Fertilización y nanotecnología en la producción intensiva de forrajes bajo condiciones de invernadero

Las nanopartículas aplicadas al suelo representan un gran potencial en la promoción de las reacciones de transformación de los nutrientes hacia su forma asimilable y, asimismo, en su almacenamiento. Por otro lado, su aplicación genera una relación positiva con las propiedades agronómicas de las plan...

Full description

Autores:
Meléndez Arenales, Andrés Camilo
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2023
Institución:
Universidad Industrial de Santander
Repositorio:
Repositorio UIS
Idioma:
spa
OAI Identifier:
oai:noesis.uis.edu.co:20.500.14071/12472
Acceso en línea:
https://noesis.uis.edu.co/handle/20.500.14071/12472
https://noesis.uis.edu.co
Palabra clave:
nanopartículas
oxido de zinc
zeolita
captura de carbono
gases de efecto invernadero
eficiencia del nitrógeno
forraje
L. perenne
nanoparticles
zinc oxide
zeolite
carbon sequestration
greenhouse gases
nitrogen efficiency
forage
L. perenne
Rights
openAccess
License
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
Description
Summary:Las nanopartículas aplicadas al suelo representan un gran potencial en la promoción de las reacciones de transformación de los nutrientes hacia su forma asimilable y, asimismo, en su almacenamiento. Por otro lado, su aplicación genera una relación positiva con las propiedades agronómicas de las plantas y estimula la captura de grandes cantidades de carbono, conllevando a la disminución de los efectos nocivos de la fertilización. En esta investigación se evaluó el efecto de la mezcla de nanopartículas de óxido de zinc y zeolita con fertilizantes convencionales sobre la producción de biomasa, calidad nutricional, eficiencia del nitrógeno, captura de carbono y las emisiones de CO2 de Lolium perenne bajo condiciones de invernadero. Para esto, se empleó un diseño de bloques completos al azar con los siguientes tratamientos: sustrato sin adición de fertilizantes (T1), sustrato sin fertilización con adición de 200 mg de nanopartículas de zeolita (T2), sustrato sin fertilización con adición de 200 mg de nanopartículas de óxido de zinc (T3), sustrato con inclusión de 4g de fertilizante (T4), sustrato con inclusión de 8g de fertilizante (T5), sustrato con inclusión de 12g de fertilizante (T6), sustrato con inclusión de 4g de fertilizante y 200mg de nanopartículas de óxido de zinc (T7), sustrato con inclusión de 8g de fertilizante y 200mg de nanopartículas de óxido de zinc (T8), sustrato con inclusión de 12g de fertilizante y 200mg de nanopartículas de óxido de zinc (T9), sustrato con inclusión de 4g de fertilizante y 200mg de nanopartículas de zeolita (T10); sustrato con inclusión de 8g de fertilizante y 200mg de nanopartículas de zeolita (T11), sustrato con inclusión de 12g de fertilizante y 200mg de nanopartículas de zeolita (T12). Se encontraron diferencias estadísticas entre tratamientos aplicados (p<0.05) y se evidenció que la aplicación de nanopartículas junto con la fertilización posee un potencial para incrementar la producción de biomasa, la eficiencia del nitrógeno, la captura de carbono y contrarrestar los efectos nocivos de los gases de efecto invernadero.