Alternativa de solución al problema de distribución de planta (flp) para instalaciones de áreas iguales y desiguales mediante un algoritmo híbrido genético

En el presente trabajo se aborda el problema de distribución de planta FLP, solucionándolo a partir de un algoritmo Híbrido Genético (HGA). Se realiza una documentación y revisión bibliográfica del FLP a través del tiempo y se define la estructura básica para poder resolver el problema: definición d...

Full description

Autores:
Palacios Mendoza, Melissa
Jaimes Tami, Christian Camilo
Tipo de recurso:
http://purl.org/coar/version/c_b1a7d7d4d402bcce
Fecha de publicación:
2011
Institución:
Universidad Industrial de Santander
Repositorio:
Repositorio UIS
Idioma:
spa
OAI Identifier:
oai:noesis.uis.edu.co:20.500.14071/25308
Acceso en línea:
https://noesis.uis.edu.co/handle/20.500.14071/25308
https://noesis.uis.edu.co
Palabra clave:
Distribución de Planta
Metaheurísticas
Recocido Simulado
Búsqueda Tabú
Algoritmo Genético
Algoritmo Híbrido Genético
Planeación Sistemática de la Distribución de Plantas
MATLAB
Facility Layout
Metaheuristic methods
Simulated Annealing
Tabu Search
Genetic Algorithm
Hybrid Genetic Algorithm
systematic planning of the facility layout
MATLAB
Rights
License
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
Description
Summary:En el presente trabajo se aborda el problema de distribución de planta FLP, solucionándolo a partir de un algoritmo Híbrido Genético (HGA). Se realiza una documentación y revisión bibliográfica del FLP a través del tiempo y se define la estructura básica para poder resolver el problema: definición de la distribución, características espaciales de los departamentos y formulación del problema. Cuando ya se tiene la estructura anterior definida, se procede a seleccionar y aplicar el mejor método de solución. Se sugieren algunos como: La planeación sistemática de la distribución de plantas, métodos exactos y los métodos metaheurísticos. Los dos primeros llegan a soluciones óptimas cuando se trabaja el problema con pocas instalaciones, departamentos y restricciones. A medida que éstos aumentan, la complejidad del problema también lo hace, por ende, los métodos metaheurísticos son los encargados de realizar mejores búsquedas, utilizando menor tiempo computacional. Se estudian los modelos metaheurísticos de: el Recocido Simulado (SA), la Búsqueda Tabú (TS) y el Algoritmo Genético (GA). El Algoritmo Híbrido Genético (HGA) aquí planteado, aprovecha la efectividad de los tres métodos mencionados anteriormente: Búsqueda Tabú (TS), Recocido Simulado (SA) y Algoritmos Genéticos (GA).los dos primeros se encargan de buscar soluciones locales efectivas, con las cuales se arman las ficadenasfl de los algoritmos genéticos para encontrar la solución global del problema. Lo ideal es aprovechar las ventajas de dichas técnicas para llegar a la mejor solución de manera práctica y efectiva. Con la información recopilada se diseña y desarrolla una herramienta computacional en MATLAB capaz de solucionar el problema documentado con el Algoritmo Híbrido Genético. Finalmente, se realiza un análisis de errores con relación a los resultados históricos para los problemas planteados y se realiza una comparación de desempeño entre el HGA con las tres técnicas trabajadas por separado.