Design and Implementation of a Deep Learning Model for Pulmonary Arterial Segmentation in Computed Tomography (CT) images
La Embolia Pulmonar (EP) es una condición potencialmente mortal en la que un coágulo sanguíneo bloquea una arteria en los pulmones. Permanece como una de las condiciones más desafiantes para diagnosticar y tratar en el departamento de emergencias. Como tipo de enfermedad cardiovascular, la EP contri...
- Autores:
-
Merchan Cardoza, Mishell
Suarez Quimbayo, Juan Pablo
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad Industrial de Santander
- Repositorio:
- Repositorio UIS
- Idioma:
- eng
- OAI Identifier:
- oai:noesis.uis.edu.co:20.500.14071/14714
- Palabra clave:
- Arterias Pulmonares
Segmentación
Tomografía Computarizada (TC)
Aprendizaje Profundo
Pulmonary arterial
Segmentation
Computed Tomography (CT)
Deep Learning
- Rights
- openAccess
- License
- Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
id |
UISANTADR2_76e56234fdbc528e186158770dce545f |
---|---|
oai_identifier_str |
oai:noesis.uis.edu.co:20.500.14071/14714 |
network_acronym_str |
UISANTADR2 |
network_name_str |
Repositorio UIS |
repository_id_str |
|
dc.title.none.fl_str_mv |
Design and Implementation of a Deep Learning Model for Pulmonary Arterial Segmentation in Computed Tomography (CT) images |
dc.title.english.none.fl_str_mv |
Design and Implementation of a Deep Learning Model for Pulmonary Arterial Segmentation in Computed Tomography (CT) images |
title |
Design and Implementation of a Deep Learning Model for Pulmonary Arterial Segmentation in Computed Tomography (CT) images |
spellingShingle |
Design and Implementation of a Deep Learning Model for Pulmonary Arterial Segmentation in Computed Tomography (CT) images Arterias Pulmonares Segmentación Tomografía Computarizada (TC) Aprendizaje Profundo Pulmonary arterial Segmentation Computed Tomography (CT) Deep Learning |
title_short |
Design and Implementation of a Deep Learning Model for Pulmonary Arterial Segmentation in Computed Tomography (CT) images |
title_full |
Design and Implementation of a Deep Learning Model for Pulmonary Arterial Segmentation in Computed Tomography (CT) images |
title_fullStr |
Design and Implementation of a Deep Learning Model for Pulmonary Arterial Segmentation in Computed Tomography (CT) images |
title_full_unstemmed |
Design and Implementation of a Deep Learning Model for Pulmonary Arterial Segmentation in Computed Tomography (CT) images |
title_sort |
Design and Implementation of a Deep Learning Model for Pulmonary Arterial Segmentation in Computed Tomography (CT) images |
dc.creator.fl_str_mv |
Merchan Cardoza, Mishell Suarez Quimbayo, Juan Pablo |
dc.contributor.advisor.none.fl_str_mv |
Pertuz Arroyo, Said David |
dc.contributor.author.none.fl_str_mv |
Merchan Cardoza, Mishell Suarez Quimbayo, Juan Pablo |
dc.contributor.evaluator.none.fl_str_mv |
Ramirez Silva, Ana Beatriz Fonseca Estupiñan, Karen Andrea |
dc.subject.none.fl_str_mv |
Arterias Pulmonares Segmentación Tomografía Computarizada (TC) Aprendizaje Profundo |
topic |
Arterias Pulmonares Segmentación Tomografía Computarizada (TC) Aprendizaje Profundo Pulmonary arterial Segmentation Computed Tomography (CT) Deep Learning |
dc.subject.keyword.none.fl_str_mv |
Pulmonary arterial Segmentation Computed Tomography (CT) Deep Learning |
description |
La Embolia Pulmonar (EP) es una condición potencialmente mortal en la que un coágulo sanguíneo bloquea una arteria en los pulmones. Permanece como una de las condiciones más desafiantes para diagnosticar y tratar en el departamento de emergencias. Como tipo de enfermedad cardiovascular, la EP contribuye a la principal causa de muerte a nivel mundial, según la Organización Mundial de la Salud. La detección temprana y el tratamiento oportuno son críticos para mejorar los resultados del paciente. En este proyecto, buscamos desarrollar e implementar un algoritmo para la segmentación automatizada de arterias pulmonares como un paso crucial hacia la identificación de EP. Tuvimos acceso a una base de datos de 130 volúmenes 3D con etiquetado refinado de las arterias pulmonares. La combinación de herramientas de alto desempeño y tecnología avanzada tiene un gran potencial para la detección y tratamiento temprano de enfermedades pulmonares, especialmente en entornos con recursos limitados. Específicamente, proponemos la implementación de una arquitectura llamada ResD-Unet, basada en la red Unet, complementada con bloques residuales y capas de convolución interconectadas. Los resultados obtenidos son moderados, pero constituyen un paso inicial para la solución del problema. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-08-04T18:59:54Z |
dc.date.available.none.fl_str_mv |
2023-08-04T18:59:54Z |
dc.date.created.none.fl_str_mv |
2023-08-03 |
dc.date.issued.none.fl_str_mv |
2023-08-03 |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.hasversion.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://noesis.uis.edu.co/handle/20.500.14071/14714 |
dc.identifier.instname.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.reponame.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.repourl.none.fl_str_mv |
https://noesis.uis.edu.co |
url |
https://noesis.uis.edu.co/handle/20.500.14071/14714 https://noesis.uis.edu.co |
identifier_str_mv |
Universidad Industrial de Santander |
dc.language.iso.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.license.none.fl_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Industrial de Santander |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeníerias Fisicomecánicas |
dc.publisher.program.none.fl_str_mv |
Ingeniería Electrónica |
dc.publisher.school.none.fl_str_mv |
Escuela de Ingenierías Eléctrica, Electrónica y Telecomunicaciones |
publisher.none.fl_str_mv |
Universidad Industrial de Santander |
institution |
Universidad Industrial de Santander |
bitstream.url.fl_str_mv |
https://noesis.uis.edu.co/bitstreams/67c2971e-5b8e-41cd-993b-149f548a7ba4/download https://noesis.uis.edu.co/bitstreams/a8e8b005-fc06-4354-b293-654747465361/download https://noesis.uis.edu.co/bitstreams/c27fe6b8-48f1-4bc9-b640-055c0b998abd/download https://noesis.uis.edu.co/bitstreams/8dd78b7f-8dc4-4ca9-83f3-20f484fb52cf/download |
bitstream.checksum.fl_str_mv |
020a695ef97618fb7044b105c9467752 3d2bdb9f5a2095038431363beda178c5 661713a6f7132c4bbd91ace4ced6e587 d6298274a8378d319ac744759540b71b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace at UIS |
repository.mail.fl_str_mv |
noesis@uis.edu.co |
_version_ |
1831929769436905472 |
spelling |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)Pertuz Arroyo, Said DavidMerchan Cardoza, MishellSuarez Quimbayo, Juan PabloRamirez Silva, Ana BeatrizFonseca Estupiñan, Karen Andrea2023-08-04T18:59:54Z2023-08-04T18:59:54Z2023-08-032023-08-03https://noesis.uis.edu.co/handle/20.500.14071/14714Universidad Industrial de SantanderUniversidad Industrial de Santanderhttps://noesis.uis.edu.coLa Embolia Pulmonar (EP) es una condición potencialmente mortal en la que un coágulo sanguíneo bloquea una arteria en los pulmones. Permanece como una de las condiciones más desafiantes para diagnosticar y tratar en el departamento de emergencias. Como tipo de enfermedad cardiovascular, la EP contribuye a la principal causa de muerte a nivel mundial, según la Organización Mundial de la Salud. La detección temprana y el tratamiento oportuno son críticos para mejorar los resultados del paciente. En este proyecto, buscamos desarrollar e implementar un algoritmo para la segmentación automatizada de arterias pulmonares como un paso crucial hacia la identificación de EP. Tuvimos acceso a una base de datos de 130 volúmenes 3D con etiquetado refinado de las arterias pulmonares. La combinación de herramientas de alto desempeño y tecnología avanzada tiene un gran potencial para la detección y tratamiento temprano de enfermedades pulmonares, especialmente en entornos con recursos limitados. Específicamente, proponemos la implementación de una arquitectura llamada ResD-Unet, basada en la red Unet, complementada con bloques residuales y capas de convolución interconectadas. Los resultados obtenidos son moderados, pero constituyen un paso inicial para la solución del problema.PregradoIngeniero ElectrónicoPulmonary Embolism (PE) is a life-threatening condition in which a blood clot blocks an artery in the lungs. It remains one of the most challenging conditions to diagnose and treat in the emergency department. As a type of cardiovascular disease, PE contributes to the leading cause of death world-wide, according to the World Health Organization. Early detection and timely treatment are critical to improving patient outcomes. In this project, we sought to develop and implement an algorithm for automated pulmonary artery segmentation as a crucial step toward PE identification. We had access to a database of 130 3D volumes with refined labeling of pulmonary arteries. The combination of high-performance tools and advanced technology has great potential for early detection and treatment of lung diseases, especially in resource-limited settings. Specifically, we propose the implementation of an architecture called ResD-Unet, based on the Unet network, complemented with residual blocks and interconnected convolution layers. The results obtained are modest, but constitute an initial step towards solving the problem.application/pdfengUniversidad Industrial de SantanderFacultad de Ingeníerias FisicomecánicasIngeniería ElectrónicaEscuela de Ingenierías Eléctrica, Electrónica y TelecomunicacionesArterias PulmonaresSegmentaciónTomografía Computarizada (TC)Aprendizaje ProfundoPulmonary arterialSegmentationComputed Tomography (CT)Deep LearningDesign and Implementation of a Deep Learning Model for Pulmonary Arterial Segmentation in Computed Tomography (CT) imagesDesign and Implementation of a Deep Learning Model for Pulmonary Arterial Segmentation in Computed Tomography (CT) imagesTesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_7a1fORIGINALDocumento.pdfDocumento.pdfapplication/pdf1039530https://noesis.uis.edu.co/bitstreams/67c2971e-5b8e-41cd-993b-149f548a7ba4/download020a695ef97618fb7044b105c9467752MD51Nota de proyecto.pdfNota de proyecto.pdfapplication/pdf274271https://noesis.uis.edu.co/bitstreams/a8e8b005-fc06-4354-b293-654747465361/download3d2bdb9f5a2095038431363beda178c5MD52Carta de autorizacion.pdfCarta de autorizacion.pdfapplication/pdf118200https://noesis.uis.edu.co/bitstreams/c27fe6b8-48f1-4bc9-b640-055c0b998abd/download661713a6f7132c4bbd91ace4ced6e587MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82237https://noesis.uis.edu.co/bitstreams/8dd78b7f-8dc4-4ca9-83f3-20f484fb52cf/downloadd6298274a8378d319ac744759540b71bMD5420.500.14071/14714oai:noesis.uis.edu.co:20.500.14071/147142023-08-04 13:59:58.192http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://noesis.uis.edu.coDSpace at UISnoesis@uis.edu.coRWwgc3VzY3JpdG8gQVVUT1Ig4oCTIEVTVFVESUFOVEUsIGlkZW50aWZpY2FkbyBjb21vIGFwYXJlY2UgYWwgcGllIGRlIG1pIGZpcm1hLCBhY3R1YW5kbyBlbiBub21icmUgcHJvcGlvLCB5IGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgZ3JhZG8sIGRlbCB0cmFiYWpvIGRlIGludmVzdGlnYWNpw7NuLCBvIGRlIGxhIHRlc2lzIGRlbm9taW5hZGEgY29tbyBzZSBlc3BlY2lmaWNhIGVuIGVsIGNhbXBvIOKAmFTDrXR1bG/igJksIHBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIGF1dG9yaXpvIGEgbGEgVU5JVkVSU0lEQUQgSU5EVVNUUklBTCBERSBTQU5UQU5ERVIsIHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBsYSBMZXkgNDQgZGUgMTk5MywgZWwgRGVjcmV0byA0NjAgZGUgMTk5NSwgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBkZXJlY2hvcyBkZSBhdXRvciwgcmVhbGljZSBsYSByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuIHDDumJsaWNhLCBlZGljacOzbiwgZGlzdHJpYnVjacOzbiBiYWpvIGxhIG1vZGFsaWRhZCBkZSBhbHF1aWxlciwgcHLDqXN0YW1vIHDDumJsaWNvIG8gaW1wb3J0YWNpw7NuIGVuIGZvcm1hdG8gaW1wcmVzbyB5IGRpZ2l0YWwsIGxhIHRyYW5zZm9ybWFjacOzbiwgbGEgcHVibGljYWNpw7NuIGNvbW8gb2JyYSBsaXRlcmFyaWEsIGxpYnJvIGVsZWN0csOzbmljbyAoZS1Cb29rKSBvIHJldmlzdGEgZWxlY3Ryw7NuaWNhLCBpbmNsdXllbmRvIGxhIHBvc2liaWxpZGFkIGRlIGRpc3RyaWJ1aXJsYSBwb3IgbWVkaW9zIHRyYWRpY2lvbmFsZXMgbyBwb3IgSW50ZXJuZXQgYSBjdWFscXVpZXIgdMOtdHVsbyAgcG9yIGxhIFVuaXZlcnNpZGFkIHkgY29uIHF1aWVuIHRlbmdhIGNvbnZlbmlvIHBhcmEgZWxsbywgaW5jbHV5ZW5kbyBsYSBwb3NpYmlsaWRhZCBkZSBoYWNlciBhZGFwdGFjaW9uZXMsIGFjdHVhbGl6YWNpb25lcyB5IHRyYWR1Y2Npb25lcyBlbiB0b2RvcyBsb3MgaWRpb21hczsgbGEgaW5jb3Jwb3JhY2nDs24gYSB1bmEgY29sZWNjacOzbiBvIGNvbXBpbGFjacOzbiwgbGEgdHJhZHVjY2nDs24sIGZpamFjacOzbiBlbiBmb25vZ3JhbWEsIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBmb3JtYXRvIGFuw6Fsb2dvLCBkaWdpdGFsLCBhdWRpb3Zpc3VhbCwgbWFnbsOpdGljbywgeSwgZW4gZ2VuZXJhbCwgbG9zIGZvcm1hdG9zIGVuICBxdWUgc2UgcHVlZGEgcmVwcm9kdWNpciB5IGNvbXVuaWNhciAgZGUgbWFuZXJhIHRvdGFsIHkgcGFyY2lhbCBtaSB0cmFiYWpvIGRlIGdyYWRvIG8gdGVzaXMuIAoKTGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBzZSBoYWNlIGV4dGVuc2l2YSBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgYW7DoWxvZ28sIGZvcm1hdG8gdmlydHVhbCwgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCDDs3B0aWNvLCB1c28gZW4gcmVkLCBJbnRlcm5ldCwgZXh0cmFuZXQsIGludHJhbmV0LCBlbnRyZSBvdHJvcyBmb3JtYXRvcyB5IG1lZGlvcy4KCkVsIEFVVE9SIOKAkyBFU1RVRElBTlRFLCBtYW5pZmllc3RhIHF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIGVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvciBsbyB0YW50bywgbGEgb2JyYSBlcyBkZSBzdSBleGNsdXNpdmEgYXV0b3LDrWEgeSBkZXRlbnRhIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAgCgpQYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIFVOSVZFUlNJREFEIElORFVTVFJJQUwgREUgU0FOVEFOREVSIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmU7IGVuIGNvbnNlY3VlbmNpYSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVsIEFVVE9SIOKAkyBFU1RVRElBTlRFLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zLgo= |