Mejoramiento de la calidad de imágenes hiperespectrales por métodos de superresolución

Las imágenes hiperespectrales (HSI) son una concatenación de imágenes bidimensionales que toman diferentes longitudes de onda y proporcionan información de gran importancia en aplicaciones aéreas, espaciales, detección de objetos, agricultura y exploración de recursos naturales. En todas estas aplic...

Full description

Autores:
Marquez Castellanos, Miguel Angel
Tipo de recurso:
http://purl.org/coar/version/c_b1a7d7d4d402bcce
Fecha de publicación:
2015
Institución:
Universidad Industrial de Santander
Repositorio:
Repositorio UIS
Idioma:
spa
OAI Identifier:
oai:noesis.uis.edu.co:20.500.14071/32599
Acceso en línea:
https://noesis.uis.edu.co/handle/20.500.14071/32599
https://noesis.uis.edu.co
Palabra clave:
Imagen Hiperespectral; Dimensión Espacial-Espectral; Interpolación Tridimensional; Muestreo Hiperespectral.
Hyperspectral Imaging; Spatial-Spectral Dimension; Three-Dimensional Interpolation; Hyperspectral Downsampling.
Rights
License
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
Description
Summary:Las imágenes hiperespectrales (HSI) son una concatenación de imágenes bidimensionales que toman diferentes longitudes de onda y proporcionan información de gran importancia en aplicaciones aéreas, espaciales, detección de objetos, agricultura y exploración de recursos naturales. En todas estas aplicaciones es primordial obtener la máxima resolución posible, tanto a nivel espacial como espectral. Una forma de conseguir HSI de alta resolución (HR) es mediante la implementación de espectrómetros hiperespectrales. Las desventajas de esta solución son el aumento exponencial en los costos de adquisición relacionados con el detector y el ruido inherente en las imágenes, generado por diferentes factores como: lentes, atmosfera, iluminaciones secundarias, imperfecciones ópticas, etc. Por otro lado, los detectores son proporcionales al tamaño de la imagen deseada y no es posible construir cámaras de resolución arbitraria. Una alternativa para aumentar la resolución de las HSI es implementando técnicas de superresolución (SR), las cuales se basan en la recuperación de una HSI de HR a partir de una versión de baja resolución. Una de las principales deficiencias de los métodos tradicionales de SR en imágenes hiperespectrales, es la restauración de la imagen hiperespectral como un conjunto de imágenes bidimensionales no relacionadas, ignorando información inherente en las bandas espectrales adyacentes que son esenciales para una óptima reconstrucción. En este trabajo se propone un método rápido y eficiente para la reconstrucción de HSI, mediante el uso de matrices de reducción espacio-espectral e interpolaciones cúbicas recurrentes. El método propuesto supera la implementación tradicional de las técnicas de SR, mediante el uso de la información concurrente en el vecindario de espectros adyacentes. Las simulaciones muestran que el método desarrollado supera los métodos tradicionales de SR para HSI existentes en la literatura. Específicamente se obtienen mayores niveles de relación señal a ruido pico (PSNR), tanto en la dimensión espectral como en la espacial.