Un estudio sistemático del teorema de Tychonoff
El objetivo central de este trabajo es realizar un estudio sistemático del teorema de Tychonoff, analizando distintas demostraciones del teorema, que surgieron al pasar el tiempo, y mostrando además su equivalencia con el axioma de elección. Presentamos distintas demostraciones del teorema objeto de...
- Autores:
-
Quintanilla Gonzalez, Brayan Gersain
- Tipo de recurso:
- http://purl.org/coar/version/c_b1a7d7d4d402bcce
- Fecha de publicación:
- 2016
- Institución:
- Universidad Industrial de Santander
- Repositorio:
- Repositorio UIS
- Idioma:
- spa
- OAI Identifier:
- oai:noesis.uis.edu.co:20.500.14071/35522
- Palabra clave:
- Teorema De Tychonoff
Teorema De Tychonoff Equivalente Al Axioma De Elección
Teorema De Los Productos Conexos
Compacto
Conexo.
The central objective of this work is to perform a systematic study of Tychonoff’s theorem
analyzing different proofs of the theorem
which emerged over time
and also showing its equivalence to the axiom of choice. We present different demonstrations of the theorem object of study of our work. These demonstrations make use of different “ tools ”. We also analyze the publication of J. L. Kelley [5]
in which it “demonstrates” the equivalence of Tychonoff’s theorem and the axiom of choice. Kelley makes a small mistake in his test
which is mentioned in [7]
but until the year 2003
Sangho Kum [6] corrects and publishes. On the other hand
we find the article [10] of J. A. P´erez
in which the author intends to show that the theorem of connected products is equivalent to Tychonoff’s theorem and hence to the axiom of choice. However when studying this article we find an error in the proof of the main theorem. In this last chapter we present a summary of what happened around this situation. We hope that this thesis will be of interest and useful to students of mathematics
bachelors in mathematics and in general for any reader interested in the subject.
- Rights
- License
- Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)
id |
UISANTADR2_1cc3cd4a2da522c554f998146917c16e |
---|---|
oai_identifier_str |
oai:noesis.uis.edu.co:20.500.14071/35522 |
network_acronym_str |
UISANTADR2 |
network_name_str |
Repositorio UIS |
repository_id_str |
|
dc.title.none.fl_str_mv |
Un estudio sistemático del teorema de Tychonoff |
dc.title.english.none.fl_str_mv |
Tychonoff’S Theorem, Tychonoff’S Theorem Equivalent To The Axiom Of Choice, Theorem Of Connected Products, Compact, Connected. |
title |
Un estudio sistemático del teorema de Tychonoff |
spellingShingle |
Un estudio sistemático del teorema de Tychonoff Teorema De Tychonoff Teorema De Tychonoff Equivalente Al Axioma De Elección Teorema De Los Productos Conexos Compacto Conexo. The central objective of this work is to perform a systematic study of Tychonoff’s theorem analyzing different proofs of the theorem which emerged over time and also showing its equivalence to the axiom of choice. We present different demonstrations of the theorem object of study of our work. These demonstrations make use of different “ tools ”. We also analyze the publication of J. L. Kelley [5] in which it “demonstrates” the equivalence of Tychonoff’s theorem and the axiom of choice. Kelley makes a small mistake in his test which is mentioned in [7] but until the year 2003 Sangho Kum [6] corrects and publishes. On the other hand we find the article [10] of J. A. P´erez in which the author intends to show that the theorem of connected products is equivalent to Tychonoff’s theorem and hence to the axiom of choice. However when studying this article we find an error in the proof of the main theorem. In this last chapter we present a summary of what happened around this situation. We hope that this thesis will be of interest and useful to students of mathematics bachelors in mathematics and in general for any reader interested in the subject. |
title_short |
Un estudio sistemático del teorema de Tychonoff |
title_full |
Un estudio sistemático del teorema de Tychonoff |
title_fullStr |
Un estudio sistemático del teorema de Tychonoff |
title_full_unstemmed |
Un estudio sistemático del teorema de Tychonoff |
title_sort |
Un estudio sistemático del teorema de Tychonoff |
dc.creator.fl_str_mv |
Quintanilla Gonzalez, Brayan Gersain |
dc.contributor.advisor.none.fl_str_mv |
Sabogal Pedraza, Sonia Marleni |
dc.contributor.author.none.fl_str_mv |
Quintanilla Gonzalez, Brayan Gersain |
dc.subject.none.fl_str_mv |
Teorema De Tychonoff Teorema De Tychonoff Equivalente Al Axioma De Elección Teorema De Los Productos Conexos Compacto Conexo. |
topic |
Teorema De Tychonoff Teorema De Tychonoff Equivalente Al Axioma De Elección Teorema De Los Productos Conexos Compacto Conexo. The central objective of this work is to perform a systematic study of Tychonoff’s theorem analyzing different proofs of the theorem which emerged over time and also showing its equivalence to the axiom of choice. We present different demonstrations of the theorem object of study of our work. These demonstrations make use of different “ tools ”. We also analyze the publication of J. L. Kelley [5] in which it “demonstrates” the equivalence of Tychonoff’s theorem and the axiom of choice. Kelley makes a small mistake in his test which is mentioned in [7] but until the year 2003 Sangho Kum [6] corrects and publishes. On the other hand we find the article [10] of J. A. P´erez in which the author intends to show that the theorem of connected products is equivalent to Tychonoff’s theorem and hence to the axiom of choice. However when studying this article we find an error in the proof of the main theorem. In this last chapter we present a summary of what happened around this situation. We hope that this thesis will be of interest and useful to students of mathematics bachelors in mathematics and in general for any reader interested in the subject. |
dc.subject.keyword.none.fl_str_mv |
The central objective of this work is to perform a systematic study of Tychonoff’s theorem analyzing different proofs of the theorem which emerged over time and also showing its equivalence to the axiom of choice. We present different demonstrations of the theorem object of study of our work. These demonstrations make use of different “ tools ”. We also analyze the publication of J. L. Kelley [5] in which it “demonstrates” the equivalence of Tychonoff’s theorem and the axiom of choice. Kelley makes a small mistake in his test which is mentioned in [7] but until the year 2003 Sangho Kum [6] corrects and publishes. On the other hand we find the article [10] of J. A. P´erez in which the author intends to show that the theorem of connected products is equivalent to Tychonoff’s theorem and hence to the axiom of choice. However when studying this article we find an error in the proof of the main theorem. In this last chapter we present a summary of what happened around this situation. We hope that this thesis will be of interest and useful to students of mathematics bachelors in mathematics and in general for any reader interested in the subject. |
description |
El objetivo central de este trabajo es realizar un estudio sistemático del teorema de Tychonoff, analizando distintas demostraciones del teorema, que surgieron al pasar el tiempo, y mostrando además su equivalencia con el axioma de elección. Presentamos distintas demostraciones del teorema objeto de estudio de nuestro trabajo. Dichas demostraciones hacen uso de distintas “herramientas”. Hacemos además un análisis a la publicación de J. L. Kelley [5], en la que “demuestra” la equivalencia del teorema de Tychonoff y el axioma de elección. Kelley comete un peque˜no error en su prueba, el cuál es mencionado en [7], pero hasta el a˜no 2003, Sangho Kum [6] lo corrige y publica. Por otra parte, encontramos el artículo [10] de J. A. Pérez, en el cual el autor pretende demostrar que el teorema de los productos conexos, es equivalente al teorema de Tychonoff y por tanto al axioma de elección. Sin embargo al estudiar dicho artículo encontramos un error en la demostración del teorema principal. En este íltimo capítulo presentamos un resumen de lo ocurrido en torno a esta situación. Esperamos que este trabajo de tesis sea de interés y utilidad para estudiantes de matemáticas, de licenciatura en matemáticas y en general para cualquier lector interesado en el tema. |
publishDate |
2016 |
dc.date.available.none.fl_str_mv |
2016 2024-03-03T22:50:21Z |
dc.date.created.none.fl_str_mv |
2016 |
dc.date.issued.none.fl_str_mv |
2016 |
dc.date.accessioned.none.fl_str_mv |
2024-03-03T22:50:21Z |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.hasversion.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
format |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.identifier.uri.none.fl_str_mv |
https://noesis.uis.edu.co/handle/20.500.14071/35522 |
dc.identifier.instname.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.reponame.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.repourl.none.fl_str_mv |
https://noesis.uis.edu.co |
url |
https://noesis.uis.edu.co/handle/20.500.14071/35522 https://noesis.uis.edu.co |
identifier_str_mv |
Universidad Industrial de Santander |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.none.fl_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0 |
dc.rights.creativecommons.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by-nc/4.0 Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Industrial de Santander |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ciencias |
dc.publisher.program.none.fl_str_mv |
Matemáticas |
dc.publisher.school.none.fl_str_mv |
Escuela de Matemáticas |
publisher.none.fl_str_mv |
Universidad Industrial de Santander |
institution |
Universidad Industrial de Santander |
bitstream.url.fl_str_mv |
https://noesis.uis.edu.co/bitstreams/40440b6c-49ba-4e55-a4e3-230313ab00b8/download https://noesis.uis.edu.co/bitstreams/36d97fd6-675b-4c59-88b8-112909573623/download https://noesis.uis.edu.co/bitstreams/0cd32776-5b5e-4429-9395-82e621165b6d/download |
bitstream.checksum.fl_str_mv |
baba8e8b87df4f8a1c1e66204da375fc 255a09e9521bce90de72979a2c6e21e7 0a9a174580948679647892645742aedb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace at UIS |
repository.mail.fl_str_mv |
noesis@uis.edu.co |
_version_ |
1814095193297649664 |
spelling |
Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by-nc/4.0Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)http://purl.org/coar/access_right/c_abf2Sabogal Pedraza, Sonia MarleniQuintanilla Gonzalez, Brayan Gersain2024-03-03T22:50:21Z20162024-03-03T22:50:21Z20162016https://noesis.uis.edu.co/handle/20.500.14071/35522Universidad Industrial de SantanderUniversidad Industrial de Santanderhttps://noesis.uis.edu.coEl objetivo central de este trabajo es realizar un estudio sistemático del teorema de Tychonoff, analizando distintas demostraciones del teorema, que surgieron al pasar el tiempo, y mostrando además su equivalencia con el axioma de elección. Presentamos distintas demostraciones del teorema objeto de estudio de nuestro trabajo. Dichas demostraciones hacen uso de distintas “herramientas”. Hacemos además un análisis a la publicación de J. L. Kelley [5], en la que “demuestra” la equivalencia del teorema de Tychonoff y el axioma de elección. Kelley comete un peque˜no error en su prueba, el cuál es mencionado en [7], pero hasta el a˜no 2003, Sangho Kum [6] lo corrige y publica. Por otra parte, encontramos el artículo [10] de J. A. Pérez, en el cual el autor pretende demostrar que el teorema de los productos conexos, es equivalente al teorema de Tychonoff y por tanto al axioma de elección. Sin embargo al estudiar dicho artículo encontramos un error en la demostración del teorema principal. En este íltimo capítulo presentamos un resumen de lo ocurrido en torno a esta situación. Esperamos que este trabajo de tesis sea de interés y utilidad para estudiantes de matemáticas, de licenciatura en matemáticas y en general para cualquier lector interesado en el tema.PregradoMatemáticoA systematic study of the tychonoff theoremapplication/pdfspaUniversidad Industrial de SantanderFacultad de CienciasMatemáticasEscuela de MatemáticasTeorema De TychonoffTeorema De Tychonoff Equivalente Al Axioma De ElecciónTeorema De Los Productos ConexosCompactoConexo.The central objective of this work is to perform a systematic study of Tychonoff’s theoremanalyzing different proofs of the theoremwhich emerged over timeand also showing its equivalence to the axiom of choice. We present different demonstrations of the theorem object of study of our work. These demonstrations make use of different “ tools ”. We also analyze the publication of J. L. Kelley [5]in which it “demonstrates” the equivalence of Tychonoff’s theorem and the axiom of choice. Kelley makes a small mistake in his testwhich is mentioned in [7]but until the year 2003Sangho Kum [6] corrects and publishes. On the other handwe find the article [10] of J. A. P´erezin which the author intends to show that the theorem of connected products is equivalent to Tychonoff’s theorem and hence to the axiom of choice. However when studying this article we find an error in the proof of the main theorem. In this last chapter we present a summary of what happened around this situation. We hope that this thesis will be of interest and useful to students of mathematicsbachelors in mathematics and in general for any reader interested in the subject.Un estudio sistemático del teorema de TychonoffTychonoff’S Theorem, Tychonoff’S Theorem Equivalent To The Axiom Of Choice, Theorem Of Connected Products, Compact, Connected.Tesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/version/c_b1a7d7d4d402bcceORIGINALCarta de autorización.pdfapplication/pdf288742https://noesis.uis.edu.co/bitstreams/40440b6c-49ba-4e55-a4e3-230313ab00b8/downloadbaba8e8b87df4f8a1c1e66204da375fcMD51Documento.pdfapplication/pdf816448https://noesis.uis.edu.co/bitstreams/36d97fd6-675b-4c59-88b8-112909573623/download255a09e9521bce90de72979a2c6e21e7MD52Nota de proyecto.pdfapplication/pdf161573https://noesis.uis.edu.co/bitstreams/0cd32776-5b5e-4429-9395-82e621165b6d/download0a9a174580948679647892645742aedbMD5320.500.14071/35522oai:noesis.uis.edu.co:20.500.14071/355222024-03-03 17:50:21.481http://creativecommons.org/licenses/by-nc/4.0http://creativecommons.org/licenses/by/4.0/open.accesshttps://noesis.uis.edu.coDSpace at UISnoesis@uis.edu.co |