Efecto de la longitud de onda en la fotodegradación de azul de metileno con perovskitas del tipo sr(1-x)hoxzrtio.9o3, (x= 1%, 3%, 6%, 9%)
El dióxido de titanio es el fotocatalizador lider en la industría utilizado principalmente para procesos de remediación del medio ambiente y manofactura de productos químicos, sin embargo es necesario explorar otros materiales que presenten propiedades catalíticas similares o mejores a las del TiO2...
- Autores:
-
Huertas Montoya, Edison
- Tipo de recurso:
- http://purl.org/coar/version/c_b1a7d7d4d402bcce
- Fecha de publicación:
- 2016
- Institución:
- Universidad Industrial de Santander
- Repositorio:
- Repositorio UIS
- Idioma:
- spa
- OAI Identifier:
- oai:noesis.uis.edu.co:20.500.14071/34965
- Palabra clave:
- Perovskitas
Dopaje Con Lantanidos
Azul De Metileno
Estudio Cinético
Actividad Fotocatalítica.
Titanium dioxide is the most used photocatalyst for processes of environmental remediation and chemical manufacturing
however it is necessary to explore other catalytic materials with similar or better characteristics than TiO2 and also to be active in a wider spectral range like visible light
since this absorbs at wavelengths near to 380 nm corresponding to the ultraviolet range (UV). Given this Delgado et al have developed synthetic methods for the preparation of strontium titanates doped with rare earth elements (A1-y LnyZr0.1Ti0.9O3
con Ln = Eu
Sm
Dy
Ho) which exhibit a redshift on Eg band. In a previous study conducted at the Center for Research in Catalysis
the photocatalytic activity of mixed oxide perovskite doped with rare earth elements such as europium
samarium
dysprosium and holmium were evaluated
results show that the solid doped with Ho has more activity at wavelengths between 450-750 nm. In this research the photocatalytic activity of perovskites Sr(1-x)HoxZrTi0.9O3 con x = 1%
3%
6%
9%
was evaluated using as model reaction photodegradation of methylene blue under aerobically conditions at neutral pH
thus varying the concentration of Ho in the catalyst is expected that Eg band moves to the visible
therefore the effect of incident wavelength was studied for the degradation of methylene blue.
- Rights
- License
- Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
id |
UISANTADR2_585cbb029eec7943039e40c0de2f9e23 |
---|---|
oai_identifier_str |
oai:noesis.uis.edu.co:20.500.14071/34965 |
network_acronym_str |
UISANTADR2 |
network_name_str |
Repositorio UIS |
repository_id_str |
|
dc.title.none.fl_str_mv |
Efecto de la longitud de onda en la fotodegradación de azul de metileno con perovskitas del tipo sr(1-x)hoxzrtio.9o3, (x= 1%, 3%, 6%, 9%) |
dc.title.english.none.fl_str_mv |
Perovskites, Lanthanides Doping, Methylene Blue, Kinetic Study, Photocatalytic Activity. |
title |
Efecto de la longitud de onda en la fotodegradación de azul de metileno con perovskitas del tipo sr(1-x)hoxzrtio.9o3, (x= 1%, 3%, 6%, 9%) |
spellingShingle |
Efecto de la longitud de onda en la fotodegradación de azul de metileno con perovskitas del tipo sr(1-x)hoxzrtio.9o3, (x= 1%, 3%, 6%, 9%) Perovskitas Dopaje Con Lantanidos Azul De Metileno Estudio Cinético Actividad Fotocatalítica. Titanium dioxide is the most used photocatalyst for processes of environmental remediation and chemical manufacturing however it is necessary to explore other catalytic materials with similar or better characteristics than TiO2 and also to be active in a wider spectral range like visible light since this absorbs at wavelengths near to 380 nm corresponding to the ultraviolet range (UV). Given this Delgado et al have developed synthetic methods for the preparation of strontium titanates doped with rare earth elements (A1-y LnyZr0.1Ti0.9O3 con Ln = Eu Sm Dy Ho) which exhibit a redshift on Eg band. In a previous study conducted at the Center for Research in Catalysis the photocatalytic activity of mixed oxide perovskite doped with rare earth elements such as europium samarium dysprosium and holmium were evaluated results show that the solid doped with Ho has more activity at wavelengths between 450-750 nm. In this research the photocatalytic activity of perovskites Sr(1-x)HoxZrTi0.9O3 con x = 1% 3% 6% 9% was evaluated using as model reaction photodegradation of methylene blue under aerobically conditions at neutral pH thus varying the concentration of Ho in the catalyst is expected that Eg band moves to the visible therefore the effect of incident wavelength was studied for the degradation of methylene blue. |
title_short |
Efecto de la longitud de onda en la fotodegradación de azul de metileno con perovskitas del tipo sr(1-x)hoxzrtio.9o3, (x= 1%, 3%, 6%, 9%) |
title_full |
Efecto de la longitud de onda en la fotodegradación de azul de metileno con perovskitas del tipo sr(1-x)hoxzrtio.9o3, (x= 1%, 3%, 6%, 9%) |
title_fullStr |
Efecto de la longitud de onda en la fotodegradación de azul de metileno con perovskitas del tipo sr(1-x)hoxzrtio.9o3, (x= 1%, 3%, 6%, 9%) |
title_full_unstemmed |
Efecto de la longitud de onda en la fotodegradación de azul de metileno con perovskitas del tipo sr(1-x)hoxzrtio.9o3, (x= 1%, 3%, 6%, 9%) |
title_sort |
Efecto de la longitud de onda en la fotodegradación de azul de metileno con perovskitas del tipo sr(1-x)hoxzrtio.9o3, (x= 1%, 3%, 6%, 9%) |
dc.creator.fl_str_mv |
Huertas Montoya, Edison |
dc.contributor.advisor.none.fl_str_mv |
Martinez Ortega, Fernando Delgado Niño, Pilar |
dc.contributor.author.none.fl_str_mv |
Huertas Montoya, Edison |
dc.subject.none.fl_str_mv |
Perovskitas Dopaje Con Lantanidos Azul De Metileno Estudio Cinético Actividad Fotocatalítica. |
topic |
Perovskitas Dopaje Con Lantanidos Azul De Metileno Estudio Cinético Actividad Fotocatalítica. Titanium dioxide is the most used photocatalyst for processes of environmental remediation and chemical manufacturing however it is necessary to explore other catalytic materials with similar or better characteristics than TiO2 and also to be active in a wider spectral range like visible light since this absorbs at wavelengths near to 380 nm corresponding to the ultraviolet range (UV). Given this Delgado et al have developed synthetic methods for the preparation of strontium titanates doped with rare earth elements (A1-y LnyZr0.1Ti0.9O3 con Ln = Eu Sm Dy Ho) which exhibit a redshift on Eg band. In a previous study conducted at the Center for Research in Catalysis the photocatalytic activity of mixed oxide perovskite doped with rare earth elements such as europium samarium dysprosium and holmium were evaluated results show that the solid doped with Ho has more activity at wavelengths between 450-750 nm. In this research the photocatalytic activity of perovskites Sr(1-x)HoxZrTi0.9O3 con x = 1% 3% 6% 9% was evaluated using as model reaction photodegradation of methylene blue under aerobically conditions at neutral pH thus varying the concentration of Ho in the catalyst is expected that Eg band moves to the visible therefore the effect of incident wavelength was studied for the degradation of methylene blue. |
dc.subject.keyword.none.fl_str_mv |
Titanium dioxide is the most used photocatalyst for processes of environmental remediation and chemical manufacturing however it is necessary to explore other catalytic materials with similar or better characteristics than TiO2 and also to be active in a wider spectral range like visible light since this absorbs at wavelengths near to 380 nm corresponding to the ultraviolet range (UV). Given this Delgado et al have developed synthetic methods for the preparation of strontium titanates doped with rare earth elements (A1-y LnyZr0.1Ti0.9O3 con Ln = Eu Sm Dy Ho) which exhibit a redshift on Eg band. In a previous study conducted at the Center for Research in Catalysis the photocatalytic activity of mixed oxide perovskite doped with rare earth elements such as europium samarium dysprosium and holmium were evaluated results show that the solid doped with Ho has more activity at wavelengths between 450-750 nm. In this research the photocatalytic activity of perovskites Sr(1-x)HoxZrTi0.9O3 con x = 1% 3% 6% 9% was evaluated using as model reaction photodegradation of methylene blue under aerobically conditions at neutral pH thus varying the concentration of Ho in the catalyst is expected that Eg band moves to the visible therefore the effect of incident wavelength was studied for the degradation of methylene blue. |
description |
El dióxido de titanio es el fotocatalizador lider en la industría utilizado principalmente para procesos de remediación del medio ambiente y manofactura de productos químicos, sin embargo es necesario explorar otros materiales que presenten propiedades catalíticas similares o mejores a las del TiO2 y que además absorban en un rango espectral más amplio como el visible, puesto que este absorbe a longitudes de onda cercanas a 380 nm correspondientes al rango ultravioleta (UV). Teniendo en cuenta esto Delgado y colaboradores han desarrollado métodos de síntesis para la preparación de titanocirconatos de estroncio dopados con elementos de tierras raras (A1-y LnyZr0.1Ti0.9O3, con Ln = Eu, Sm, Dy, Ho) los cuales exhiben un corrimiento de la banda Eg hacia el visible. En un estudio previo realizado en el Centro de Investigación en Catálisis, se evaluó la actividad fotocatalítica de óxidos mixtos tipo perovskita dopados con elementos de tierras raras como europio, samario, disprosio y holmio, los resultados obtenidos muestran que el sólido dopado con Ho presenta mayor actividad a longitudes de onda entre 450-750 nm. En esta investigación se estudió la actividad fotocatalítica de las perovskitas del tipo: Sr(1-x)HoxZrTi0.9O3 con x = 1%, 3%, 6%, 9%, utilizando como reacción modelo la fotodegradación de azul de metileno bajo condiciones aeróbicas a pH neutro, de tal manera que al variar la concentración de Ho en el catalizador se espera que su band-gap (Eg) se desplace hacia el visible, en consecuencia se evaluó el efecto de la longitud de onda incidente en la degradación del azul de metileno. |
publishDate |
2016 |
dc.date.available.none.fl_str_mv |
2016 2024-03-03T22:43:31Z |
dc.date.created.none.fl_str_mv |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2024-03-03T22:43:31Z |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.hasversion.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
format |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.identifier.uri.none.fl_str_mv |
https://noesis.uis.edu.co/handle/20.500.14071/34965 |
dc.identifier.instname.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.reponame.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.repourl.none.fl_str_mv |
https://noesis.uis.edu.co |
url |
https://noesis.uis.edu.co/handle/20.500.14071/34965 https://noesis.uis.edu.co |
identifier_str_mv |
Universidad Industrial de Santander |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.none.fl_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0 |
dc.rights.creativecommons.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by-nc/4.0 Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Industrial de Santander |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.program.none.fl_str_mv |
Química |
dc.publisher.school.none.fl_str_mv |
Escuela de Química |
publisher.none.fl_str_mv |
Universidad Industrial de Santander |
institution |
Universidad Industrial de Santander |
bitstream.url.fl_str_mv |
https://noesis.uis.edu.co/bitstreams/3c108799-51d5-4f04-a4ce-3f3f49da2204/download https://noesis.uis.edu.co/bitstreams/b7834e39-e3f9-439b-b6e3-7efddc92b403/download https://noesis.uis.edu.co/bitstreams/30f944f0-faf6-4137-8a04-3ced0a30ffa7/download |
bitstream.checksum.fl_str_mv |
908f80109e8a49ac103025ff24c73f04 5639eff0cb0c8ffce6dc1e5ac17bf198 5e57d84468189972e1bdff7f604b8778 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace at UIS |
repository.mail.fl_str_mv |
noesis@uis.edu.co |
_version_ |
1814095174517653504 |
spelling |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by-nc/4.0Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Martinez Ortega, FernandoDelgado Niño, PilarHuertas Montoya, Edison2024-03-03T22:43:31Z20162024-03-03T22:43:31Z20162016https://noesis.uis.edu.co/handle/20.500.14071/34965Universidad Industrial de SantanderUniversidad Industrial de Santanderhttps://noesis.uis.edu.coEl dióxido de titanio es el fotocatalizador lider en la industría utilizado principalmente para procesos de remediación del medio ambiente y manofactura de productos químicos, sin embargo es necesario explorar otros materiales que presenten propiedades catalíticas similares o mejores a las del TiO2 y que además absorban en un rango espectral más amplio como el visible, puesto que este absorbe a longitudes de onda cercanas a 380 nm correspondientes al rango ultravioleta (UV). Teniendo en cuenta esto Delgado y colaboradores han desarrollado métodos de síntesis para la preparación de titanocirconatos de estroncio dopados con elementos de tierras raras (A1-y LnyZr0.1Ti0.9O3, con Ln = Eu, Sm, Dy, Ho) los cuales exhiben un corrimiento de la banda Eg hacia el visible. En un estudio previo realizado en el Centro de Investigación en Catálisis, se evaluó la actividad fotocatalítica de óxidos mixtos tipo perovskita dopados con elementos de tierras raras como europio, samario, disprosio y holmio, los resultados obtenidos muestran que el sólido dopado con Ho presenta mayor actividad a longitudes de onda entre 450-750 nm. En esta investigación se estudió la actividad fotocatalítica de las perovskitas del tipo: Sr(1-x)HoxZrTi0.9O3 con x = 1%, 3%, 6%, 9%, utilizando como reacción modelo la fotodegradación de azul de metileno bajo condiciones aeróbicas a pH neutro, de tal manera que al variar la concentración de Ho en el catalizador se espera que su band-gap (Eg) se desplace hacia el visible, en consecuencia se evaluó el efecto de la longitud de onda incidente en la degradación del azul de metileno.PregradoQuímicoWavelength effect on photodegradation of methylene blue with perovskites type sr(1-x)hoxzrti0.9o3 (x= 1%, 3%, 6%, 9%)application/pdfspaUniversidad Industrial de SantanderFacultad de CienciasQuímicaEscuela de QuímicaPerovskitasDopaje Con LantanidosAzul De MetilenoEstudio CinéticoActividad Fotocatalítica.Titanium dioxide is the most used photocatalyst for processes of environmental remediation and chemical manufacturinghowever it is necessary to explore other catalytic materials with similar or better characteristics than TiO2 and also to be active in a wider spectral range like visible lightsince this absorbs at wavelengths near to 380 nm corresponding to the ultraviolet range (UV). Given this Delgado et al have developed synthetic methods for the preparation of strontium titanates doped with rare earth elements (A1-y LnyZr0.1Ti0.9O3con Ln = EuSmDyHo) which exhibit a redshift on Eg band. In a previous study conducted at the Center for Research in Catalysisthe photocatalytic activity of mixed oxide perovskite doped with rare earth elements such as europiumsamariumdysprosium and holmium were evaluatedresults show that the solid doped with Ho has more activity at wavelengths between 450-750 nm. In this research the photocatalytic activity of perovskites Sr(1-x)HoxZrTi0.9O3 con x = 1%3%6%9%was evaluated using as model reaction photodegradation of methylene blue under aerobically conditions at neutral pHthus varying the concentration of Ho in the catalyst is expected that Eg band moves to the visibletherefore the effect of incident wavelength was studied for the degradation of methylene blue.Efecto de la longitud de onda en la fotodegradación de azul de metileno con perovskitas del tipo sr(1-x)hoxzrtio.9o3, (x= 1%, 3%, 6%, 9%)Perovskites, Lanthanides Doping, Methylene Blue, Kinetic Study, Photocatalytic Activity.Tesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_b1a7d7d4d402bcceORIGINALCarta de autorización.pdfapplication/pdf127315https://noesis.uis.edu.co/bitstreams/3c108799-51d5-4f04-a4ce-3f3f49da2204/download908f80109e8a49ac103025ff24c73f04MD51Documento.pdfapplication/pdf1795470https://noesis.uis.edu.co/bitstreams/b7834e39-e3f9-439b-b6e3-7efddc92b403/download5639eff0cb0c8ffce6dc1e5ac17bf198MD52Nota de proyecto.pdfapplication/pdf46157https://noesis.uis.edu.co/bitstreams/30f944f0-faf6-4137-8a04-3ced0a30ffa7/download5e57d84468189972e1bdff7f604b8778MD5320.500.14071/34965oai:noesis.uis.edu.co:20.500.14071/349652024-03-03 17:43:31.719http://creativecommons.org/licenses/by-nc/4.0http://creativecommons.org/licenses/by/4.0/open.accesshttps://noesis.uis.edu.coDSpace at UISnoesis@uis.edu.co |