Algebra max-plus y una aplicacion a los cuadrados latinos

El álgebra máx-plus se define sobre el conjunto Rε = R∪ {−∞} dotado con las operaciones a⊕b = max´ {a,b} y a ⊗ b = a + b, estas operaciones son asociativas, conmutativas y distributivas. En este conjunto, el elemento neutro es ε = −∞ y el elemento unidad es e = 0. Con estas operaciones, Rε tiene est...

Full description

Autores:
Palomino Niño, Lina Liceth
Tipo de recurso:
http://purl.org/coar/version/c_b1a7d7d4d402bcce
Fecha de publicación:
2019
Institución:
Universidad Industrial de Santander
Repositorio:
Repositorio UIS
Idioma:
spa
OAI Identifier:
oai:noesis.uis.edu.co:20.500.14071/14112
Acceso en línea:
https://noesis.uis.edu.co/handle/20.500.14071/14112
https://noesis.uis.edu.co
Palabra clave:
Álgebra Máx-Plus
Grafos
Valores Y Vectores Propios
Cuadrados Latinos
Max-Plus Algebra
Graphs
Eigenvalues And Eigenvectors
Latin Squares.
Rights
openAccess
License
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
Description
Summary:El álgebra máx-plus se define sobre el conjunto Rε = R∪ {−∞} dotado con las operaciones a⊕b = max´ {a,b} y a ⊗ b = a + b, estas operaciones son asociativas, conmutativas y distributivas. En este conjunto, el elemento neutro es ε = −∞ y el elemento unidad es e = 0. Con estas operaciones, Rε tiene estructura de semianillo que además es idempotente respecto a ⊕. En el primer capítulo se introducen algunos resultados preliminares sobre la teoría de grafos. En el segundo capítulo se presentan conceptos básicos y se estudian algunas propiedades algebraicas que satisfacen las operaciones ⊕ y ⊗ en el conjunto Rε . Se definen las matrices y vectores, se estudia la relación que existe entre los grafos y las matrices ya que, toda matriz cuadrada puede ser representada mediante un grafo ponderado y los pesos de los caminos de dicho grafo pueden ser interpretados mediante las potencias de la matriz ya mencionada, finalmente se hallan los valores y vectores propios de una matriz cuadrada por medio de su grafo asociado y se muestra que toda matriz irreducible tiene valor propio único. En el capítulo tres se definen los cuadrados latinos, se muestran algunas propiedades que satisfacen en el álgebra máx-plus como que todo cuadrado latino es una matriz irreducible y se halla su único valor propio con sus respectivos vectores propios asociados.