_mv Revista integración, temas de matemáticas; Vol. 29 Núm. 1 (2011): Revista Integración, temas de matemáticas; 31-54
dc.source.pt-BR.fl_str_mv REVISTA INTEGRACIÓN; v. 29 n. 1 (2011): Revista Integración, temas de matemáticas; 31-54
dc.source.none.fl_str_mv 2145-8472
0120-419X
institution Universidad Industrial de Santander
repository.name.fl_str_mv DSpace at UIS
repository.mail.fl_str_mv noesis@uis.edu.co
_version_ 1814095230207524864