SISTEMA PARA LA SEGMENTACIÓN Y CLASIFICACIÓN DEL TEJIDO DENSO EN IMÁGENES MAMOGRÁFICAS USANDO APRENDIZAJE AUTOMÁTICO
La densidad mamaria es uno de los factores de riesgo más importantes para estimar el cáncer de seno. Una mayor densidad indica una mayor probabilidad de desarrollar esta enfermedad y además, hace que sea más propenso que un radiólogo pase por alto lesiones pequeñas. Actualmente, existen técnicas bas...
- Autores:
-
Bravo Bravo, Maria Angelica
Cabeza Gutiérrez, Natalia Johana
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad Industrial de Santander
- Repositorio:
- Repositorio UIS
- Idioma:
- eng
- OAI Identifier:
- oai:noesis.uis.edu.co:20.500.14071/15178
- Palabra clave:
- Densidad mamaria
Cáncer
Clasificación
Aprendizaje automático
Segmentación
Interfaz de software
Breast density
Cancer
Classification
Machine learning
Segmentation
Software interface
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)
Summary: | La densidad mamaria es uno de los factores de riesgo más importantes para estimar el cáncer de seno. Una mayor densidad indica una mayor probabilidad de desarrollar esta enfermedad y además, hace que sea más propenso que un radiólogo pase por alto lesiones pequeñas. Actualmente, existen técnicas basadas en aprendizaje automático y aprendizaje profundo para estimar la densidad mamaria. Sin embargo, la mayoría de estas técnicas se encuentran en etapa de desarrollo, lo que dificulta su uso por no expertos en el área de análisis computacional de imágenes. El objetivo de este trabajo es integrar desarrollos recientes encontrados en el estado del arte a través de una interfaz de software independiente que pueda ser usada por médicos para la segmentación y estimación de la densidad mamaria en imágenes de mamografía digital de campo completo. La interfaz de software se diseñó usando Qt Designer para aspectos gráficos y el lenguaje de programación Python, específicamente su módulo PyQt5, para el manejo de estas herramientas. Se realizó un estudio en lectores no expertos con cuarenta participantes para evaluar el desempeño de la interfaz de software diseñada. El análisis cuantitativo de los resultados de segmentación obtenido por los usuarios con las segmentaciones manuales hechas por lectores expertos obtuvo PD-errors entre 7.5% y 10.1%. Además, se evaluaron aspectos cualitativos de la interfaz, tales como disposición, eficiencia y satisfacción del usuario, concluyendo que el software desarrollado es considerado intuitivo, fácil de usar, completo y se desempeña de acuerdo a las expectativas del usuario. Con este trabajo, se pretende servir de base para una futura validación clínica de biomarcadores basados en densidad para la evaluación del riesgo de cáncer de seno. |
---|