Estudio de estrategias para la aceleración de la convergencia del clustering mediante fuzzy c-means
En el presente trabajo de grado se lleva a cabo el estudio de estrategias para acelerar la convergencia del clustering empleando Fuzzy C-means (FCM), con la finalidad de encontrar la mejor variante del algoritmo de clustering FCM que permita reducir el tiempo de cómputo, coste computacional y calida...
- Autores:
-
Trujillo Ortiz, Diana Carolina
Sacristan Hernandez, Carlos Serjeif
- Tipo de recurso:
- http://purl.org/coar/version/c_b1a7d7d4d402bcce
- Fecha de publicación:
- 2016
- Institución:
- Universidad Industrial de Santander
- Repositorio:
- Repositorio UIS
- Idioma:
- spa
- OAI Identifier:
- oai:noesis.uis.edu.co:20.500.14071/35068
- Palabra clave:
- Cluster
Clustering
Fuzzy C-Means (Fcm)
Partición Difusa
Centroides
Convergencia.
In the present work
we perform a comparative study of strategies to accelerate the convergence of clustering using Fuzzy C-means (FCM)
in order to find the best implementation of the FCM clustering algorithm in terms of computational cost. The studied FCM variants related to the acceleration of clustering were Online Fuzzy C-means (OFCM)
and Single Pass Fuzzy C-means (SPFCM)
and Ramdom Sampling plus Extension Fuzzy C-means (RSEFCM) which are compared against the original FCM algorithm using three different databases in order to collect the necessary information about each clustering algorithm. I our experiments for assessing the speed up with respect to the classic FCM
we found that RSEFCM had the highest performance. With respect to the quality of the obtained partitions
RSEFCM yielded the more accurate and robust results among the studied versions of FCM. As for the complexity of the algorithms
experimental tests showed a linear behavior in the computational cost.
- Rights
- License
- Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
id |
UISANTADR2_7cae6a9db87226d4d7c93c8f4b83ebc0 |
---|---|
oai_identifier_str |
oai:noesis.uis.edu.co:20.500.14071/35068 |
network_acronym_str |
UISANTADR2 |
network_name_str |
Repositorio UIS |
repository_id_str |
|
dc.title.none.fl_str_mv |
Estudio de estrategias para la aceleración de la convergencia del clustering mediante fuzzy c-means |
dc.title.english.none.fl_str_mv |
Cluster, Clustering, Fuzzy C-Means (Fcm), Fuzzy Partition, Centroids, Convergence. |
title |
Estudio de estrategias para la aceleración de la convergencia del clustering mediante fuzzy c-means |
spellingShingle |
Estudio de estrategias para la aceleración de la convergencia del clustering mediante fuzzy c-means Cluster Clustering Fuzzy C-Means (Fcm) Partición Difusa Centroides Convergencia. In the present work we perform a comparative study of strategies to accelerate the convergence of clustering using Fuzzy C-means (FCM) in order to find the best implementation of the FCM clustering algorithm in terms of computational cost. The studied FCM variants related to the acceleration of clustering were Online Fuzzy C-means (OFCM) and Single Pass Fuzzy C-means (SPFCM) and Ramdom Sampling plus Extension Fuzzy C-means (RSEFCM) which are compared against the original FCM algorithm using three different databases in order to collect the necessary information about each clustering algorithm. I our experiments for assessing the speed up with respect to the classic FCM we found that RSEFCM had the highest performance. With respect to the quality of the obtained partitions RSEFCM yielded the more accurate and robust results among the studied versions of FCM. As for the complexity of the algorithms experimental tests showed a linear behavior in the computational cost. |
title_short |
Estudio de estrategias para la aceleración de la convergencia del clustering mediante fuzzy c-means |
title_full |
Estudio de estrategias para la aceleración de la convergencia del clustering mediante fuzzy c-means |
title_fullStr |
Estudio de estrategias para la aceleración de la convergencia del clustering mediante fuzzy c-means |
title_full_unstemmed |
Estudio de estrategias para la aceleración de la convergencia del clustering mediante fuzzy c-means |
title_sort |
Estudio de estrategias para la aceleración de la convergencia del clustering mediante fuzzy c-means |
dc.creator.fl_str_mv |
Trujillo Ortiz, Diana Carolina Sacristan Hernandez, Carlos Serjeif |
dc.contributor.advisor.none.fl_str_mv |
Pertuz Arroyo, Said David |
dc.contributor.author.none.fl_str_mv |
Trujillo Ortiz, Diana Carolina Sacristan Hernandez, Carlos Serjeif |
dc.subject.none.fl_str_mv |
Cluster Clustering Fuzzy C-Means (Fcm) Partición Difusa Centroides Convergencia. |
topic |
Cluster Clustering Fuzzy C-Means (Fcm) Partición Difusa Centroides Convergencia. In the present work we perform a comparative study of strategies to accelerate the convergence of clustering using Fuzzy C-means (FCM) in order to find the best implementation of the FCM clustering algorithm in terms of computational cost. The studied FCM variants related to the acceleration of clustering were Online Fuzzy C-means (OFCM) and Single Pass Fuzzy C-means (SPFCM) and Ramdom Sampling plus Extension Fuzzy C-means (RSEFCM) which are compared against the original FCM algorithm using three different databases in order to collect the necessary information about each clustering algorithm. I our experiments for assessing the speed up with respect to the classic FCM we found that RSEFCM had the highest performance. With respect to the quality of the obtained partitions RSEFCM yielded the more accurate and robust results among the studied versions of FCM. As for the complexity of the algorithms experimental tests showed a linear behavior in the computational cost. |
dc.subject.keyword.none.fl_str_mv |
In the present work we perform a comparative study of strategies to accelerate the convergence of clustering using Fuzzy C-means (FCM) in order to find the best implementation of the FCM clustering algorithm in terms of computational cost. The studied FCM variants related to the acceleration of clustering were Online Fuzzy C-means (OFCM) and Single Pass Fuzzy C-means (SPFCM) and Ramdom Sampling plus Extension Fuzzy C-means (RSEFCM) which are compared against the original FCM algorithm using three different databases in order to collect the necessary information about each clustering algorithm. I our experiments for assessing the speed up with respect to the classic FCM we found that RSEFCM had the highest performance. With respect to the quality of the obtained partitions RSEFCM yielded the more accurate and robust results among the studied versions of FCM. As for the complexity of the algorithms experimental tests showed a linear behavior in the computational cost. |
description |
En el presente trabajo de grado se lleva a cabo el estudio de estrategias para acelerar la convergencia del clustering empleando Fuzzy C-means (FCM), con la finalidad de encontrar la mejor variante del algoritmo de clustering FCM que permita reducir el tiempo de cómputo, coste computacional y calidad de clustering. Las variantes FCM relacionadas con la aceleración que se seleccionaron para el estudio son Online Fuzzy C-means (OFCM), Single Pass Fuzzy C-means (SPFCM) y Random Sampling Plus Extension Fuzzy C-means (RSEFCM). Dichas variantes son comparadas entre sí y los resultados se contrastan con el algoritmo original FCM. Para este análisis se utilizan tres Datasets obtenidos de bases de datos públicamente disponibles, con el fin de recolectar la información necesaria en cada procedimiento de clustering realizado por cada algoritmo. Se observó que al comparar las métricas de cómputo con cada uno de los Datasets con respecto al Speed up (aceleración), la variante de (RSEFCM) tuvo el mejor desempeño. Para el análisis de la calidad de las particiones se observó que variante de (RSEFCM) presenta una alta eficacia y confiabilidad en los resultados. Por último, respecto a la complejidad de los algoritmos se pudo comprobar que el coste computacional tiene un comportamiento lineal. |
publishDate |
2016 |
dc.date.available.none.fl_str_mv |
2016 2024-03-03T22:44:22Z |
dc.date.created.none.fl_str_mv |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2024-03-03T22:44:22Z |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.hasversion.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
format |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.identifier.uri.none.fl_str_mv |
https://noesis.uis.edu.co/handle/20.500.14071/35068 |
dc.identifier.instname.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.reponame.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.repourl.none.fl_str_mv |
https://noesis.uis.edu.co |
url |
https://noesis.uis.edu.co/handle/20.500.14071/35068 https://noesis.uis.edu.co |
identifier_str_mv |
Universidad Industrial de Santander |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.none.fl_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0 |
dc.rights.creativecommons.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by-nc/4.0 Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Industrial de Santander |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingenierías Fisicomecánicas |
dc.publisher.program.none.fl_str_mv |
Ingeniería Electrónica |
dc.publisher.school.none.fl_str_mv |
Escuela de Ingenierías Eléctrica, Electrónica y Telecomunicaciones |
publisher.none.fl_str_mv |
Universidad Industrial de Santander |
institution |
Universidad Industrial de Santander |
bitstream.url.fl_str_mv |
https://noesis.uis.edu.co/bitstreams/bdd03a06-e0b7-4417-85eb-13dad84ec9c9/download https://noesis.uis.edu.co/bitstreams/3b383a28-3ef2-46aa-b494-6ebc22e45268/download https://noesis.uis.edu.co/bitstreams/a2d0695e-afbb-4bf7-a20f-4f5118630e3b/download |
bitstream.checksum.fl_str_mv |
846091bfc0b5a2889a54a406a1cbf5bf 0bf6832ec20d29d8466b2ab7fc993040 242a6da1f64f6cf7619f30ae3c7f18ae |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace at UIS |
repository.mail.fl_str_mv |
noesis@uis.edu.co |
_version_ |
1814095231152291840 |
spelling |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by-nc/4.0Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Pertuz Arroyo, Said DavidTrujillo Ortiz, Diana CarolinaSacristan Hernandez, Carlos Serjeif2024-03-03T22:44:22Z20162024-03-03T22:44:22Z20162016https://noesis.uis.edu.co/handle/20.500.14071/35068Universidad Industrial de SantanderUniversidad Industrial de Santanderhttps://noesis.uis.edu.coEn el presente trabajo de grado se lleva a cabo el estudio de estrategias para acelerar la convergencia del clustering empleando Fuzzy C-means (FCM), con la finalidad de encontrar la mejor variante del algoritmo de clustering FCM que permita reducir el tiempo de cómputo, coste computacional y calidad de clustering. Las variantes FCM relacionadas con la aceleración que se seleccionaron para el estudio son Online Fuzzy C-means (OFCM), Single Pass Fuzzy C-means (SPFCM) y Random Sampling Plus Extension Fuzzy C-means (RSEFCM). Dichas variantes son comparadas entre sí y los resultados se contrastan con el algoritmo original FCM. Para este análisis se utilizan tres Datasets obtenidos de bases de datos públicamente disponibles, con el fin de recolectar la información necesaria en cada procedimiento de clustering realizado por cada algoritmo. Se observó que al comparar las métricas de cómputo con cada uno de los Datasets con respecto al Speed up (aceleración), la variante de (RSEFCM) tuvo el mejor desempeño. Para el análisis de la calidad de las particiones se observó que variante de (RSEFCM) presenta una alta eficacia y confiabilidad en los resultados. Por último, respecto a la complejidad de los algoritmos se pudo comprobar que el coste computacional tiene un comportamiento lineal.PregradoIngeniero ElectrónicoStudy of strategies for the acceleration of the convergence of clustering using fuzzy c-meansapplication/pdfspaUniversidad Industrial de SantanderFacultad de Ingenierías FisicomecánicasIngeniería ElectrónicaEscuela de Ingenierías Eléctrica, Electrónica y TelecomunicacionesClusterClusteringFuzzy C-Means (Fcm)Partición DifusaCentroidesConvergencia.In the present workwe perform a comparative study of strategies to accelerate the convergence of clustering using Fuzzy C-means (FCM)in order to find the best implementation of the FCM clustering algorithm in terms of computational cost. The studied FCM variants related to the acceleration of clustering were Online Fuzzy C-means (OFCM)and Single Pass Fuzzy C-means (SPFCM)and Ramdom Sampling plus Extension Fuzzy C-means (RSEFCM) which are compared against the original FCM algorithm using three different databases in order to collect the necessary information about each clustering algorithm. I our experiments for assessing the speed up with respect to the classic FCMwe found that RSEFCM had the highest performance. With respect to the quality of the obtained partitionsRSEFCM yielded the more accurate and robust results among the studied versions of FCM. As for the complexity of the algorithmsexperimental tests showed a linear behavior in the computational cost.Estudio de estrategias para la aceleración de la convergencia del clustering mediante fuzzy c-meansCluster, Clustering, Fuzzy C-Means (Fcm), Fuzzy Partition, Centroids, Convergence.Tesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_b1a7d7d4d402bcceORIGINALCarta de autorización.pdfapplication/pdf603719https://noesis.uis.edu.co/bitstreams/bdd03a06-e0b7-4417-85eb-13dad84ec9c9/download846091bfc0b5a2889a54a406a1cbf5bfMD51Documento.pdfapplication/pdf1636643https://noesis.uis.edu.co/bitstreams/3b383a28-3ef2-46aa-b494-6ebc22e45268/download0bf6832ec20d29d8466b2ab7fc993040MD52Nota de proyecto.pdfapplication/pdf185829https://noesis.uis.edu.co/bitstreams/a2d0695e-afbb-4bf7-a20f-4f5118630e3b/download242a6da1f64f6cf7619f30ae3c7f18aeMD5320.500.14071/35068oai:noesis.uis.edu.co:20.500.14071/350682024-03-03 17:44:22.345http://creativecommons.org/licenses/by-nc/4.0http://creativecommons.org/licenses/by/4.0/open.accesshttps://noesis.uis.edu.coDSpace at UISnoesis@uis.edu.co |