La herradura de smale
Esta monografía es en general un estudio en sistemas dinámicos discretos, el objetivoprincipal fue estudiar algunas de las propiedades dinámicas y topológicas de una funcióndefinida de un espacio métrico compacto y conexo en sí mismo; denominada la Herradura de Smale, en honor a su descubridor: Step...
- Autores:
-
Montoya Torres, Sergio Andres
- Tipo de recurso:
- http://purl.org/coar/version/c_b1a7d7d4d402bcce
- Fecha de publicación:
- 2005
- Institución:
- Universidad Industrial de Santander
- Repositorio:
- Repositorio UIS
- Idioma:
- spa
- OAI Identifier:
- oai:noesis.uis.edu.co:20.500.14071/18052
- Palabra clave:
- Herradura Smale Sistemas Dinámicos DiscretosCaos Devaney Transitividad TopológicaAtractor Conjunto InvarianteContinuos Tienda
Smale Horseshoe Discrete Dynamical SystemsDevaney’s chaosTopological TransitivityAttracting Set invariant Set Continuum Tent Map Cantor Set
- Rights
- License
- Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
Summary: | Esta monografía es en general un estudio en sistemas dinámicos discretos, el objetivoprincipal fue estudiar algunas de las propiedades dinámicas y topológicas de una funcióndefinida de un espacio métrico compacto y conexo en sí mismo; denominada la Herradura de Smale, en honor a su descubridor: Stephen Smale. Esta función, que se describe deuna manera sencilla, induce un sistema dinámico discreto realmente sorprendente debido a la componente de impredecibilidad que se presenta, a pesar de ser un sistema determinista. En este trabajo se muestra detalladamente el comportamiento de esta función. Se comprueba la existencia de un conjunto que es invariante bajo la misma, el cual es homeomorfo al conjunto de Cantor. Además, al restringir la función a este conjunto invariante, se de- muestra que es una función caótica (basados en la definición de caos propuesta por R.Devaney). Así mismo, se da conocer el conjunto atractor de la Herradura de Smale y se verifica que éste es un continuo, es decir, un espacio métrico compacto y conexo. Para facilitar el estudio de la dinámica de la Herradura de Smale se partió de un capítulopreliminar sobre espacios métricos, recopilando aquellos conceptos que se consideran im- prescindibles y que se utilizan constantemente en el trabajo. Posteriormente se realizó una breve introducción a los sistemas dinámicos discretos; analizando la dinámica de dos funciones: una conocida popularmente como La Tienda y otra definida en la circunferencia unitaria, en donde se pudo demostrar que ambas son caóticas. |
---|