Análisis bioinformático de los cebadores para los genes de Hemaglutinina, Proteína Nuclear y Proteínas de Matriz del virus de Influenza A H1N1 empleados en el diagnóstico a pacientes por RT-PCR en tiempo real, de 2019 a agosto de 2020

El virus de la Influenza A H1N1 es un virus zoonótico de genoma monocatenario de ARN en sentido negativo que infecta humanos, cerdos, aves y otros animales. Los diagnósticos epidemiológicos indican que el virus continúa mutando, lo cual, origina nuevas epidemias y pandemias. Las pruebas de RT-PCR co...

Full description

Autores:
Forero Buitrago, Lizeth Johana
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Industrial de Santander
Repositorio:
Repositorio UIS
Idioma:
spa
OAI Identifier:
oai:noesis.uis.edu.co:20.500.14071/10949
Acceso en línea:
https://noesis.uis.edu.co/handle/20.500.14071/10949
https://noesis.uis.edu.co
Palabra clave:
Bioinformática
Influenza A H1N1
Cebadores de RT-PCR
Diagnóstico molecular
Bioinformatics
Influenza A H1N1
RT-PCR Primers
Molecular Diagnosis
Rights
openAccess
License
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
Description
Summary:El virus de la Influenza A H1N1 es un virus zoonótico de genoma monocatenario de ARN en sentido negativo que infecta humanos, cerdos, aves y otros animales. Los diagnósticos epidemiológicos indican que el virus continúa mutando, lo cual, origina nuevas epidemias y pandemias. Las pruebas de RT-PCR con los genes HA, NP y M1-M2 autorizados por la OMS, son la forma más rápida para detectar personas infectadas, pero con la alta tasa mutacional del virus se ha evidenciado que los cebadores y las sondas comerciales no amplifican y generan falsos negativos, aunque las vacunas para la Influenza son actualizadas año a año, las pruebas para diagnóstico no lo son. Los análisis bioinformáticos realizados por el grupo CAGE desde 1991-2019, han demostrado que existen nuevos patrones mutacionales que generan diagnósticos incorrectos o que reconocen otros virus de Influenza. Para descartar falsos negativos, se crearon nuevos cebadores, sondas y oligonucleótidos de los genes HA, NP y M1- M2 del virus de la Influenza A H1N1 y se evaluó su eficiencia in silico para implementarlos en los diagnósticos de RT-PCR. Se obtuvieron 7362 secuencias de IRD y se validaron con el software Sequence Manager y un código de selección en la supercomputadora GUANE-1, obteniendo 5872 secuencias para el año 2019 y 1490 para el año 2020. Se construyó una base de datos que permitió validar la eficiencia de los cebadores y sondas, al conocer los nucleótidos mayoritarios A-T y los degenerados R-Y en las secuencias consenso. Se corroboraron los alineamientos en BLAST con los cebadores y sondas de los nucleótidos mayoritarios, los cuales reconocieron sus respectivas secuencias para los años 2019-2020. Se observó con algoritmos-Zuker las secuencias diseñadas fueron eficientes en RT-PCR con el sustrato sintético. En conclusión, el sistema de diagnóstico puede ser eficiente para su aplicación en pacientes.