Diseño e Implementación de un Algoritmo para la Reducción de los Efectos de la Variabilidad Espectral en la Fusión de Imágenes Multiespectrales e Hiperespectrales

Las técnicas de fusión de imágenes han abordado el problema de formación de imágenes de alta resolución a partir de información de múltiples sensores como cámaras hiperespectrales (HS) y multiespectrales (MS), donde los primeros ofrecen alta resolución espectral y los segundos aportan alta resolució...

Full description

Autores:
Camacho Velasco, Ariolfo
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Industrial de Santander
Repositorio:
Repositorio UIS
Idioma:
spa
OAI Identifier:
oai:noesis.uis.edu.co:20.500.14071/11828
Acceso en línea:
https://noesis.uis.edu.co/handle/20.500.14071/11828
https://noesis.uis.edu.co
Palabra clave:
Variabilidad Espectral
Firma espectral
Imágenes multiespectrales
Imágenes hiperespectrales
Fusión MS-HS
Spectral Variability
Fusion MS-HS
Hyperspectal imaging
Multispectral imaging
Spectral signature
Rights
openAccess
License
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
Description
Summary:Las técnicas de fusión de imágenes han abordado el problema de formación de imágenes de alta resolución a partir de información de múltiples sensores como cámaras hiperespectrales (HS) y multiespectrales (MS), donde los primeros ofrecen alta resolución espectral y los segundos aportan alta resolución espacial. En la práctica, los espectros observados a partir de muestras de un mismo material no son idénticos. Adicionalmente, existen variaciones en la información espectral dentro de experimentos controlados en los laboratorios. Tales variaciones en forma y escala de las firmas espectrales de un mismo material en diferentes píxeles a lo largo de una imagen HS se conoce como variabilidad espectral. Recientemente, la comunidad científica se ha interesado en los efectos de la variabilidad espectral debido a que representan una fuente de error en el análisis de imágenes HS. Sin embargo, los enfoques clásicos de fusión de imágenes MS e imágenes HS aún no han abordado el fenómeno de la variabilidad espectral. Por otro lado, recientes desarrollos de sensores y métodos de procesamiento de datos han conllevado a un mayor uso de imágenes espectrales, principalmente MS e HS en la agricultura mundial. En un contexto colombiano, el desarrollo de aplicaciones e investigaciones científicas de técnicas de teledetección hiperespectral son requeridas en la agricultura, dado el gran potencial agrícola de Colombia por sus condiciones geográficas y climáticas. No obstante, el estudio de la vegetación usando información espectral es afectado por la variabilidad espectral. Por lo tanto, en esta tesis doctoral se diseñó e implementó un algoritmo para la reducción de los efectos de la variabilidad espectral en la fusión de imágenes MS y HS basado en el desmezclado espectral. La principal contribución consiste en el desarrollo de un algoritmo de fusión que combina el modelo de degradación espacio-espectral con el modelo de variabilidad espectral. Particularmente, el desempeño del algoritmo propuesto fue evaluado sobre datos semi-sintéticos, datos reales de escenas de cultivos agrícolas en Colombia y datos espectrales adquiridos en laboratorio, obteniendo una ganancia de hasta 4 dB en términos de la calidad de las imágenes fusionada en comparación con los métodos del estado del arte de fusión de imágenes MS-HS.