Desarrollo de un algoritmo de optimización para la estimación del estado de cargas de un componente estructural basado en su forma óptima

Las estructuras biológicas adaptan su forma a su entorno mecánico, con el fin de optimizar la energía que necesita para funcionar. En este sentido, un hueso cambiará su topología de acuerdo con su estado de carga, generando hueso más denso donde mayor esfuerzo sea soportado. Partiendo del hecho que...

Full description

Autores:
Florez Galvis, Christian
Tipo de recurso:
http://purl.org/coar/version/c_b1a7d7d4d402bcce
Fecha de publicación:
2017
Institución:
Universidad Industrial de Santander
Repositorio:
Repositorio UIS
Idioma:
spa
OAI Identifier:
oai:noesis.uis.edu.co:20.500.14071/35700
Acceso en línea:
https://noesis.uis.edu.co/handle/20.500.14071/35700
https://noesis.uis.edu.co
Palabra clave:
Métodos Numéricos
Optimización Topológica
Estimación De Carga
Biomecánica Del Hueso.
Numerical Methods
Topology Optimization
Load Estimation
Biomechanics Of Bone.
Rights
License
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
Description
Summary:Las estructuras biológicas adaptan su forma a su entorno mecánico, con el fin de optimizar la energía que necesita para funcionar. En este sentido, un hueso cambiará su topología de acuerdo con su estado de carga, generando hueso más denso donde mayor esfuerzo sea soportado. Partiendo del hecho que las formas de la naturaleza son óptimas y que los estados de carga en el cuerpo humano no son completamente conocidos, este estudio apunta a encontrar el estado de carga basado en la forma óptima, en contraparte a la metodología de diseño mecánico. Debido a que el dominio de diseño del componente y su forma real son conocidos, este algoritmo es enfocado de manera iterativa, tomando como parámetro primario la construcción de formas óptimas a través del método de los elementos finitos para cargas asumidas, seguido por un módulo que compara el modelo computacional obtenido con la topología real de la estructura. Inicialmente, el problema es resuelto para una viga empotrada, soportando una carga estática, puntual y vertical. Así, el algoritmo es probado para un caso simple, buscando aplicarlo en estructuras de mayor complejidad y poder acercarse a piezas biológicas reales. Los autores creen que este estudio permitirá a los especialistas en las ciencias médicas hacer análisis más completos con respecto a enfermedades y peculiaridades de los huesos y de elementos estructurales de los seres vivos.