LOCALIZACIÓN DE LESIONES RELACIONADAS CON EL CÁNCER DE PRÓSTATA SOBRE SECUENCIAS MULTIMODALES BP-MRI
El cáncer de próstata es el segundo cáncer con mayor incidencia en hombres a nivel mundial. En Colombia, por ejemplo, en los últimos 20 años la tasa promedio de defunción fue de alrededor de 11.6 por cada 100 mil habitantes. Hoy en día, el estudio de lesiones prostáticas mediante resonancia magnétic...
- Autores:
-
González Guerrero, Camilo Eduardo
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2024
- Institución:
- Universidad Industrial de Santander
- Repositorio:
- Repositorio UIS
- Idioma:
- spa
- OAI Identifier:
- oai:noesis.uis.edu.co:20.500.14071/42410
- Palabra clave:
- Cáncer de próstata
Localización
Lesión csPCa
Bp-MRI
Multimodal
Prostate cancer
Localization
CsPCa lesion
Bp-MRI
Multimodal
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)
id |
UISANTADR2_041924c6007c37e3e9a43ce7229f5dbb |
---|---|
oai_identifier_str |
oai:noesis.uis.edu.co:20.500.14071/42410 |
network_acronym_str |
UISANTADR2 |
network_name_str |
Repositorio UIS |
repository_id_str |
|
dc.title.none.fl_str_mv |
LOCALIZACIÓN DE LESIONES RELACIONADAS CON EL CÁNCER DE PRÓSTATA SOBRE SECUENCIAS MULTIMODALES BP-MRI |
dc.title.english.none.fl_str_mv |
LOCALIZATION OF PROSTATE CANCER-RELATED LESIONS ON MULTIMODAL BP-MRI SEQUENCES |
title |
LOCALIZACIÓN DE LESIONES RELACIONADAS CON EL CÁNCER DE PRÓSTATA SOBRE SECUENCIAS MULTIMODALES BP-MRI |
spellingShingle |
LOCALIZACIÓN DE LESIONES RELACIONADAS CON EL CÁNCER DE PRÓSTATA SOBRE SECUENCIAS MULTIMODALES BP-MRI Cáncer de próstata Localización Lesión csPCa Bp-MRI Multimodal Prostate cancer Localization CsPCa lesion Bp-MRI Multimodal |
title_short |
LOCALIZACIÓN DE LESIONES RELACIONADAS CON EL CÁNCER DE PRÓSTATA SOBRE SECUENCIAS MULTIMODALES BP-MRI |
title_full |
LOCALIZACIÓN DE LESIONES RELACIONADAS CON EL CÁNCER DE PRÓSTATA SOBRE SECUENCIAS MULTIMODALES BP-MRI |
title_fullStr |
LOCALIZACIÓN DE LESIONES RELACIONADAS CON EL CÁNCER DE PRÓSTATA SOBRE SECUENCIAS MULTIMODALES BP-MRI |
title_full_unstemmed |
LOCALIZACIÓN DE LESIONES RELACIONADAS CON EL CÁNCER DE PRÓSTATA SOBRE SECUENCIAS MULTIMODALES BP-MRI |
title_sort |
LOCALIZACIÓN DE LESIONES RELACIONADAS CON EL CÁNCER DE PRÓSTATA SOBRE SECUENCIAS MULTIMODALES BP-MRI |
dc.creator.fl_str_mv |
González Guerrero, Camilo Eduardo |
dc.contributor.advisor.none.fl_str_mv |
Martínez Carrillo, Fabio Olmos Rojas, Juan Andrés |
dc.contributor.author.none.fl_str_mv |
González Guerrero, Camilo Eduardo |
dc.contributor.evaluator.none.fl_str_mv |
González Gómez, Andrés Leonardo Rueda Chacón, Hoover Fabián |
dc.subject.none.fl_str_mv |
Cáncer de próstata Localización Lesión csPCa Bp-MRI Multimodal |
topic |
Cáncer de próstata Localización Lesión csPCa Bp-MRI Multimodal Prostate cancer Localization CsPCa lesion Bp-MRI Multimodal |
dc.subject.keyword.none.fl_str_mv |
Prostate cancer Localization CsPCa lesion Bp-MRI Multimodal |
description |
El cáncer de próstata es el segundo cáncer con mayor incidencia en hombres a nivel mundial. En Colombia, por ejemplo, en los últimos 20 años la tasa promedio de defunción fue de alrededor de 11.6 por cada 100 mil habitantes. Hoy en día, el estudio de lesiones prostáticas mediante resonancia magnética biparamétrica es un criterio estándar para la detección y diagnóstico del cáncer de próstata. Este examen incluso se realiza en etapas previas a la biopsia. Sin embargo, la localización de lesiones en estas imágenes sigue siendo subjetiva y su caracterización reporta bajos niveles de sensibilidad. Es por ello que los mecanismos computacionales han evolucionado como herramientas claves para la localización y diagnóstico del cáncer de próstata directamente sobre estudios bp-MRI. En este trabajo se desarrolló una herramienta de aprendizaje profundo multimodal para localizar lesiones prostáticas. La arquitectura desarrollada, integra una representación basada en YOLO (You Only Look Once), ajustándose específicamente respecto a la tarea de localización y produciendo una representación para las lesiones más probables, complementada además, con una rama dedicada a la segmentación de lesiones. El método desarrollado utilizó 1280 cortes de bp-MRI , alcanzando una precisión de 0,89 y exhaustividad de 0,48. Así mismo, el método logró una precisión-promedio AP 0.5 de 0,69. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-05-17T11:57:53Z |
dc.date.available.none.fl_str_mv |
2024-05-17T11:57:53Z |
dc.date.created.none.fl_str_mv |
2024-05-14 |
dc.date.issued.none.fl_str_mv |
2024-05-14 |
dc.type.local.none.fl_str_mv |
Tesis/Trabajo de grado - Monografía - Pregrado |
dc.type.hasversion.none.fl_str_mv |
http://purl.org/coar/version/c_b1a7d7d4d402bcce |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
https://noesis.uis.edu.co/handle/20.500.14071/42410 |
dc.identifier.instname.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.reponame.none.fl_str_mv |
Universidad Industrial de Santander |
dc.identifier.repourl.none.fl_str_mv |
https://noesis.uis.edu.co |
url |
https://noesis.uis.edu.co/handle/20.500.14071/42410 https://noesis.uis.edu.co |
identifier_str_mv |
Universidad Industrial de Santander |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.license.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO) |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.coar.none.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.accessrights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.none.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO) http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Industrial de Santander |
dc.publisher.faculty.none.fl_str_mv |
Facultad de Ingeníerias Fisicomecánicas |
dc.publisher.program.none.fl_str_mv |
Ingeniería de Sistemas |
dc.publisher.school.none.fl_str_mv |
Escuela de Ingeniería de Sistemas e Informática |
publisher.none.fl_str_mv |
Universidad Industrial de Santander |
institution |
Universidad Industrial de Santander |
bitstream.url.fl_str_mv |
https://noesis.uis.edu.co/bitstreams/6bd439ad-a5d5-4d65-b851-dd48775dd784/download https://noesis.uis.edu.co/bitstreams/0aede069-fa41-4f09-8811-362eaeded20a/download https://noesis.uis.edu.co/bitstreams/4c138264-0b71-4e97-9717-d98d5f4df7ee/download https://noesis.uis.edu.co/bitstreams/925ad0dc-f7a9-4903-b665-5a57e8ccb8a1/download |
bitstream.checksum.fl_str_mv |
f1b4e52605179af7d68822c171cfc391 bd076a9e9784655778f1ebaa87b93114 e0b744d6ceed53a80d82a561fea85cdb d6298274a8378d319ac744759540b71b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
DSpace at UIS |
repository.mail.fl_str_mv |
noesis@uis.edu.co |
_version_ |
1814095182748975104 |
spelling |
Atribución-NoComercial-SinDerivadas 2.5 Colombia (CC BY-NC-ND 2.5 CO)info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)Martínez Carrillo, FabioOlmos Rojas, Juan AndrésGonzález Guerrero, Camilo EduardoGonzález Gómez, Andrés LeonardoRueda Chacón, Hoover Fabián2024-05-17T11:57:53Z2024-05-17T11:57:53Z2024-05-142024-05-14https://noesis.uis.edu.co/handle/20.500.14071/42410Universidad Industrial de SantanderUniversidad Industrial de Santanderhttps://noesis.uis.edu.coEl cáncer de próstata es el segundo cáncer con mayor incidencia en hombres a nivel mundial. En Colombia, por ejemplo, en los últimos 20 años la tasa promedio de defunción fue de alrededor de 11.6 por cada 100 mil habitantes. Hoy en día, el estudio de lesiones prostáticas mediante resonancia magnética biparamétrica es un criterio estándar para la detección y diagnóstico del cáncer de próstata. Este examen incluso se realiza en etapas previas a la biopsia. Sin embargo, la localización de lesiones en estas imágenes sigue siendo subjetiva y su caracterización reporta bajos niveles de sensibilidad. Es por ello que los mecanismos computacionales han evolucionado como herramientas claves para la localización y diagnóstico del cáncer de próstata directamente sobre estudios bp-MRI. En este trabajo se desarrolló una herramienta de aprendizaje profundo multimodal para localizar lesiones prostáticas. La arquitectura desarrollada, integra una representación basada en YOLO (You Only Look Once), ajustándose específicamente respecto a la tarea de localización y produciendo una representación para las lesiones más probables, complementada además, con una rama dedicada a la segmentación de lesiones. El método desarrollado utilizó 1280 cortes de bp-MRI , alcanzando una precisión de 0,89 y exhaustividad de 0,48. Así mismo, el método logró una precisión-promedio AP 0.5 de 0,69.PregradoIngeniero de SistemasProstate cancer is the second most common cancer in men worldwide, with an incidence rate of approximately 11.6 per 100,000 inhabitants in Colombia over the last 20 years. Currently, the detection and diagnosis of prostate cancer involves studying prostate lesions using biparametric magnetic resonance imaging, which is often performed before biopsy. However, the localization of lesions in these images is subjective, and their characterization reports low levels of sensitivity. Computational mechanisms have become essential tools for localizing and diagnosing prostate cancer on bp-MRI studies. In this work, we developed a multimodal deep learning tool to localize prostate lesions. The architecture integrates a representation based on YOLO (You Only Look Once), specifically adjusted for the localization task, which produces a representation for the most likely lesions. Additionally, there is a branch dedicated to lesion segmentation. The developed method involved 1280 bpMRI slices and achieved a positive predictive value of 0.9 and a hit rate of 0.48. Additionally, the method reached an average precision AP 0.5 of 0.69.0000-0003-3453-8303application/pdfspaUniversidad Industrial de SantanderFacultad de Ingeníerias FisicomecánicasIngeniería de SistemasEscuela de Ingeniería de Sistemas e InformáticaCáncer de próstataLocalizaciónLesión csPCaBp-MRIMultimodalProstate cancerLocalizationCsPCa lesionBp-MRIMultimodalLOCALIZACIÓN DE LESIONES RELACIONADAS CON EL CÁNCER DE PRÓSTATA SOBRE SECUENCIAS MULTIMODALES BP-MRILOCALIZATION OF PROSTATE CANCER-RELATED LESIONS ON MULTIMODAL BP-MRI SEQUENCESTesis/Trabajo de grado - Monografía - Pregradohttp://purl.org/coar/version/c_b1a7d7d4d402bccehttp://purl.org/coar/resource_type/c_7a1fORIGINALDocumento.pdfDocumento.pdfapplication/pdf4037349https://noesis.uis.edu.co/bitstreams/6bd439ad-a5d5-4d65-b851-dd48775dd784/downloadf1b4e52605179af7d68822c171cfc391MD51Carta de autorización.pdfCarta de autorización.pdfapplication/pdf81169https://noesis.uis.edu.co/bitstreams/0aede069-fa41-4f09-8811-362eaeded20a/downloadbd076a9e9784655778f1ebaa87b93114MD52Nota de proyecto.pdfNota de proyecto.pdfapplication/pdf240211https://noesis.uis.edu.co/bitstreams/4c138264-0b71-4e97-9717-d98d5f4df7ee/downloade0b744d6ceed53a80d82a561fea85cdbMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82237https://noesis.uis.edu.co/bitstreams/925ad0dc-f7a9-4903-b665-5a57e8ccb8a1/downloadd6298274a8378d319ac744759540b71bMD5420.500.14071/42410oai:noesis.uis.edu.co:20.500.14071/424102024-05-17 06:57:56.826http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessopen.accesshttps://noesis.uis.edu.coDSpace at UISnoesis@uis.edu.coRWwgc3VzY3JpdG8gQVVUT1Ig4oCTIEVTVFVESUFOVEUsIGlkZW50aWZpY2FkbyBjb21vIGFwYXJlY2UgYWwgcGllIGRlIG1pIGZpcm1hLCBhY3R1YW5kbyBlbiBub21icmUgcHJvcGlvLCB5IGVuIG1pIGNhbGlkYWQgZGUgYXV0b3IgZGVsIHRyYWJham8gZGUgZ3JhZG8sIGRlbCB0cmFiYWpvIGRlIGludmVzdGlnYWNpw7NuLCBvIGRlIGxhIHRlc2lzIGRlbm9taW5hZGEgY29tbyBzZSBlc3BlY2lmaWNhIGVuIGVsIGNhbXBvIOKAmFTDrXR1bG/igJksIHBvciBtZWRpbyBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIGF1dG9yaXpvIGEgbGEgVU5JVkVSU0lEQUQgSU5EVVNUUklBTCBERSBTQU5UQU5ERVIsIHBhcmEgcXVlIGVuIGxvcyB0w6lybWlub3MgZXN0YWJsZWNpZG9zIGVuIGxhIExleSAyMyBkZSAxOTgyLCBsYSBMZXkgNDQgZGUgMTk5MywgZWwgRGVjcmV0byA0NjAgZGUgMTk5NSwgbGEgRGVjaXNpw7NuIEFuZGluYSAzNTEgZGUgMTk5MywgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBkZXJlY2hvcyBkZSBhdXRvciwgcmVhbGljZSBsYSByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuIHDDumJsaWNhLCBlZGljacOzbiwgZGlzdHJpYnVjacOzbiBiYWpvIGxhIG1vZGFsaWRhZCBkZSBhbHF1aWxlciwgcHLDqXN0YW1vIHDDumJsaWNvIG8gaW1wb3J0YWNpw7NuIGVuIGZvcm1hdG8gaW1wcmVzbyB5IGRpZ2l0YWwsIGxhIHRyYW5zZm9ybWFjacOzbiwgbGEgcHVibGljYWNpw7NuIGNvbW8gb2JyYSBsaXRlcmFyaWEsIGxpYnJvIGVsZWN0csOzbmljbyAoZS1Cb29rKSBvIHJldmlzdGEgZWxlY3Ryw7NuaWNhLCBpbmNsdXllbmRvIGxhIHBvc2liaWxpZGFkIGRlIGRpc3RyaWJ1aXJsYSBwb3IgbWVkaW9zIHRyYWRpY2lvbmFsZXMgbyBwb3IgSW50ZXJuZXQgYSBjdWFscXVpZXIgdMOtdHVsbyAgcG9yIGxhIFVuaXZlcnNpZGFkIHkgY29uIHF1aWVuIHRlbmdhIGNvbnZlbmlvIHBhcmEgZWxsbywgaW5jbHV5ZW5kbyBsYSBwb3NpYmlsaWRhZCBkZSBoYWNlciBhZGFwdGFjaW9uZXMsIGFjdHVhbGl6YWNpb25lcyB5IHRyYWR1Y2Npb25lcyBlbiB0b2RvcyBsb3MgaWRpb21hczsgbGEgaW5jb3Jwb3JhY2nDs24gYSB1bmEgY29sZWNjacOzbiBvIGNvbXBpbGFjacOzbiwgbGEgdHJhZHVjY2nDs24sIGZpamFjacOzbiBlbiBmb25vZ3JhbWEsIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBmb3JtYXRvIGFuw6Fsb2dvLCBkaWdpdGFsLCBhdWRpb3Zpc3VhbCwgbWFnbsOpdGljbywgeSwgZW4gZ2VuZXJhbCwgbG9zIGZvcm1hdG9zIGVuICBxdWUgc2UgcHVlZGEgcmVwcm9kdWNpciB5IGNvbXVuaWNhciAgZGUgbWFuZXJhIHRvdGFsIHkgcGFyY2lhbCBtaSB0cmFiYWpvIGRlIGdyYWRvIG8gdGVzaXMuIAoKTGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBzZSBoYWNlIGV4dGVuc2l2YSBhIGxhcyBmYWN1bHRhZGVzIHkgZGVyZWNob3MgZGUgdXNvIHNvYnJlIGxhIG9icmEgZW4gZm9ybWF0byBvIHNvcG9ydGUgYW7DoWxvZ28sIGZvcm1hdG8gdmlydHVhbCwgZWxlY3Ryw7NuaWNvLCBkaWdpdGFsLCDDs3B0aWNvLCB1c28gZW4gcmVkLCBJbnRlcm5ldCwgZXh0cmFuZXQsIGludHJhbmV0LCBlbnRyZSBvdHJvcyBmb3JtYXRvcyB5IG1lZGlvcy4KCkVsIEFVVE9SIOKAkyBFU1RVRElBTlRFLCBtYW5pZmllc3RhIHF1ZSBsYSBvYnJhIG9iamV0byBkZSBsYSBwcmVzZW50ZSBhdXRvcml6YWNpw7NuIGVzIG9yaWdpbmFsIHkgbGEgcmVhbGl6w7Mgc2luIHZpb2xhciBvIHVzdXJwYXIgZGVyZWNob3MgZGUgYXV0b3IgZGUgdGVyY2Vyb3MsIHBvciBsbyB0YW50bywgbGEgb2JyYSBlcyBkZSBzdSBleGNsdXNpdmEgYXV0b3LDrWEgeSBkZXRlbnRhIGxhIHRpdHVsYXJpZGFkIHNvYnJlIGxhIG1pc21hLiAgCgpQYXJhIHRvZG9zIGxvcyBlZmVjdG9zIGxhIFVOSVZFUlNJREFEIElORFVTVFJJQUwgREUgU0FOVEFOREVSIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmU7IGVuIGNvbnNlY3VlbmNpYSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBlbiBjdWVzdGnDs24sIEVsIEFVVE9SIOKAkyBFU1RVRElBTlRFLCBhc3VtaXLDoSB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCwgeSBzYWxkcsOhIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zLgo= |