Estudio morfológico, estructural y comportamiento corrosivo de la aleación fe-co-w obtenida por electrodeposición
La corrosión es un fenómeno natural que deteriora un material a consecuencia de un ataque electroquímico por su entorno. Una forma de mitigar o retardar el efecto de la corrosión en materiales metálicos ha sido el desarrollo de recubrimientos metálicos. La deposición de aleaciones de tungsteno con u...
- Autores:
-
Cajica Rusinke, Maria Camila
Prada Carvajal, Diego Oswaldo
- Tipo de recurso:
- http://purl.org/coar/version/c_b1a7d7d4d402bcce
- Fecha de publicación:
- 2016
- Institución:
- Universidad Industrial de Santander
- Repositorio:
- Repositorio UIS
- Idioma:
- spa
- OAI Identifier:
- oai:noesis.uis.edu.co:20.500.14071/34331
- Palabra clave:
- Electrodeposición
Corrosión
Fe-Co-W
Densidad De Corriente
Temperatura.
Corrosion is a natural phenomenon that deteriorates a material as a result of an electrochemical attack by their environment. One way to mitigate or delay the effects of corrosion in metallic materials has been the development of metallic coatings. Deposition of tungsten alloys with one or more metals of the iron group provides high corrosion resistance and good mechanical properties. In this paper
a Fe-Co-W ternary alloy was electrodeposited varying the applied cathodic current density (10-50 mA/cm2) and deposition temperature (20-60 °C). The coatings were structurally and morphologically characterized by studies of energy dispersive spectroscopy (EDX)
scanning electron microscopy (SEM) and X-ray diffraction (XRD). Finally
the operational parameters regarding cathodic current efficiency and corrosion resistance were optimized. A factorial design 22 was adequately employed for experimental design analysis of the results. The deposited obtained under conditions 50 mA/cm2 current density
60 °C temperature
30 rpm cathode rotation and 7.0 had an amorphous character and showed good adherence
high corrosion resistance and presence of nodules on its surface. Electrochemical corrosion tests verified that the Fe-Co-W alloy had better corrosion resistance than similarly electrodeposited Co-W amorphous alloy
- Rights
- License
- Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
id |
UISANTADR2_bc3bcff99957eaa18704385555d92a20 |
---|---|
oai_identifier_str |
oai:noesis.uis.edu.co:20.500.14071/34331 |
network_acronym_str |
UISANTADR2 |
network_name_str |
Repositorio UIS |
repository_id_str |
|
dc.title.none.fl_str_mv |
Estudio morfológico, estructural y comportamiento corrosivo de la aleación fe-co-w obtenida por electrodeposición |
dc.title.english.none.fl_str_mv |
Electrodeposition, Corrosion, Fe-Co-W, Current Density, Temperature. |
title |
Estudio morfológico, estructural y comportamiento corrosivo de la aleación fe-co-w obtenida por electrodeposición |
spellingShingle |
Estudio morfológico, estructural y comportamiento corrosivo de la aleación fe-co-w obtenida por electrodeposición Electrodeposición Corrosión Fe-Co-W Densidad De Corriente Temperatura. Corrosion is a natural phenomenon that deteriorates a material as a result of an electrochemical attack by their environment. One way to mitigate or delay the effects of corrosion in metallic materials has been the development of metallic coatings. Deposition of tungsten alloys with one or more metals of the iron group provides high corrosion resistance and good mechanical properties. In this paper a Fe-Co-W ternary alloy was electrodeposited varying the applied cathodic current density (10-50 mA/cm2) and deposition temperature (20-60 °C). The coatings were structurally and morphologically characterized by studies of energy dispersive spectroscopy (EDX) scanning electron microscopy (SEM) and X-ray diffraction (XRD). Finally the operational parameters regarding cathodic current efficiency and corrosion resistance were optimized. A factorial design 22 was adequately employed for experimental design analysis of the results. The deposited obtained under conditions 50 mA/cm2 current density 60 °C temperature 30 rpm cathode rotation and 7.0 had an amorphous character and showed good adherence high corrosion resistance and presence of nodules on its surface. Electrochemical corrosion tests verified that the Fe-Co-W alloy had better corrosion resistance than similarly electrodeposited Co-W amorphous alloy |
title_short |
Estudio morfológico, estructural y comportamiento corrosivo de la aleación fe-co-w obtenida por electrodeposición |
title_full |
Estudio morfológico, estructural y comportamiento corrosivo de la aleación fe-co-w obtenida por electrodeposición |
title_fullStr |
Estudio morfológico, estructural y comportamiento corrosivo de la aleación fe-co-w obtenida por electrodeposición |
title_full_unstemmed |
Estudio morfológico, estructural y comportamiento corrosivo de la aleación fe-co-w obtenida por electrodeposición |
title_sort |
Estudio morfológico, estructural y comportamiento corrosivo de la aleación fe-co-w obtenida por electrodeposición |
dc.creator.fl_str_mv |
Cajica Rusinke, Maria Camila Prada Carvajal, Diego Oswaldo |
dc.contributor.advisor.none.fl_str_mv |
Laverde Cataño, Dionisio Antonio Peña Ballesteros, Darío Yesid Almeida Neto, Ambrosio Florencio de |
dc.contributor.author.none.fl_str_mv |
Cajica Rusinke, Maria Camila Prada Carvajal, Diego Oswaldo |
dc.subject.none.fl_str_mv |
Electrodeposición Corrosión Fe-Co-W Densidad De Corriente Temperatura. |
topic |
Electrodeposición Corrosión Fe-Co-W Densidad De Corriente Temperatura. Corrosion is a natural phenomenon that deteriorates a material as a result of an electrochemical attack by their environment. One way to mitigate or delay the effects of corrosion in metallic materials has been the development of metallic coatings. Deposition of tungsten alloys with one or more metals of the iron group provides high corrosion resistance and good mechanical properties. In this paper a Fe-Co-W ternary alloy was electrodeposited varying the applied cathodic current density (10-50 mA/cm2) and deposition temperature (20-60 °C). The coatings were structurally and morphologically characterized by studies of energy dispersive spectroscopy (EDX) scanning electron microscopy (SEM) and X-ray diffraction (XRD). Finally the operational parameters regarding cathodic current efficiency and corrosion resistance were optimized. A factorial design 22 was adequately employed for experimental design analysis of the results. The deposited obtained under conditions 50 mA/cm2 current density 60 °C temperature 30 rpm cathode rotation and 7.0 had an amorphous character and showed good adherence high corrosion resistance and presence of nodules on its surface. Electrochemical corrosion tests verified that the Fe-Co-W alloy had better corrosion resistance than similarly electrodeposited Co-W amorphous alloy |
dc.subject.keyword.none.fl_str_mv |
Corrosion is a natural phenomenon that deteriorates a material as a result of an electrochemical attack by their environment. One way to mitigate or delay the effects of corrosion in metallic materials has been the development of metallic coatings. Deposition of tungsten alloys with one or more metals of the iron group provides high corrosion resistance and good mechanical properties. In this paper a Fe-Co-W ternary alloy was electrodeposited varying the applied cathodic current density (10-50 mA/cm2) and deposition temperature (20-60 °C). The coatings were structurally and morphologically characterized by studies of energy dispersive spectroscopy (EDX) scanning electron microscopy (SEM) and X-ray diffraction (XRD). Finally the operational parameters regarding cathodic current efficiency and corrosion resistance were optimized. A factorial design 22 was adequately employed for experimental design analysis of the results. The deposited obtained under conditions 50 mA/cm2 current density 60 °C temperature 30 rpm cathode rotation and 7.0 had an amorphous character and showed good adherence high corrosion resistance and presence of nodules on its surface. Electrochemical corrosion tests verified that the Fe-Co-W alloy had better corrosion resistance than similarly electrodeposited Co-W amorphous alloy |
description |
La corrosión es un fenómeno natural que deteriora un material a consecuencia de un ataque electroquímico por su entorno. Una forma de mitigar o retardar el efecto de la corrosión en materiales metálicos ha sido el desarrollo de recubrimientos metálicos. La deposición de aleaciones de tungsteno con uno o más metales del grupo del hierro proporciona alta resistencia a la corrosión y buenas propiedades mecánicas. En el presente trabajo, la aleación ternaria Fe-Co-W fue electrodepositada, variando la densidad de corriente catódica aplicada (10-50 mA/cm2) y su temperatura de deposición (20-60 °C). Los recubrimientos fueron caracterizados estructural y morfológicamente, gracias a estudios de espectroscopia de energía dispersa (EDX), microscopia electrónica de barrido (SEM) y difracción de Rayos X (DRX). Finalmente, los parámetros operacionales en relación a la eficiencia de corriente catódica y resistencia a la corrosión fueron optimizados. Un diseño factorial 22 fue correctamente empleado para el análisis experimental de los resultados. Se observó que el deposito obtenido a condiciones de 50 mA/cm2 de densidad de corriente, 60 °C de temperatura, 30 rpm de rotación catódica y pH de 7.0, presentó una estructura amorfa y mostró una buena adherencia, alta resistencia a la corrosión y la presencia de pequeños nódulos en la superficie. Los ensayos de corrosión verificaron que la aleación Fe-Co-W tenía una mejor resistencia a la corrosión que la aleación amorfa Co-W electrodepositada de manera similar |
publishDate |
2016 |
dc.date.available.none.fl_str_mv |
2016 2024-03-03T22:36:49Z |
dc.date.created.none.fl_str_mv |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2024-03-03T22:36:49Z |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.hasversion.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
format |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.identifier.uri.none.fl_str_mv |
https://noesis.uis.edu.co/handle/20.500.14071/34331 |
dc.identifier.instname.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.reponame.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.repourl.none.fl_str_mv |
https://noesis.uis.edu.co |
url |
https://noesis.uis.edu.co/handle/20.500.14071/34331 https://noesis.uis.edu.co |
identifier_str_mv |
Universidad Industrial de Santander |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.none.fl_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0 |
dc.rights.creativecommons.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by-nc/4.0 Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Industrial de Santander |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingenierías Fisicoquímicas |
dc.publisher.program.none.fl_str_mv |
Ingeniería Química |
dc.publisher.school.none.fl_str_mv |
Escuela de Ingeniería Química |
publisher.none.fl_str_mv |
Universidad Industrial de Santander |
institution |
Universidad Industrial de Santander |
bitstream.url.fl_str_mv |
https://noesis.uis.edu.co/bitstreams/3b2622e9-39a9-464f-8235-01b820d15537/download https://noesis.uis.edu.co/bitstreams/6e893aa6-3efd-4966-b86d-b160ecfe1f1a/download https://noesis.uis.edu.co/bitstreams/833dd1c7-b775-4ce5-a2b0-0ec58752fa8f/download |
bitstream.checksum.fl_str_mv |
9dfc206c5eea88ff995cf798e0aa6838 b56cbfe8d7c07aed6927b443651d1852 1f798be4256bdaea70d3e175a66564cb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace at UIS |
repository.mail.fl_str_mv |
noesis@uis.edu.co |
_version_ |
1814095218979373056 |
spelling |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by-nc/4.0Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Laverde Cataño, Dionisio AntonioPeña Ballesteros, Darío YesidAlmeida Neto, Ambrosio Florencio deCajica Rusinke, Maria CamilaPrada Carvajal, Diego Oswaldo2024-03-03T22:36:49Z20162024-03-03T22:36:49Z20162016https://noesis.uis.edu.co/handle/20.500.14071/34331Universidad Industrial de SantanderUniversidad Industrial de Santanderhttps://noesis.uis.edu.coLa corrosión es un fenómeno natural que deteriora un material a consecuencia de un ataque electroquímico por su entorno. Una forma de mitigar o retardar el efecto de la corrosión en materiales metálicos ha sido el desarrollo de recubrimientos metálicos. La deposición de aleaciones de tungsteno con uno o más metales del grupo del hierro proporciona alta resistencia a la corrosión y buenas propiedades mecánicas. En el presente trabajo, la aleación ternaria Fe-Co-W fue electrodepositada, variando la densidad de corriente catódica aplicada (10-50 mA/cm2) y su temperatura de deposición (20-60 °C). Los recubrimientos fueron caracterizados estructural y morfológicamente, gracias a estudios de espectroscopia de energía dispersa (EDX), microscopia electrónica de barrido (SEM) y difracción de Rayos X (DRX). Finalmente, los parámetros operacionales en relación a la eficiencia de corriente catódica y resistencia a la corrosión fueron optimizados. Un diseño factorial 22 fue correctamente empleado para el análisis experimental de los resultados. Se observó que el deposito obtenido a condiciones de 50 mA/cm2 de densidad de corriente, 60 °C de temperatura, 30 rpm de rotación catódica y pH de 7.0, presentó una estructura amorfa y mostró una buena adherencia, alta resistencia a la corrosión y la presencia de pequeños nódulos en la superficie. Los ensayos de corrosión verificaron que la aleación Fe-Co-W tenía una mejor resistencia a la corrosión que la aleación amorfa Co-W electrodepositada de manera similarPregradoIngeniero QuímicoMorphological, structural study and corrosion behavior of fe-co-w alloy obtained by electrodepositionapplication/pdfspaUniversidad Industrial de SantanderFacultad de Ingenierías FisicoquímicasIngeniería QuímicaEscuela de Ingeniería QuímicaElectrodeposiciónCorrosiónFe-Co-WDensidad De CorrienteTemperatura.Corrosion is a natural phenomenon that deteriorates a material as a result of an electrochemical attack by their environment. One way to mitigate or delay the effects of corrosion in metallic materials has been the development of metallic coatings. Deposition of tungsten alloys with one or more metals of the iron group provides high corrosion resistance and good mechanical properties. In this papera Fe-Co-W ternary alloy was electrodeposited varying the applied cathodic current density (10-50 mA/cm2) and deposition temperature (20-60 °C). The coatings were structurally and morphologically characterized by studies of energy dispersive spectroscopy (EDX)scanning electron microscopy (SEM) and X-ray diffraction (XRD). Finallythe operational parameters regarding cathodic current efficiency and corrosion resistance were optimized. A factorial design 22 was adequately employed for experimental design analysis of the results. The deposited obtained under conditions 50 mA/cm2 current density60 °C temperature30 rpm cathode rotation and 7.0 had an amorphous character and showed good adherencehigh corrosion resistance and presence of nodules on its surface. Electrochemical corrosion tests verified that the Fe-Co-W alloy had better corrosion resistance than similarly electrodeposited Co-W amorphous alloyEstudio morfológico, estructural y comportamiento corrosivo de la aleación fe-co-w obtenida por electrodeposiciónElectrodeposition, Corrosion, Fe-Co-W, Current Density, Temperature.Tesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_b1a7d7d4d402bcceORIGINALCarta de autorización.pdfapplication/pdf314798https://noesis.uis.edu.co/bitstreams/3b2622e9-39a9-464f-8235-01b820d15537/download9dfc206c5eea88ff995cf798e0aa6838MD51Documento.pdfapplication/pdf3380986https://noesis.uis.edu.co/bitstreams/6e893aa6-3efd-4966-b86d-b160ecfe1f1a/downloadb56cbfe8d7c07aed6927b443651d1852MD52Nota de proyecto.pdfapplication/pdf269251https://noesis.uis.edu.co/bitstreams/833dd1c7-b775-4ce5-a2b0-0ec58752fa8f/download1f798be4256bdaea70d3e175a66564cbMD5320.500.14071/34331oai:noesis.uis.edu.co:20.500.14071/343312024-03-03 17:36:49.142http://creativecommons.org/licenses/by-nc/4.0http://creativecommons.org/licenses/by/4.0/open.accesshttps://noesis.uis.edu.coDSpace at UISnoesis@uis.edu.co |