Un estudio sistemático del teorema de Tychonoff

El objetivo central de este trabajo es realizar un estudio sistemático del teorema de Tychonoff, analizando distintas demostraciones del teorema, que surgieron al pasar el tiempo, y mostrando además su equivalencia con el axioma de elección. Presentamos distintas demostraciones del teorema objeto de...

Full description

Autores:
Quintanilla Gonzalez, Brayan Gersain
Tipo de recurso:
http://purl.org/coar/version/c_b1a7d7d4d402bcce
Fecha de publicación:
2016
Institución:
Universidad Industrial de Santander
Repositorio:
Repositorio UIS
Idioma:
spa
OAI Identifier:
oai:noesis.uis.edu.co:20.500.14071/35522
Acceso en línea:
https://noesis.uis.edu.co/handle/20.500.14071/35522
https://noesis.uis.edu.co
Palabra clave:
Teorema De Tychonoff
Teorema De Tychonoff Equivalente Al Axioma De Elección
Teorema De Los Productos Conexos
Compacto
Conexo.
The central objective of this work is to perform a systematic study of Tychonoff’s theorem
analyzing different proofs of the theorem
which emerged over time
and also showing its equivalence to the axiom of choice. We present different demonstrations of the theorem object of study of our work. These demonstrations make use of different “ tools ”. We also analyze the publication of J. L. Kelley [5]
in which it “demonstrates” the equivalence of Tychonoff’s theorem and the axiom of choice. Kelley makes a small mistake in his test
which is mentioned in [7]
but until the year 2003
Sangho Kum [6] corrects and publishes. On the other hand
we find the article [10] of J. A. P´erez
in which the author intends to show that the theorem of connected products is equivalent to Tychonoff’s theorem and hence to the axiom of choice. However when studying this article we find an error in the proof of the main theorem. In this last chapter we present a summary of what happened around this situation. We hope that this thesis will be of interest and useful to students of mathematics
bachelors in mathematics and in general for any reader interested in the subject.
Rights
License
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
id UISANTADR2_1cc3cd4a2da522c554f998146917c16e
oai_identifier_str oai:noesis.uis.edu.co:20.500.14071/35522
network_acronym_str UISANTADR2
network_name_str Repositorio UIS
repository_id_str
dc.title.none.fl_str_mv Un estudio sistemático del teorema de Tychonoff
dc.title.english.none.fl_str_mv Tychonoff’S Theorem, Tychonoff’S Theorem Equivalent To The Axiom Of Choice, Theorem Of Connected Products, Compact, Connected.
title Un estudio sistemático del teorema de Tychonoff
spellingShingle Un estudio sistemático del teorema de Tychonoff
Teorema De Tychonoff
Teorema De Tychonoff Equivalente Al Axioma De Elección
Teorema De Los Productos Conexos
Compacto
Conexo.
The central objective of this work is to perform a systematic study of Tychonoff’s theorem
analyzing different proofs of the theorem
which emerged over time
and also showing its equivalence to the axiom of choice. We present different demonstrations of the theorem object of study of our work. These demonstrations make use of different “ tools ”. We also analyze the publication of J. L. Kelley [5]
in which it “demonstrates” the equivalence of Tychonoff’s theorem and the axiom of choice. Kelley makes a small mistake in his test
which is mentioned in [7]
but until the year 2003
Sangho Kum [6] corrects and publishes. On the other hand
we find the article [10] of J. A. P´erez
in which the author intends to show that the theorem of connected products is equivalent to Tychonoff’s theorem and hence to the axiom of choice. However when studying this article we find an error in the proof of the main theorem. In this last chapter we present a summary of what happened around this situation. We hope that this thesis will be of interest and useful to students of mathematics
bachelors in mathematics and in general for any reader interested in the subject.
title_short Un estudio sistemático del teorema de Tychonoff
title_full Un estudio sistemático del teorema de Tychonoff
title_fullStr Un estudio sistemático del teorema de Tychonoff
title_full_unstemmed Un estudio sistemático del teorema de Tychonoff
title_sort Un estudio sistemático del teorema de Tychonoff
dc.creator.fl_str_mv Quintanilla Gonzalez, Brayan Gersain
dc.contributor.advisor.none.fl_str_mv Sabogal Pedraza, Sonia Marleni
dc.contributor.author.none.fl_str_mv Quintanilla Gonzalez, Brayan Gersain
dc.subject.none.fl_str_mv Teorema De Tychonoff
Teorema De Tychonoff Equivalente Al Axioma De Elección
Teorema De Los Productos Conexos
Compacto
Conexo.
topic Teorema De Tychonoff
Teorema De Tychonoff Equivalente Al Axioma De Elección
Teorema De Los Productos Conexos
Compacto
Conexo.
The central objective of this work is to perform a systematic study of Tychonoff’s theorem
analyzing different proofs of the theorem
which emerged over time
and also showing its equivalence to the axiom of choice. We present different demonstrations of the theorem object of study of our work. These demonstrations make use of different “ tools ”. We also analyze the publication of J. L. Kelley [5]
in which it “demonstrates” the equivalence of Tychonoff’s theorem and the axiom of choice. Kelley makes a small mistake in his test
which is mentioned in [7]
but until the year 2003
Sangho Kum [6] corrects and publishes. On the other hand
we find the article [10] of J. A. P´erez
in which the author intends to show that the theorem of connected products is equivalent to Tychonoff’s theorem and hence to the axiom of choice. However when studying this article we find an error in the proof of the main theorem. In this last chapter we present a summary of what happened around this situation. We hope that this thesis will be of interest and useful to students of mathematics
bachelors in mathematics and in general for any reader interested in the subject.
dc.subject.keyword.none.fl_str_mv The central objective of this work is to perform a systematic study of Tychonoff’s theorem
analyzing different proofs of the theorem
which emerged over time
and also showing its equivalence to the axiom of choice. We present different demonstrations of the theorem object of study of our work. These demonstrations make use of different “ tools ”. We also analyze the publication of J. L. Kelley [5]
in which it “demonstrates” the equivalence of Tychonoff’s theorem and the axiom of choice. Kelley makes a small mistake in his test
which is mentioned in [7]
but until the year 2003
Sangho Kum [6] corrects and publishes. On the other hand
we find the article [10] of J. A. P´erez
in which the author intends to show that the theorem of connected products is equivalent to Tychonoff’s theorem and hence to the axiom of choice. However when studying this article we find an error in the proof of the main theorem. In this last chapter we present a summary of what happened around this situation. We hope that this thesis will be of interest and useful to students of mathematics
bachelors in mathematics and in general for any reader interested in the subject.
description El objetivo central de este trabajo es realizar un estudio sistemático del teorema de Tychonoff, analizando distintas demostraciones del teorema, que surgieron al pasar el tiempo, y mostrando además su equivalencia con el axioma de elección. Presentamos distintas demostraciones del teorema objeto de estudio de nuestro trabajo. Dichas demostraciones hacen uso de distintas “herramientas”. Hacemos además un análisis a la publicación de J. L. Kelley [5], en la que “demuestra” la equivalencia del teorema de Tychonoff y el axioma de elección. Kelley comete un peque˜no error en su prueba, el cuál es mencionado en [7], pero hasta el a˜no 2003, Sangho Kum [6] lo corrige y publica. Por otra parte, encontramos el artículo [10] de J. A. Pérez, en el cual el autor pretende demostrar que el teorema de los productos conexos, es equivalente al teorema de Tychonoff y por tanto al axioma de elección. Sin embargo al estudiar dicho artículo encontramos un error en la demostración del teorema principal. En este íltimo capítulo presentamos un resumen de lo ocurrido en torno a esta situación. Esperamos que este trabajo de tesis sea de interés y utilidad para estudiantes de matemáticas, de licenciatura en matemáticas y en general para cualquier lector interesado en el tema.
publishDate 2016
dc.date.available.none.fl_str_mv 2016
2024-03-03T22:50:21Z
dc.date.created.none.fl_str_mv 2016
dc.date.issued.none.fl_str_mv 2016
dc.date.accessioned.none.fl_str_mv 2024-03-03T22:50:21Z
dc.type.local.none.fl_str_mv Tesis/Trabajo de grado - Monografía - Pregrado
dc.type.hasversion.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.coar.none.fl_str_mv http://purl.org/coar/version/c_b1a7d7d4d402bcce
format http://purl.org/coar/version/c_b1a7d7d4d402bcce
dc.identifier.uri.none.fl_str_mv https://noesis.uis.edu.co/handle/20.500.14071/35522
dc.identifier.instname.none.fl_str_mv Universidad Industrial de Santander
dc.identifier.reponame.none.fl_str_mv Universidad Industrial de Santander
dc.identifier.repourl.none.fl_str_mv https://noesis.uis.edu.co
url https://noesis.uis.edu.co/handle/20.500.14071/35522
https://noesis.uis.edu.co
identifier_str_mv Universidad Industrial de Santander
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.none.fl_str_mv Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0
dc.rights.creativecommons.none.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
rights_invalid_str_mv Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by-nc/4.0
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Industrial de Santander
dc.publisher.faculty.none.fl_str_mv Facultad de Ciencias
dc.publisher.program.none.fl_str_mv Matemáticas
dc.publisher.school.none.fl_str_mv Escuela de Matemáticas
publisher.none.fl_str_mv Universidad Industrial de Santander
institution Universidad Industrial de Santander
bitstream.url.fl_str_mv https://noesis.uis.edu.co/bitstreams/40440b6c-49ba-4e55-a4e3-230313ab00b8/download
https://noesis.uis.edu.co/bitstreams/36d97fd6-675b-4c59-88b8-112909573623/download
https://noesis.uis.edu.co/bitstreams/0cd32776-5b5e-4429-9395-82e621165b6d/download
bitstream.checksum.fl_str_mv baba8e8b87df4f8a1c1e66204da375fc
255a09e9521bce90de72979a2c6e21e7
0a9a174580948679647892645742aedb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv DSpace at UIS
repository.mail.fl_str_mv noesis@uis.edu.co
_version_ 1814095193297649664
spelling Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by-nc/4.0Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Sabogal Pedraza, Sonia MarleniQuintanilla Gonzalez, Brayan Gersain2024-03-03T22:50:21Z20162024-03-03T22:50:21Z20162016https://noesis.uis.edu.co/handle/20.500.14071/35522Universidad Industrial de SantanderUniversidad Industrial de Santanderhttps://noesis.uis.edu.coEl objetivo central de este trabajo es realizar un estudio sistemático del teorema de Tychonoff, analizando distintas demostraciones del teorema, que surgieron al pasar el tiempo, y mostrando además su equivalencia con el axioma de elección. Presentamos distintas demostraciones del teorema objeto de estudio de nuestro trabajo. Dichas demostraciones hacen uso de distintas “herramientas”. Hacemos además un análisis a la publicación de J. L. Kelley [5], en la que “demuestra” la equivalencia del teorema de Tychonoff y el axioma de elección. Kelley comete un peque˜no error en su prueba, el cuál es mencionado en [7], pero hasta el a˜no 2003, Sangho Kum [6] lo corrige y publica. Por otra parte, encontramos el artículo [10] de J. A. Pérez, en el cual el autor pretende demostrar que el teorema de los productos conexos, es equivalente al teorema de Tychonoff y por tanto al axioma de elección. Sin embargo al estudiar dicho artículo encontramos un error en la demostración del teorema principal. En este íltimo capítulo presentamos un resumen de lo ocurrido en torno a esta situación. Esperamos que este trabajo de tesis sea de interés y utilidad para estudiantes de matemáticas, de licenciatura en matemáticas y en general para cualquier lector interesado en el tema.PregradoMatemáticoA systematic study of the tychonoff theoremapplication/pdfspaUniversidad Industrial de SantanderFacultad de CienciasMatemáticasEscuela de MatemáticasTeorema De TychonoffTeorema De Tychonoff Equivalente Al Axioma De ElecciónTeorema De Los Productos ConexosCompactoConexo.The central objective of this work is to perform a systematic study of Tychonoff’s theoremanalyzing different proofs of the theoremwhich emerged over timeand also showing its equivalence to the axiom of choice. We present different demonstrations of the theorem object of study of our work. These demonstrations make use of different “ tools ”. We also analyze the publication of J. L. Kelley [5]in which it “demonstrates” the equivalence of Tychonoff’s theorem and the axiom of choice. Kelley makes a small mistake in his testwhich is mentioned in [7]but until the year 2003Sangho Kum [6] corrects and publishes. On the other handwe find the article [10] of J. A. P´erezin which the author intends to show that the theorem of connected products is equivalent to Tychonoff’s theorem and hence to the axiom of choice. However when studying this article we find an error in the proof of the main theorem. In this last chapter we present a summary of what happened around this situation. We hope that this thesis will be of interest and useful to students of mathematicsbachelors in mathematics and in general for any reader interested in the subject.Un estudio sistemático del teorema de TychonoffTychonoff’S Theorem, Tychonoff’S Theorem Equivalent To The Axiom Of Choice, Theorem Of Connected Products, Compact, Connected.Tesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_b1a7d7d4d402bcceORIGINALCarta de autorización.pdfapplication/pdf288742https://noesis.uis.edu.co/bitstreams/40440b6c-49ba-4e55-a4e3-230313ab00b8/downloadbaba8e8b87df4f8a1c1e66204da375fcMD51Documento.pdfapplication/pdf816448https://noesis.uis.edu.co/bitstreams/36d97fd6-675b-4c59-88b8-112909573623/download255a09e9521bce90de72979a2c6e21e7MD52Nota de proyecto.pdfapplication/pdf161573https://noesis.uis.edu.co/bitstreams/0cd32776-5b5e-4429-9395-82e621165b6d/download0a9a174580948679647892645742aedbMD5320.500.14071/35522oai:noesis.uis.edu.co:20.500.14071/355222024-03-03 17:50:21.481http://creativecommons.org/licenses/by-nc/4.0http://creativecommons.org/licenses/by/4.0/open.accesshttps://noesis.uis.edu.coDSpace at UISnoesis@uis.edu.co