Diseño de un sistema de detección de somnolencia utilizando redes neuronales.
La somnolencia puede ser especialmente peligrosa cuando se requiere concentración absoluta en momentos críticos del ser humano. Las debilidades momentáneas en el enfoque durante tareas esenciales, como la conducción o la manipulación de equipos complejos, pueden desencadenar consecuencias trágicas,...
- Autores:
-
Lenis Sánchez, Nicolas
Galvis Camaron, Omar Alfonso
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad Industrial de Santander
- Repositorio:
- Repositorio UIS
- Idioma:
- spa
- OAI Identifier:
- oai:noesis.uis.edu.co:20.500.14071/15874
- Palabra clave:
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)
id |
UISANTADR2_1eef428241c72762f75e8f9c6a988850 |
---|---|
oai_identifier_str |
oai:noesis.uis.edu.co:20.500.14071/15874 |
network_acronym_str |
UISANTADR2 |
network_name_str |
Repositorio UIS |
repository_id_str |
|
dc.title.none.fl_str_mv |
Diseño de un sistema de detección de somnolencia utilizando redes neuronales. |
dc.title.english.none.fl_str_mv |
Design of a drowsiness detection system using neural networks. |
title |
Diseño de un sistema de detección de somnolencia utilizando redes neuronales. |
spellingShingle |
Diseño de un sistema de detección de somnolencia utilizando redes neuronales. |
title_short |
Diseño de un sistema de detección de somnolencia utilizando redes neuronales. |
title_full |
Diseño de un sistema de detección de somnolencia utilizando redes neuronales. |
title_fullStr |
Diseño de un sistema de detección de somnolencia utilizando redes neuronales. |
title_full_unstemmed |
Diseño de un sistema de detección de somnolencia utilizando redes neuronales. |
title_sort |
Diseño de un sistema de detección de somnolencia utilizando redes neuronales. |
dc.creator.fl_str_mv |
Lenis Sánchez, Nicolas Galvis Camaron, Omar Alfonso |
dc.contributor.advisor.none.fl_str_mv |
Barrero Pérez, Jaime Guillermo |
dc.contributor.author.none.fl_str_mv |
Lenis Sánchez, Nicolas Galvis Camaron, Omar Alfonso |
dc.contributor.evaluator.none.fl_str_mv |
Fajardo Ariza, Carlos Augusto Fonseca Estupiñan, Karen Andrea |
description |
La somnolencia puede ser especialmente peligrosa cuando se requiere concentración absoluta en momentos críticos del ser humano. Las debilidades momentáneas en el enfoque durante tareas esenciales, como la conducción o la manipulación de equipos complejos, pueden desencadenar consecuencias trágicas, incluidos accidentes graves o incluso pérdidas humanas. La clave para mitigar tales riesgos radica en la detección precoz de ésta. Este trabajo de grado presenta un método sofisticado que emplea inteligencia artificial y procesamiento de imágenes para reconocer los primeros signos de somnolencia. A través de un sistema embebido, la Raspberry pi 4, se implementaron dos soluciones, en la primera solución se implementó una red neuronal meticulosamente entrenada que identifica la somnolencia o cansancio mediante el tiempo del parpadeo. En la segunda solución se implementó un sistema con Dlib, el cual hace la medición del EAR, también con tiempo de parpadeo más bostezos prolongados. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-02-27T18:31:41Z |
dc.date.available.none.fl_str_mv |
2024-02-27T18:31:41Z |
dc.date.created.none.fl_str_mv |
2024-02-21 |
dc.date.issued.none.fl_str_mv |
2024-02-21 |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.hasversion.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://noesis.uis.edu.co/handle/20.500.14071/15874 |
dc.identifier.instname.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.reponame.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.repourl.none.fl_str_mv |
https://noesis.uis.edu.co |
url |
https://noesis.uis.edu.co/handle/20.500.14071/15874 https://noesis.uis.edu.co |
identifier_str_mv |
Universidad Industrial de Santander |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO) |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO) http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Industrial de Santander |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeníerias Fisicomecánicas |
dc.publisher.program.none.fl_str_mv |
Ingeniería Electrónica |
dc.publisher.school.none.fl_str_mv |
Escuela de Ingenierías Eléctrica, Electrónica y Telecomunicaciones |
publisher.none.fl_str_mv |
Universidad Industrial de Santander |
institution |
Universidad Industrial de Santander |
bitstream.url.fl_str_mv |
https://noesis.uis.edu.co/bitstreams/5438fd40-f5e6-47d2-a580-0e373c7d0fe6/download https://noesis.uis.edu.co/bitstreams/198854ed-e4ae-4717-8229-3fc872cb140c/download https://noesis.uis.edu.co/bitstreams/0237c66f-1ab0-4286-ac11-97e3f2a8bcc9/download https://noesis.uis.edu.co/bitstreams/23e1cb04-02c8-4c4d-b899-d059b5d345c2/download |
bitstream.checksum.fl_str_mv |
d6298274a8378d319ac744759540b71b 0de80d36187640d1c48c056c2feb8a69 1d2e9c1e34cf527e7b36c7d384625e1b 1a10b45e469e89f8078fa90b7c31ed52 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace at UIS |
repository.mail.fl_str_mv |
noesis@uis.edu.co |
_version_ |
1831929766312148992 |
spelling |
Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)Barrero Pérez, Jaime GuillermoLenis Sánchez, NicolasGalvis Camaron, Omar AlfonsoFajardo Ariza, Carlos AugustoFonseca Estupiñan, Karen Andrea2024-02-27T18:31:41Z2024-02-27T18:31:41Z2024-02-212024-02-21https://noesis.uis.edu.co/handle/20.500.14071/15874Universidad Industrial de SantanderUniversidad Industrial de Santanderhttps://noesis.uis.edu.coLa somnolencia puede ser especialmente peligrosa cuando se requiere concentración absoluta en momentos críticos del ser humano. Las debilidades momentáneas en el enfoque durante tareas esenciales, como la conducción o la manipulación de equipos complejos, pueden desencadenar consecuencias trágicas, incluidos accidentes graves o incluso pérdidas humanas. La clave para mitigar tales riesgos radica en la detección precoz de ésta. Este trabajo de grado presenta un método sofisticado que emplea inteligencia artificial y procesamiento de imágenes para reconocer los primeros signos de somnolencia. A través de un sistema embebido, la Raspberry pi 4, se implementaron dos soluciones, en la primera solución se implementó una red neuronal meticulosamente entrenada que identifica la somnolencia o cansancio mediante el tiempo del parpadeo. En la segunda solución se implementó un sistema con Dlib, el cual hace la medición del EAR, también con tiempo de parpadeo más bostezos prolongados.PregradoIngeniero ElectrónicoDrowsiness can be especially dangerous when absolute concentration is required at critical human moments. Momentary weaknesses in focus during essential tasks, such as driving or handling complex equipment, can trigger tragic consequences, including serious accidents or even loss of life. The key to mitigating such risks lies in their early detection. This graduate work presents a sophisticated method that employs artificial intelligence and image processing to recognize the early signs of drowsiness. Through an embedded system, the Raspberry pi 4, two solutions were implemented, in the first solution a meticulously trained neural network was implemented that identifies drowsiness or tiredness through the blink time. In the second solution, a system was implemented with Dlib, which measures EAR, also with blink time plus prolonged yawning.application/pdfspaUniversidad Industrial de SantanderFacultad de Ingeníerias FisicomecánicasIngeniería ElectrónicaEscuela de Ingenierías Eléctrica, Electrónica y TelecomunicacionesDiseño de un sistema de detección de somnolencia utilizando redes neuronales.Design of a drowsiness detection system using neural networks.Tesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_7a1fLICENSElicense.txtlicense.txttext/plain; charset=utf-82237https://noesis.uis.edu.co/bitstreams/5438fd40-f5e6-47d2-a580-0e373c7d0fe6/downloadd6298274a8378d319ac744759540b71bMD51ORIGINALCarta de autorización.pdfCarta de autorización.pdfapplication/pdf105739https://noesis.uis.edu.co/bitstreams/198854ed-e4ae-4717-8229-3fc872cb140c/download0de80d36187640d1c48c056c2feb8a69MD52Nota de proyecto.pdfNota de proyecto.pdfapplication/pdf199654https://noesis.uis.edu.co/bitstreams/0237c66f-1ab0-4286-ac11-97e3f2a8bcc9/download1d2e9c1e34cf527e7b36c7d384625e1bMD54Documento.pdfDocumento.pdfapplication/pdf1399595https://noesis.uis.edu.co/bitstreams/23e1cb04-02c8-4c4d-b899-d059b5d345c2/download1a10b45e469e89f8078fa90b7c31ed52MD5520.500.14071/15874oai:noesis.uis.edu.co:20.500.14071/158742024-02-27 13:31:45.062http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessembargohttps://noesis.uis.edu.coDSpace at UISnoesis@uis.edu.coRWwgc3VzY3JpdG8gQVVUT1Ig4oCTIEVTVFVESUFOVEUsIGlkZW50aWZpY2FkbyBjb21vIGFwYXJlY2UgYWwgcGllIGRlIG1pIGZpcm1hLCBhY3R1YW5kbyBlbiBub21icmUgcHJvcGlvLCB5IGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgZ3JhZG8sIGRlbCB0cmFiYWpvIGRlIGludmVzdGlnYWNpw7NuLCBvIGRlIGxhIHRlc2lzIGRlbm9taW5hZGEgY29tbyBzZSBlc3BlY2lmaWNhIGVuIGVsIGNhbXBvIOKAmFTDrXR1bG/igJksIHBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIGF1dG9yaXpvIGEgbGEgVU5JVkVSU0lEQUQgSU5EVVNUUklBTCBERSBTQU5UQU5ERVIsIHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBsYSBMZXkgNDQgZGUgMTk5MywgZWwgRGVjcmV0byA0NjAgZGUgMTk5NSwgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBkZXJlY2hvcyBkZSBhdXRvciwgcmVhbGljZSBsYSByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuIHDDumJsaWNhLCBlZGljacOzbiwgZGlzdHJpYnVjacOzbiBiYWpvIGxhIG1vZGFsaWRhZCBkZSBhbHF1aWxlciwgcHLDqXN0YW1vIHDDumJsaWNvIG8gaW1wb3J0YWNpw7NuIGVuIGZvcm1hdG8gaW1wcmVzbyB5IGRpZ2l0YWwsIGxhIHRyYW5zZm9ybWFjacOzbiwgbGEgcHVibGljYWNpw7NuIGNvbW8gb2JyYSBsaXRlcmFyaWEsIGxpYnJvIGVsZWN0csOzbmljbyAoZS1Cb29rKSBvIHJldmlzdGEgZWxlY3Ryw7NuaWNhLCBpbmNsdXllbmRvIGxhIHBvc2liaWxpZGFkIGRlIGRpc3RyaWJ1aXJsYSBwb3IgbWVkaW9zIHRyYWRpY2lvbmFsZXMgbyBwb3IgSW50ZXJuZXQgYSBjdWFscXVpZXIgdMOtdHVsbyAgcG9yIGxhIFVuaXZlcnNpZGFkIHkgY29uIHF1aWVuIHRlbmdhIGNvbnZlbmlvIHBhcmEgZWxsbywgaW5jbHV5ZW5kbyBsYSBwb3NpYmlsaWRhZCBkZSBoYWNlciBhZGFwdGFjaW9uZXMsIGFjdHVhbGl6YWNpb25lcyB5IHRyYWR1Y2Npb25lcyBlbiB0b2RvcyBsb3MgaWRpb21hczsgbGEgaW5jb3Jwb3JhY2nDs24gYSB1bmEgY29sZWNjacOzbiBvIGNvbXBpbGFjacOzbiwgbGEgdHJhZHVjY2nDs24sIGZpamFjacOzbiBlbiBmb25vZ3JhbWEsIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBmb3JtYXRvIGFuw6Fsb2dvLCBkaWdpdGFsLCBhdWRpb3Zpc3VhbCwgbWFnbsOpdGljbywgeSwgZW4gZ2VuZXJhbCwgbG9zIGZvcm1hdG9zIGVuICBxdWUgc2UgcHVlZGEgcmVwcm9kdWNpciB5IGNvbXVuaWNhciAgZGUgbWFuZXJhIHRvdGFsIHkgcGFyY2lhbCBtaSB0cmFiYWpvIGRlIGdyYWRvIG8gdGVzaXMuIAoKTGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBzZSBoYWNlIGV4dGVuc2l2YSBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgYW7DoWxvZ28sIGZvcm1hdG8gdmlydHVhbCwgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCDDs3B0aWNvLCB1c28gZW4gcmVkLCBJbnRlcm5ldCwgZXh0cmFuZXQsIGludHJhbmV0LCBlbnRyZSBvdHJvcyBmb3JtYXRvcyB5IG1lZGlvcy4KCkVsIEFVVE9SIOKAkyBFU1RVRElBTlRFLCBtYW5pZmllc3RhIHF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIGVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvciBsbyB0YW50bywgbGEgb2JyYSBlcyBkZSBzdSBleGNsdXNpdmEgYXV0b3LDrWEgeSBkZXRlbnRhIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAgCgpQYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIFVOSVZFUlNJREFEIElORFVTVFJJQUwgREUgU0FOVEFOREVSIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmU7IGVuIGNvbnNlY3VlbmNpYSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVsIEFVVE9SIOKAkyBFU1RVRElBTlRFLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zLgo= |