Estudio de estrategias para la aceleración de la convergencia del clustering mediante fuzzy c-means

En el presente trabajo de grado se lleva a cabo el estudio de estrategias para acelerar la convergencia del clustering empleando Fuzzy C-means (FCM), con la finalidad de encontrar la mejor variante del algoritmo de clustering FCM que permita reducir el tiempo de cómputo, coste computacional y calida...

Full description

Autores:
Trujillo Ortiz, Diana Carolina
Sacristan Hernandez, Carlos Serjeif
Tipo de recurso:
http://purl.org/coar/version/c_b1a7d7d4d402bcce
Fecha de publicación:
2016
Institución:
Universidad Industrial de Santander
Repositorio:
Repositorio UIS
Idioma:
spa
OAI Identifier:
oai:noesis.uis.edu.co:20.500.14071/35068
Acceso en línea:
https://noesis.uis.edu.co/handle/20.500.14071/35068
https://noesis.uis.edu.co
Palabra clave:
Cluster
Clustering
Fuzzy C-Means (Fcm)
Partición Difusa
Centroides
Convergencia.
In the present work
we perform a comparative study of strategies to accelerate the convergence of clustering using Fuzzy C-means (FCM)
in order to find the best implementation of the FCM clustering algorithm in terms of computational cost. The studied FCM variants related to the acceleration of clustering were Online Fuzzy C-means (OFCM)
and Single Pass Fuzzy C-means (SPFCM)
and Ramdom Sampling plus Extension Fuzzy C-means (RSEFCM) which are compared against the original FCM algorithm using three different databases in order to collect the necessary information about each clustering algorithm. I our experiments for assessing the speed up with respect to the classic FCM
we found that RSEFCM had the highest performance. With respect to the quality of the obtained partitions
RSEFCM yielded the more accurate and robust results among the studied versions of FCM. As for the complexity of the algorithms
experimental tests showed a linear behavior in the computational cost.
Rights
License
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
id UISANTADR2_7cae6a9db87226d4d7c93c8f4b83ebc0
oai_identifier_str oai:noesis.uis.edu.co:20.500.14071/35068
network_acronym_str UISANTADR2
network_name_str Repositorio UIS
repository_id_str
dc.title.none.fl_str_mv Estudio de estrategias para la aceleración de la convergencia del clustering mediante fuzzy c-means
dc.title.english.none.fl_str_mv Cluster, Clustering, Fuzzy C-Means (Fcm), Fuzzy Partition, Centroids, Convergence.
title Estudio de estrategias para la aceleración de la convergencia del clustering mediante fuzzy c-means
spellingShingle Estudio de estrategias para la aceleración de la convergencia del clustering mediante fuzzy c-means
Cluster
Clustering
Fuzzy C-Means (Fcm)
Partición Difusa
Centroides
Convergencia.
In the present work
we perform a comparative study of strategies to accelerate the convergence of clustering using Fuzzy C-means (FCM)
in order to find the best implementation of the FCM clustering algorithm in terms of computational cost. The studied FCM variants related to the acceleration of clustering were Online Fuzzy C-means (OFCM)
and Single Pass Fuzzy C-means (SPFCM)
and Ramdom Sampling plus Extension Fuzzy C-means (RSEFCM) which are compared against the original FCM algorithm using three different databases in order to collect the necessary information about each clustering algorithm. I our experiments for assessing the speed up with respect to the classic FCM
we found that RSEFCM had the highest performance. With respect to the quality of the obtained partitions
RSEFCM yielded the more accurate and robust results among the studied versions of FCM. As for the complexity of the algorithms
experimental tests showed a linear behavior in the computational cost.
title_short Estudio de estrategias para la aceleración de la convergencia del clustering mediante fuzzy c-means
title_full Estudio de estrategias para la aceleración de la convergencia del clustering mediante fuzzy c-means
title_fullStr Estudio de estrategias para la aceleración de la convergencia del clustering mediante fuzzy c-means
title_full_unstemmed Estudio de estrategias para la aceleración de la convergencia del clustering mediante fuzzy c-means
title_sort Estudio de estrategias para la aceleración de la convergencia del clustering mediante fuzzy c-means
dc.creator.fl_str_mv Trujillo Ortiz, Diana Carolina
Sacristan Hernandez, Carlos Serjeif
dc.contributor.advisor.none.fl_str_mv Pertuz Arroyo, Said David
dc.contributor.author.none.fl_str_mv Trujillo Ortiz, Diana Carolina
Sacristan Hernandez, Carlos Serjeif
dc.subject.none.fl_str_mv Cluster
Clustering
Fuzzy C-Means (Fcm)
Partición Difusa
Centroides
Convergencia.
topic Cluster
Clustering
Fuzzy C-Means (Fcm)
Partición Difusa
Centroides
Convergencia.
In the present work
we perform a comparative study of strategies to accelerate the convergence of clustering using Fuzzy C-means (FCM)
in order to find the best implementation of the FCM clustering algorithm in terms of computational cost. The studied FCM variants related to the acceleration of clustering were Online Fuzzy C-means (OFCM)
and Single Pass Fuzzy C-means (SPFCM)
and Ramdom Sampling plus Extension Fuzzy C-means (RSEFCM) which are compared against the original FCM algorithm using three different databases in order to collect the necessary information about each clustering algorithm. I our experiments for assessing the speed up with respect to the classic FCM
we found that RSEFCM had the highest performance. With respect to the quality of the obtained partitions
RSEFCM yielded the more accurate and robust results among the studied versions of FCM. As for the complexity of the algorithms
experimental tests showed a linear behavior in the computational cost.
dc.subject.keyword.none.fl_str_mv In the present work
we perform a comparative study of strategies to accelerate the convergence of clustering using Fuzzy C-means (FCM)
in order to find the best implementation of the FCM clustering algorithm in terms of computational cost. The studied FCM variants related to the acceleration of clustering were Online Fuzzy C-means (OFCM)
and Single Pass Fuzzy C-means (SPFCM)
and Ramdom Sampling plus Extension Fuzzy C-means (RSEFCM) which are compared against the original FCM algorithm using three different databases in order to collect the necessary information about each clustering algorithm. I our experiments for assessing the speed up with respect to the classic FCM
we found that RSEFCM had the highest performance. With respect to the quality of the obtained partitions
RSEFCM yielded the more accurate and robust results among the studied versions of FCM. As for the complexity of the algorithms
experimental tests showed a linear behavior in the computational cost.
description En el presente trabajo de grado se lleva a cabo el estudio de estrategias para acelerar la convergencia del clustering empleando Fuzzy C-means (FCM), con la finalidad de encontrar la mejor variante del algoritmo de clustering FCM que permita reducir el tiempo de cómputo, coste computacional y calidad de clustering. Las variantes FCM relacionadas con la aceleración que se seleccionaron para el estudio son Online Fuzzy C-means (OFCM), Single Pass Fuzzy C-means (SPFCM) y Random Sampling Plus Extension Fuzzy C-means (RSEFCM). Dichas variantes son comparadas entre sí y los resultados se contrastan con el algoritmo original FCM. Para este análisis se utilizan tres Datasets obtenidos de bases de datos públicamente disponibles, con el fin de recolectar la información necesaria en cada procedimiento de clustering realizado por cada algoritmo. Se observó que al comparar las métricas de cómputo con cada uno de los Datasets con respecto al Speed up (aceleración), la variante de (RSEFCM) tuvo el mejor desempeño. Para el análisis de la calidad de las particiones se observó que variante de (RSEFCM) presenta una alta eficacia y confiabilidad en los resultados. Por último, respecto a la complejidad de los algoritmos se pudo comprobar que el coste computacional tiene un comportamiento lineal.
publishDate 2016
dc.date.available.none.fl_str_mv 2016
2024-03-03T22:44:22Z
dc.date.created.none.fl_str_mv 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2024-03-03T22:44:22Z
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.hasversion.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coar.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
format http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.identifier.uri.none.fl_str_mv https://noesis.uis.edu.co/handle/20.500.14071/35068
dc.identifier.instname.none.fl_str_mv Universidad Industrial de Santander
dc.identifier.reponame.none.fl_str_mv Universidad Industrial de Santander
dc.identifier.repourl.none.fl_str_mv https://noesis.uis.edu.co
url https://noesis.uis.edu.co/handle/20.500.14071/35068
https://noesis.uis.edu.co
identifier_str_mv Universidad Industrial de Santander
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0
dc.rights.creativecommons.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-nc/4.0
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Industrial de Santander
dc.publisher.faculty.none.fl_str_mv Facultad de Ingenierías Fisicomecánicas
dc.publisher.program.none.fl_str_mv Ingeniería Electrónica
dc.publisher.school.none.fl_str_mv Escuela de Ingenierías Eléctrica, Electrónica y Telecomunicaciones
publisher.none.fl_str_mv Universidad Industrial de Santander
institution Universidad Industrial de Santander
bitstream.url.fl_str_mv https://noesis.uis.edu.co/bitstreams/bdd03a06-e0b7-4417-85eb-13dad84ec9c9/download
https://noesis.uis.edu.co/bitstreams/3b383a28-3ef2-46aa-b494-6ebc22e45268/download
https://noesis.uis.edu.co/bitstreams/a2d0695e-afbb-4bf7-a20f-4f5118630e3b/download
bitstream.checksum.fl_str_mv 846091bfc0b5a2889a54a406a1cbf5bf
0bf6832ec20d29d8466b2ab7fc993040
242a6da1f64f6cf7619f30ae3c7f18ae
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace at UIS
repository.mail.fl_str_mv noesis@uis.edu.co
_version_ 1814095231152291840
spelling Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by-nc/4.0Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Pertuz Arroyo, Said DavidTrujillo Ortiz, Diana CarolinaSacristan Hernandez, Carlos Serjeif2024-03-03T22:44:22Z20162024-03-03T22:44:22Z20162016https://noesis.uis.edu.co/handle/20.500.14071/35068Universidad Industrial de SantanderUniversidad Industrial de Santanderhttps://noesis.uis.edu.coEn el presente trabajo de grado se lleva a cabo el estudio de estrategias para acelerar la convergencia del clustering empleando Fuzzy C-means (FCM), con la finalidad de encontrar la mejor variante del algoritmo de clustering FCM que permita reducir el tiempo de cómputo, coste computacional y calidad de clustering. Las variantes FCM relacionadas con la aceleración que se seleccionaron para el estudio son Online Fuzzy C-means (OFCM), Single Pass Fuzzy C-means (SPFCM) y Random Sampling Plus Extension Fuzzy C-means (RSEFCM). Dichas variantes son comparadas entre sí y los resultados se contrastan con el algoritmo original FCM. Para este análisis se utilizan tres Datasets obtenidos de bases de datos públicamente disponibles, con el fin de recolectar la información necesaria en cada procedimiento de clustering realizado por cada algoritmo. Se observó que al comparar las métricas de cómputo con cada uno de los Datasets con respecto al Speed up (aceleración), la variante de (RSEFCM) tuvo el mejor desempeño. Para el análisis de la calidad de las particiones se observó que variante de (RSEFCM) presenta una alta eficacia y confiabilidad en los resultados. Por último, respecto a la complejidad de los algoritmos se pudo comprobar que el coste computacional tiene un comportamiento lineal.PregradoIngeniero ElectrónicoStudy of strategies for the acceleration of the convergence of clustering using fuzzy c-meansapplication/pdfspaUniversidad Industrial de SantanderFacultad de Ingenierías FisicomecánicasIngeniería ElectrónicaEscuela de Ingenierías Eléctrica, Electrónica y TelecomunicacionesClusterClusteringFuzzy C-Means (Fcm)Partición DifusaCentroidesConvergencia.In the present workwe perform a comparative study of strategies to accelerate the convergence of clustering using Fuzzy C-means (FCM)in order to find the best implementation of the FCM clustering algorithm in terms of computational cost. The studied FCM variants related to the acceleration of clustering were Online Fuzzy C-means (OFCM)and Single Pass Fuzzy C-means (SPFCM)and Ramdom Sampling plus Extension Fuzzy C-means (RSEFCM) which are compared against the original FCM algorithm using three different databases in order to collect the necessary information about each clustering algorithm. I our experiments for assessing the speed up with respect to the classic FCMwe found that RSEFCM had the highest performance. With respect to the quality of the obtained partitionsRSEFCM yielded the more accurate and robust results among the studied versions of FCM. As for the complexity of the algorithmsexperimental tests showed a linear behavior in the computational cost.Estudio de estrategias para la aceleración de la convergencia del clustering mediante fuzzy c-meansCluster, Clustering, Fuzzy C-Means (Fcm), Fuzzy Partition, Centroids, Convergence.Tesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_b1a7d7d4d402bcceORIGINALCarta de autorización.pdfapplication/pdf603719https://noesis.uis.edu.co/bitstreams/bdd03a06-e0b7-4417-85eb-13dad84ec9c9/download846091bfc0b5a2889a54a406a1cbf5bfMD51Documento.pdfapplication/pdf1636643https://noesis.uis.edu.co/bitstreams/3b383a28-3ef2-46aa-b494-6ebc22e45268/download0bf6832ec20d29d8466b2ab7fc993040MD52Nota de proyecto.pdfapplication/pdf185829https://noesis.uis.edu.co/bitstreams/a2d0695e-afbb-4bf7-a20f-4f5118630e3b/download242a6da1f64f6cf7619f30ae3c7f18aeMD5320.500.14071/35068oai:noesis.uis.edu.co:20.500.14071/350682024-03-03 17:44:22.345http://creativecommons.org/licenses/by-nc/4.0http://creativecommons.org/licenses/by/4.0/open.accesshttps://noesis.uis.edu.coDSpace at UISnoesis@uis.edu.co