Modelado y simulación de propiedades eléctricas de tejido epitelial estratificado sano

En este trabajo se presenta el modelado y simulación del tejido epitelial estratificado sano del cuello uterino que consta de cuatro capas: basal, parabasal, intermedia y superficial. El modelado se realizó por dos métodos, Elementos Finitos (FEM) y Elementos Circuitales (CEM), para un rango de frec...

Full description

Autores:
Alemán Iguaran, Belis Paola
Paez Duran, Blanca Isabel
Tipo de recurso:
http://purl.org/coar/version/c_b1a7d7d4d402bcce
Fecha de publicación:
2006
Institución:
Universidad Industrial de Santander
Repositorio:
Repositorio UIS
Idioma:
spa
OAI Identifier:
oai:noesis.uis.edu.co:20.500.14071/18372
Acceso en línea:
https://noesis.uis.edu.co/handle/20.500.14071/18372
https://noesis.uis.edu.co
Palabra clave:
Espectro de Impedancia Eléctrica (EIE)
Parámetro de Forma
Modelo de Cole-Cole
Tejido Cervicouterino
Elementos Finitos
Modelo Circuital
Unidades De Análisis
Mapa de Conductividad
Zona de Dipersión β
CIN
Displasia.
Electrical Impedance Spectra
Form Factor
Cole-Cole Model
Cervical Tissue
Finite Elements
Circuital Model
Analysis Unit
Conductivity Map
β Dipersión
CIN
Dysplasia.
Rights
License
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
Description
Summary:En este trabajo se presenta el modelado y simulación del tejido epitelial estratificado sano del cuello uterino que consta de cuatro capas: basal, parabasal, intermedia y superficial. El modelado se realizó por dos métodos, Elementos Finitos (FEM) y Elementos Circuitales (CEM), para un rango de frecuencia desde 100Hz – 10MHz. La información proporcionada por las mediciones de impedancia eléctrica varía así: a bajas frecuencias, las mediciones de impedancia suministran información de los niveles extracelulares y de la membrana. Conforme se incrementa la frecuencia la información relativa a las estructuras celulares incrementa, debido a que la corriente incrementa la penetración hacia el espacio intracelular. En este trabajo la región de interés es la zona de dispersión β (desde unos pocos KHz hasta los pocos MHZ) ya que ésta, brinda información sobre la composición interna del tejido y así poder diferenciar un tejido normal de uno que no lo es. Para FEM se supuso simetría respecto al espesor, simplificando el problema a dos dimensiones, mientras para CEM además del de dos dimensiones se simuló para tres dimensiones, utilizando el método de las imágenes y Unidades de Análisis♣. FEM se implementó utilizando el método de Galerkin, la ley de Ohm, el mapa de conductividad eléctrica♣ y la aproximación cuasiestacionaria para el potencial eléctrico. Mientras para CEM se empleó un modelo circuital consistente con el modelo de Cole-Cole. Las simulaciones fueron realizadas en las plataformas de MATLAB y ORCAD, para las que se escribieron rutinas especializadas. Además, los resultados fueron calibrados utilizando un modelo de medio homogéneo para diferentes valores de resistividad, el cual es análogo al proceso de calibración empleado experimentalmente. Los resultados obtenidos, que consisten en el espectro de impedancia eléctrica para tejido epitelial de cuello uterino sano son compatibles con los resultados experimentales reportados para la zona de dispersión β.