Espacios fuertemente T1

Las topologías fuertemente T1 (o, abreviadamente, F-T1) fueron intro­ducidas por el autor en [3] donde se demuestra que en un cierto conjunto ordenado son los únicos elementos maximales que no poseen "antecesores cercanos". En este artículo se presentan algunas propiedades (y defec­tos) de...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
1998
Institución:
Universidad Industrial de Santander
Repositorio:
Repositorio UIS
Idioma:
spa
OAI Identifier:
oai:noesis.uis.edu.co:20.500.14071/7132
Acceso en línea:
https://revistas.uis.edu.co/index.php/revistaintegracion/article/view/885
https://noesis.uis.edu.co/handle/20.500.14071/7132
Palabra clave:
Espacios T1 espacios T2
espacios F-T1 operaciones entre espacios topológicos
Rights
openAccess
License
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
Description
Summary:Las topologías fuertemente T1 (o, abreviadamente, F-T1) fueron intro­ducidas por el autor en [3] donde se demuestra que en un cierto conjunto ordenado son los únicos elementos maximales que no poseen "antecesores cercanos". En este artículo se presentan algunas propiedades (y defec­tos) de esas topologías, que dan respuesta a las preguntas naturales que surgen siempre que un nuevo tipo de espacio topológico es puesto en escena. Para hablar de lo positivo, se demuestra que todo conjunto infinito ad­mite una de estas topologías; que ser F-T1 es una propiedad topológica; que el producto de espacios F-T1 es F-T1 y que la propiedad de ser F-T1 es heredada por subespacios abiertos. Se dan condiciones necesarias y suficientes para que un espacio de Hausdorff sea F-T1 se proporciona un mecanismo que permite construir topologías F-T1 que no son de Haus­dorff, y se muestra cómo "recuperar" una topología F-T1 por medio de algunas topologías T1 que son menos finas que aquella. En cuanto a lo negativo, se encontrará que la imagen continua y abierta de un espacio F-T1 no siempre es F-T1 que la propiedad de ser F-T1 no es hereditaria, que un cociente de un espacio F-T1 no necesariamente lo es, que la intersección (finita o infinita) de topologías F-T1 no necesariamente lo es, y que la topología generada por la unión de dos topologías F-T1 no siempre es F-T1. En la parte final del trabajo aparecen una serie de preguntas para las cuales no tenemos respuesta aún, como una invitación al lector para que se motive a enriquecer el estudio de estos nuevos espacios, ya sea dando respuestas a ellas o formulando y tratando de dar solución a sus propias inquietudes. Al fin y al cabo, prácticamente todo está por hacerse.