Estudio y desarrollo de un modelo matemático para el problema de rutas escolares (SBRP)
Este trabajo se expone en tres capítulos. En el primero, se muestran las definiciones y ejemplos más importantes para nuestro trabajo, además del estudio de herramientas básicas para la construcción de continuos, como lo son la intersección anidada de continuos, el producto numerable de continuos, e...
- Autores:
-
Bustos Gutierrez, Maribel
Pinilla Cifuentes, Astrid Carolina
- Tipo de recurso:
- http://purl.org/coar/version/c_b1a7d7d4d402bcce
- Fecha de publicación:
- 2016
- Institución:
- Universidad Industrial de Santander
- Repositorio:
- Repositorio UIS
- Idioma:
- spa
- OAI Identifier:
- oai:noesis.uis.edu.co:20.500.14071/34780
- Palabra clave:
- Problema De Rutas Escolares (Sbrp)
Selección De Paradas
Problema De Ruteo De Vehículos (Vrp)
Ramificación Y Acotamiento
Metaheurística
Búsqueda Tabú.
School bus routing problem (SBRP)
consists in finding one or more routes on a network of bus stops
with known origin and common destiny
where every student must be assigned to one of these
later each bus to visit those stops according to the route drawn on the network and transfer the students to school. The objective of this research is to solve the problem of school routes using a model of binary integer linear programming
in which seeks to minimize the subset of selected stops
to which students are assigned
as long as they comply with the allowed distance to walk to a stop
and then develop a series of routes that minimize the total distance traveled by all buses. The solution SBRP will through exact methods with the algorithm branch and bound
and by methods approximate the development of a system based on metaheuristic Tabu Search algorithm whose initial solution is provided through the algorithm savings Clarke and Wright. The results obtained by the algorithm
finally were compared with those calculated by the exact method
in order to test the efficiency and effectiveness of the algorithm developed. This comparison showed that
for instances evaluated
the algorithm presented a maximum difference of 10
5% compared to the optimal solution
but that is offset by a faster computational time 99
7%.
- Rights
- License
- Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
id |
UISANTADR2_837e4fb40ec6884807b9803219918717 |
---|---|
oai_identifier_str |
oai:noesis.uis.edu.co:20.500.14071/34780 |
network_acronym_str |
UISANTADR2 |
network_name_str |
Repositorio UIS |
repository_id_str |
|
spelling |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by-nc/4.0Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Arias Osorio, Javier EduardoBustos Gutierrez, MaribelPinilla Cifuentes, Astrid Carolina2024-03-03T22:40:49Z20162024-03-03T22:40:49Z20162016https://noesis.uis.edu.co/handle/20.500.14071/34780Universidad Industrial de SantanderUniversidad Industrial de Santanderhttps://noesis.uis.edu.coEste trabajo se expone en tres capítulos. En el primero, se muestran las definiciones y ejemplos más importantes para nuestro trabajo, además del estudio de herramientas básicas para la construcción de continuos, como lo son la intersección anidada de continuos, el producto numerable de continuos, el límite inverso de una sucesión inversa de continuos, y una breve exposición sobre la descomposición de continuos.PregradoIngeniero IndustrialStudy and development of a mathematical model for school bus routing problem (sbrp).application/pdfspaUniversidad Industrial de SantanderFacultad de Ingenierías FisicomecánicasIngeniería IndustrialEscuela de Estudios Industriales y EmpresarialesProblema De Rutas Escolares (Sbrp)Selección De ParadasProblema De Ruteo De Vehículos (Vrp)Ramificación Y AcotamientoMetaheurísticaBúsqueda Tabú.School bus routing problem (SBRP)consists in finding one or more routes on a network of bus stopswith known origin and common destinywhere every student must be assigned to one of theselater each bus to visit those stops according to the route drawn on the network and transfer the students to school. The objective of this research is to solve the problem of school routes using a model of binary integer linear programmingin which seeks to minimize the subset of selected stopsto which students are assignedas long as they comply with the allowed distance to walk to a stopand then develop a series of routes that minimize the total distance traveled by all buses. The solution SBRP will through exact methods with the algorithm branch and boundand by methods approximate the development of a system based on metaheuristic Tabu Search algorithm whose initial solution is provided through the algorithm savings Clarke and Wright. The results obtained by the algorithmfinally were compared with those calculated by the exact methodin order to test the efficiency and effectiveness of the algorithm developed. This comparison showed thatfor instances evaluatedthe algorithm presented a maximum difference of 105% compared to the optimal solutionbut that is offset by a faster computational time 997%.Estudio y desarrollo de un modelo matemático para el problema de rutas escolares (SBRP)School Bus Routing Problem (Sbrp), Stop Selection, Vehicle Routing Problem (Vrp), Branch And Bound, Metaheuristics, Tabu Search (Ts).Tesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_b1a7d7d4d402bcceORIGINALCarta de autorización.pdfapplication/pdf537751https://noesis.uis.edu.co/bitstreams/7fadcb66-9a4c-4894-86f7-126676db5a25/download17367c8fb0aa5414193aca5da4222134MD51Documento.pdfapplication/pdf2922915https://noesis.uis.edu.co/bitstreams/b5d24c32-a2d3-4b53-b0d5-b697e39bb769/download062e374a91c359d6170e5cafb7ce271bMD52Nota de proyecto.pdfapplication/pdf541448https://noesis.uis.edu.co/bitstreams/39396411-f0ed-47fa-adc7-a9773ab160e8/download9f7e9a3764f004c52fa43ba614aad913MD5320.500.14071/34780oai:noesis.uis.edu.co:20.500.14071/347802024-03-03 17:40:49.844http://creativecommons.org/licenses/by-nc/4.0http://creativecommons.org/licenses/by/4.0/open.accesshttps://noesis.uis.edu.coDSpace at UISnoesis@uis.edu.co |
dc.title.none.fl_str_mv |
Estudio y desarrollo de un modelo matemático para el problema de rutas escolares (SBRP) |
dc.title.english.none.fl_str_mv |
School Bus Routing Problem (Sbrp), Stop Selection, Vehicle Routing Problem (Vrp), Branch And Bound, Metaheuristics, Tabu Search (Ts). |
title |
Estudio y desarrollo de un modelo matemático para el problema de rutas escolares (SBRP) |
spellingShingle |
Estudio y desarrollo de un modelo matemático para el problema de rutas escolares (SBRP) Problema De Rutas Escolares (Sbrp) Selección De Paradas Problema De Ruteo De Vehículos (Vrp) Ramificación Y Acotamiento Metaheurística Búsqueda Tabú. School bus routing problem (SBRP) consists in finding one or more routes on a network of bus stops with known origin and common destiny where every student must be assigned to one of these later each bus to visit those stops according to the route drawn on the network and transfer the students to school. The objective of this research is to solve the problem of school routes using a model of binary integer linear programming in which seeks to minimize the subset of selected stops to which students are assigned as long as they comply with the allowed distance to walk to a stop and then develop a series of routes that minimize the total distance traveled by all buses. The solution SBRP will through exact methods with the algorithm branch and bound and by methods approximate the development of a system based on metaheuristic Tabu Search algorithm whose initial solution is provided through the algorithm savings Clarke and Wright. The results obtained by the algorithm finally were compared with those calculated by the exact method in order to test the efficiency and effectiveness of the algorithm developed. This comparison showed that for instances evaluated the algorithm presented a maximum difference of 10 5% compared to the optimal solution but that is offset by a faster computational time 99 7%. |
title_short |
Estudio y desarrollo de un modelo matemático para el problema de rutas escolares (SBRP) |
title_full |
Estudio y desarrollo de un modelo matemático para el problema de rutas escolares (SBRP) |
title_fullStr |
Estudio y desarrollo de un modelo matemático para el problema de rutas escolares (SBRP) |
title_full_unstemmed |
Estudio y desarrollo de un modelo matemático para el problema de rutas escolares (SBRP) |
title_sort |
Estudio y desarrollo de un modelo matemático para el problema de rutas escolares (SBRP) |
dc.creator.fl_str_mv |
Bustos Gutierrez, Maribel Pinilla Cifuentes, Astrid Carolina |
dc.contributor.advisor.none.fl_str_mv |
Arias Osorio, Javier Eduardo |
dc.contributor.author.none.fl_str_mv |
Bustos Gutierrez, Maribel Pinilla Cifuentes, Astrid Carolina |
dc.subject.none.fl_str_mv |
Problema De Rutas Escolares (Sbrp) Selección De Paradas Problema De Ruteo De Vehículos (Vrp) Ramificación Y Acotamiento Metaheurística Búsqueda Tabú. |
topic |
Problema De Rutas Escolares (Sbrp) Selección De Paradas Problema De Ruteo De Vehículos (Vrp) Ramificación Y Acotamiento Metaheurística Búsqueda Tabú. School bus routing problem (SBRP) consists in finding one or more routes on a network of bus stops with known origin and common destiny where every student must be assigned to one of these later each bus to visit those stops according to the route drawn on the network and transfer the students to school. The objective of this research is to solve the problem of school routes using a model of binary integer linear programming in which seeks to minimize the subset of selected stops to which students are assigned as long as they comply with the allowed distance to walk to a stop and then develop a series of routes that minimize the total distance traveled by all buses. The solution SBRP will through exact methods with the algorithm branch and bound and by methods approximate the development of a system based on metaheuristic Tabu Search algorithm whose initial solution is provided through the algorithm savings Clarke and Wright. The results obtained by the algorithm finally were compared with those calculated by the exact method in order to test the efficiency and effectiveness of the algorithm developed. This comparison showed that for instances evaluated the algorithm presented a maximum difference of 10 5% compared to the optimal solution but that is offset by a faster computational time 99 7%. |
dc.subject.keyword.none.fl_str_mv |
School bus routing problem (SBRP) consists in finding one or more routes on a network of bus stops with known origin and common destiny where every student must be assigned to one of these later each bus to visit those stops according to the route drawn on the network and transfer the students to school. The objective of this research is to solve the problem of school routes using a model of binary integer linear programming in which seeks to minimize the subset of selected stops to which students are assigned as long as they comply with the allowed distance to walk to a stop and then develop a series of routes that minimize the total distance traveled by all buses. The solution SBRP will through exact methods with the algorithm branch and bound and by methods approximate the development of a system based on metaheuristic Tabu Search algorithm whose initial solution is provided through the algorithm savings Clarke and Wright. The results obtained by the algorithm finally were compared with those calculated by the exact method in order to test the efficiency and effectiveness of the algorithm developed. This comparison showed that for instances evaluated the algorithm presented a maximum difference of 10 5% compared to the optimal solution but that is offset by a faster computational time 99 7%. |
description |
Este trabajo se expone en tres capítulos. En el primero, se muestran las definiciones y ejemplos más importantes para nuestro trabajo, además del estudio de herramientas básicas para la construcción de continuos, como lo son la intersección anidada de continuos, el producto numerable de continuos, el límite inverso de una sucesión inversa de continuos, y una breve exposición sobre la descomposición de continuos. |
publishDate |
2016 |
dc.date.available.none.fl_str_mv |
2016 2024-03-03T22:40:49Z |
dc.date.created.none.fl_str_mv |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2024-03-03T22:40:49Z |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.hasversion.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
format |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.identifier.uri.none.fl_str_mv |
https://noesis.uis.edu.co/handle/20.500.14071/34780 |
dc.identifier.instname.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.reponame.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.repourl.none.fl_str_mv |
https://noesis.uis.edu.co |
url |
https://noesis.uis.edu.co/handle/20.500.14071/34780 https://noesis.uis.edu.co |
identifier_str_mv |
Universidad Industrial de Santander |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.none.fl_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0 |
dc.rights.creativecommons.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by-nc/4.0 Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Industrial de Santander |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingenierías Fisicomecánicas |
dc.publisher.program.none.fl_str_mv |
Ingeniería Industrial |
dc.publisher.school.none.fl_str_mv |
Escuela de Estudios Industriales y Empresariales |
publisher.none.fl_str_mv |
Universidad Industrial de Santander |
institution |
Universidad Industrial de Santander |
bitstream.url.fl_str_mv |
https://noesis.uis.edu.co/bitstreams/7fadcb66-9a4c-4894-86f7-126676db5a25/download https://noesis.uis.edu.co/bitstreams/b5d24c32-a2d3-4b53-b0d5-b697e39bb769/download https://noesis.uis.edu.co/bitstreams/39396411-f0ed-47fa-adc7-a9773ab160e8/download |
bitstream.checksum.fl_str_mv |
17367c8fb0aa5414193aca5da4222134 062e374a91c359d6170e5cafb7ce271b 9f7e9a3764f004c52fa43ba614aad913 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace at UIS |
repository.mail.fl_str_mv |
noesis@uis.edu.co |
_version_ |
1814095190805184512 |