Modelo adaptativo multivariable de handoff espectral para incrementar el desempeño en redes móviles de radio cognitiva

El handoff espectral, en las redes de radio cognitiva, ocurre cuando el usuario secundario debe dejar el canal de frecuencia que está utilizando y continuar su comunicación en otra oportunidad espectral. Este proceso es un aspecto clave para garantizar una adecuada calidad de servicio y mejorar el d...

Full description

Autores:
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Distrital Francisco José de Caldas
Repositorio:
RIUD: repositorio U. Distrital
Idioma:
spa
OAI Identifier:
oai:repository.udistrital.edu.co:11349/33023
Acceso en línea:
http://hdl.handle.net/11349/33023
Palabra clave:
Redes de radio cognitiva
Modelo adaptativo multivariable
Algoritmos de toma de decisiones
Métricas de evaluación
Espectro electromagnético
Espectro radioeléctrico
Telecomunicaciones
Algoritmos
Cognitive radio networks
Multivariable adaptive model
Decision making algorithms
Evaluation Metrics
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id UDISTRITA2_fcf8e1c444242669301f994a7412a98b
oai_identifier_str oai:repository.udistrital.edu.co:11349/33023
network_acronym_str UDISTRITA2
network_name_str RIUD: repositorio U. Distrital
repository_id_str
dc.title.spa.fl_str_mv Modelo adaptativo multivariable de handoff espectral para incrementar el desempeño en redes móviles de radio cognitiva
dc.title.titleenglish.spa.fl_str_mv Adaptive multivariate spectral handoff model to increase performance in mobile cognitive radio networks
title Modelo adaptativo multivariable de handoff espectral para incrementar el desempeño en redes móviles de radio cognitiva
spellingShingle Modelo adaptativo multivariable de handoff espectral para incrementar el desempeño en redes móviles de radio cognitiva
Redes de radio cognitiva
Modelo adaptativo multivariable
Algoritmos de toma de decisiones
Métricas de evaluación
Espectro electromagnético
Espectro radioeléctrico
Telecomunicaciones
Algoritmos
Cognitive radio networks
Multivariable adaptive model
Decision making algorithms
Evaluation Metrics
title_short Modelo adaptativo multivariable de handoff espectral para incrementar el desempeño en redes móviles de radio cognitiva
title_full Modelo adaptativo multivariable de handoff espectral para incrementar el desempeño en redes móviles de radio cognitiva
title_fullStr Modelo adaptativo multivariable de handoff espectral para incrementar el desempeño en redes móviles de radio cognitiva
title_full_unstemmed Modelo adaptativo multivariable de handoff espectral para incrementar el desempeño en redes móviles de radio cognitiva
title_sort Modelo adaptativo multivariable de handoff espectral para incrementar el desempeño en redes móviles de radio cognitiva
dc.contributor.orcid.none.fl_str_mv Páez-Parra, Ingrid Patricia [0009-0008-1033-8714]
Giral Ramírez, Diego Armando [0000-0001-9983-4555]
Hernández Suárez, César Augusto [0000-0001-9409-8341]
dc.subject.spa.fl_str_mv Redes de radio cognitiva
Modelo adaptativo multivariable
Algoritmos de toma de decisiones
Métricas de evaluación
topic Redes de radio cognitiva
Modelo adaptativo multivariable
Algoritmos de toma de decisiones
Métricas de evaluación
Espectro electromagnético
Espectro radioeléctrico
Telecomunicaciones
Algoritmos
Cognitive radio networks
Multivariable adaptive model
Decision making algorithms
Evaluation Metrics
dc.subject.lemb.spa.fl_str_mv Espectro electromagnético
Espectro radioeléctrico
Telecomunicaciones
Algoritmos
dc.subject.keyword.spa.fl_str_mv Cognitive radio networks
Multivariable adaptive model
Decision making algorithms
Evaluation Metrics
description El handoff espectral, en las redes de radio cognitiva, ocurre cuando el usuario secundario debe dejar el canal de frecuencia que está utilizando y continuar su comunicación en otra oportunidad espectral. Este proceso es un aspecto clave para garantizar una adecuada calidad de servicio y mejorar el desempeño en las comunicaciones del usuario secundario. Este libro de investigación tiene por objetivo presentar una propuesta de modelo adaptativo multivariable de handoff espectral para redes móviles de radio cognitiva. Para lo anterior, se desarrollaron tres algoritmos para la toma de decisiones durante un handoff espectral, con diferentes enfoques: difuso, realimentado y predictivo; estos conforman el modelo adaptativo multivariable de handoff espectral propuesto. Para evaluar el nivel de desempeño de los algoritmos desarrollados se realizó un análisis comparativo entre estos y los algoritmos de handoff espectral más relevantes en la literatura actual. A diferencia de los trabajos relacionados, la evaluación comparativa se validó a través de una traza de datos reales de ocupación espectral capturados en la banda de frecuencia GSM y Wi-Fi, que modelan el comportamiento real de los usuarios primarios. En la fase de validación, se propusieron ocho escenarios de evaluación, al considerar, dos tipos de redes: GSM y Wi-Fi, dos clases de aplicaciones: tiempo-real y mejor-esfuerzo, dos niveles de tráfico: alto y bajo, y diez métricas de evaluación.
publishDate 2017
dc.date.created.none.fl_str_mv 2017-04
dc.date.accessioned.none.fl_str_mv 2023-11-30T21:34:54Z
dc.date.available.none.fl_str_mv 2023-11-30T21:34:54Z
dc.type.spa.fl_str_mv book
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2f33
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/book
dc.identifier.isbn.spa.fl_str_mv 978-958-5434-01-1
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11349/33023
dc.identifier.editorial.spa.fl_str_mv Universidad Distrital Francisco José de Caldas. Centro de Investigaciones y Desarrollo Científico
identifier_str_mv 978-958-5434-01-1
Universidad Distrital Francisco José de Caldas. Centro de Investigaciones y Desarrollo Científico
url http://hdl.handle.net/11349/33023
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofseries.spa.fl_str_mv Espacios
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv pdf
institution Universidad Distrital Francisco José de Caldas
dc.source.bibliographicCitation.spa.fl_str_mv Abbas, N., Nasser, Y., & Ahmad, K. El. (2015). Recent advances on artificial intelligence and learning techniques in cognitive radio networks. EUR ASIP Journal on Wireless Communications and Networking, (1), 1-20.
Aguilar, J., & Navarro, A. (2011). Radio cognitiva - estado del arte. Sistemas y Telemática, 9(16), 31-53.
Ahmed, A., Boulahia, L. M., & Gaïti, D. (2014). Enabling vertical handover decisions in heterogeneous wireless networks: A state-of-the-art and a classification. IEEE Communications Surveys and Tutorials, 16(2), 776-811.
Ahmed, E., Gani, A., Abolfazli, S., Yao, L. J., & Khan, S. U. (2016). Chan nel assignment algorithms in cognitive radio networks: Taxonomy, open issues, and challenges. IEEE Communications Surveys & Tutorials, 18(1), 795-823.
Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. En International Symposium on Information Theory (pp. 267-281). Academinai Kiado, Budapest.
Akin, S., & Fidler, M. (2016). On the transmission rate strategies in cognitive radios. IEEE Transactions on Wireless Communications, 15(3), 2335-2350.
Akter, L., Natarajan, B., & Scoglio, C. (2008). Modeling and forecasting se condary user activity in cognitive radio networks. En 17th International Conference on Computer Communications and Networks. August 3-7, 2008. (pp. 1-6). St. Thomas, US Virgin Islands.
Akyildiz, I. F., & Li, Y. (2006). OCRA: OFDM-based cognitive radio networks. Broadband and Wireless Networking Laboratory Technical Report.
Akyildiz, I. F., Lee, W.-Y., & Chowdhury, K. R. (2009). CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks, 7(5), 810-836.
Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communica tions Magazine, 46(4), 40-48.
Akyildiz, I. F., Won-Yeol, L., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127-2159.
Almasaeid, H. M., & Kamal, A. E. (2010). Receiver-based channel allocation for wireless cognitive radio mesh networks. In IEEE Symposium on New Frontiers in Dynamic Spectrum (pp. 1-10). 6 Apr - 09 Apr 2010. Singapur, Singapur.
Alnwaimi, G., Arshad, K., & Moessner, K. (2011). Dynamic spectrum allo cation algorithm with interference management in co-existing networks. IEEE Communications Letters, 15(9), 932-934.
Alsarhan, A., & Agarwal, A. (2009). Cluster-based spectrum management using cognitive radios in wireless mesh network. En Internatonal Conferen ce on Computer Communications and Networks (pp. 1-6). August 3–6, 2009. San Francisco, C.A., Estados Unidos.
Al-Surmi, I., Othman, M., & Mohd Ali, B. (2012). Mobility management for IP-based next generation mobile networks: Review, challenge and pers pective. Journal of Network and Computer Applications, 35(1), 295-315.
Anderson, T. W. (1980). Maximum likelihood estimation for vector autoregressive moving-average models, directions in time series. Institute of Mathematical Statistics. Stanford University, Stanford, California, Estados Unidos.
Bâlan, I. M., Moerman, I., Sas, B., & Demeester, P. (2012). Signalling mini mizing handover parameter optimization algorithm for LTE networks. Wireless Networks, 18(3), 295-306.
Bari, F., & Leung, V. (2007). Application of ELECTRE to network selection in a hetereogeneous wireless network environment. En IEEE Wireless Communications and Networking Conference (pp. 3810-3815). 11-15 march 2007. Hong Kong, China.
Bennai, M., Sydor, J., & Rahman, M. (2010). Automatic channel selection for cognitive radio systems. En IEEE International Symposium on Personal Indoor and Mobile Radio Communications (pp. 1831-1835). IEEE. 26 Sep - 30 Sep 2010. Estambul, Turquia.
Bkassiny, M., Li, Y., & Jayaweera, S. K. (2013). A survey on machine-lear ning techniques in cognitive radios. IEEE Communications Surveys and Tu torials, 15(3), 1136-1159.
Bolstad, W. M. (2007). Introduction to bayesian statistics. John Wiley and Sons. New Jersey, Estados Unidos.
Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society, 26(2), 211-252.
Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis: Forecasting and control (Revised Ed). Oakland, California: Holden-Day.
Brillinger, D. R. (2001). Time series: data analysis and theory. Oakland, Califor nia: Holden-Day.
Brockwell, P. J. (2001). On continuous-time ARMA processes. En Handbook of statistics (pp. 249-276). Ámsterdam: Elsevier.
Brockwell, P. J., & Davis, R. A. (1991). Time series: theory and methods. Nueva York: Springer Verlag.
Brockwell, P. J., & Davis, R. A. (2002). Introduction to time series and forecasting (2.a ed.). Nueva York: Springer.
Büyüközkan, G., & Çifçi, G. (2012). A combined fuzzy AHP and fuzzy TOP SIS based strategic analysis of electronic service quality in healthcare industry. Expert Systems with Applications, 39(3), 2341-2354.
Büyüközkan, G., Kahraman, C., & Ruan, D. (2004). A fuzzy multi-criteria decision approach for software development strategy selection. Interna tional Journal of General Systems, 33(2-3), 259-280.
Byun, S. S., Balasingham, I., & Liang, X. (2008). Dynamic spectrum allocation in wireless cognitive sensor networks: Improving fairness and energy efficiency. En IEEE Vehicular Technology Conference. 21-24 Sept. 2008, Calgary, Canada.
Cárdenas-Juárez, M., Díaz-Ibarra, M. A., Pineda-Rico, U., Arce, A., & Ste vens-Navarro, E. (2016). On spectrum occupancy measurements at 2.4 GHz ISM band for cognitive radio applications. En International Confe rence on Electronics, Communications and Computers (pp. 25-31). 24 Feb - 26 Feb 2016, Cholula, México.
Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649-655. doi:http:// doi.org/10.1016/0377-2217(95)00300-2.
Chen, D., Zhang, Q., & Jia, W. (2008). Aggregation aware spectrum assign ment in cognitive ad-hoc networks. En International Conference on Cogniti ve Radio Oriented Wireless Networks and Communications. 15 May - 17 May 2008, Singapur, Singapur.
Chen, T., Zhang, H., Maggio, G. M., & Chlamtac, I. (2007). CogMesh: A cluster-based cognitive radio network. En IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 168-178). 18 Apr - 20 Apr 2007, Dublin, Irlanda.
Chen, Y., & Hee-Seok, O. (2016). A survey of measurement-based spectrum occupancy modeling for cognitive radios. IEEE Communications Surveys & Tutorials, 18(1), 848-859.
Cheng, X., & Jiang, M. (2011). Cognitive radio spectrum assignment based on artificial bee colony algorithm. En IEEE International Conference on Communication Technology (pp. 161-164).
Cho, J., & Lee, J. (2013). Development of a new technology product eva luation model for assessing commercialization opportunities using Del phi method and fuzzy AHP approach. Expert Systems with Applications, 40(13), 5314-5330.
Chou, C. T., Shankar, S., Kim, H., & Shin, K. G. (2007). What and how much to gain by spectrum agility? IEEE Journal on Selected Areas in Com munications, 25(3), 576-587.
Choudhary, D., & Shankar, R. (2012). An STEEP-fuzzy AHP-TOPSIS fra mework for evaluation and selection of thermal power plant location: A case study from India. Energy, 42(1), 510-521.
Christian, I., Moh, S., Chung, I., & Lee, J. (2012). Spectrum mobility in cog nitive radio networks. IEEE Communications Magazine, 50(6), 114-121
Correa, E. (2004). Series de tiempo: conceptos básicos. Medellín: Universidad Nacional de Colombia.
Cortés, J. (2011). Metodología para la implementación de tecnologías de la informa ción y las comunicaciones TIC’s para soportar una estrategia de cadena de suminis tro esbelta (tesis de maestría). Universidad Nacional de Colombia, Bogotá.
Csurgai-Horvath, L., & Bito, J. (2011). Primary and secondary user activi ty models for cognitive wireless network. En International Conference on Telecommunications (pp. 301-306). 08 May - 11 May 2011, Ayia Napa, Cyprus.
Dadallage, S., Yi, C., & Cai, J. (2016). Joint beamforming, power and channel allocation in multi-user and multi-channel underlay MISO cognitive ra dio networks. IEEE Transactions on Vehicular Technology, 65(5), 3349-3359
Dadios, E. P. (2012). Fuzzy logic: Algorithms, techniques and implementations. InTech. Rijeka, Croatia.
Delgado, M., & Rodríguez, B. (2016). Opportunities for a more efficient use of the spectrum based in cognitive radio. IEEE Latin America Transactions, 14(2), 610-616.
Del-Ser, J., Matinmikko, M., Gil-López, S., & Mustonen, M. (2010). A novel Harmony search based spectrum allocation technique for cognitive radio networks. En International Symposium on Wireless Communication Systems (pp. 233-237). 19 Sep - 22 Sep 2010, York, United Kingdom.
Devore, J. L. (2001). Probabilidad y estadística para ingeniería y ciencias (5.a ed.). México: Thomson.
Ding, L., Melodia, T., Batalama, S. N., Matyjas, J. D., & Medley, M. J. (2010). Cross-layer routing and dynamic spectrum allocation in cognitive radio ad hoc networks. IEEE Transactions on Vehicular Technology, 59(4), 1969- 1979.
Duan, J., & Li, Y. (2011). An optimal spectrum handoff scheme for cognitive radio mobile ad hoc networks. Advances in Electrical and Computer Enginee ring, 11(3), 11-16.
ETSI. (2012). 3GPP TS 23.107 version 11.0.0 Release 11.
Federal Communications Commission. (2003). Notice of proposed rulemaking and order. Washington, D.C.: autor.
Ferber, J. (1999). Multi-agent systems: An introduction to distributed artificial intel ligence. Addison-Wesley. Boston, MA, Estados Unidos
Ferro, R. A., Pedraza, L. F., & Hernández, C. (2011). Maximización del throughput en una red de radio cognitiva basado en la probabilidad de falsa alarma. Tecnura, 15(30), 64-70.
Fonte, J. P., & Mora, F. E. (2008, June). Implementación de protocolos de capar de enlace de datos en los simuladores Omnet++ Y Ns-2. Quito: EPN..
Forero, F. (2012). Detección de códigos de usuarios primarios para redes de radio cognitiva en un canal de acceso DCMA. Colombia. Bogotá, Colombia: Uni versidad Distrital Francisco José de Caldas.
Fraser, A. M. (2008). Hidden Markov models and dynamical systems. SIAM. (So ciety for Industrial and Applied Mathematics). Filadelfia, Estados Unidos.
Fu, J., Wu, J., Zhang, J., Ping, L., & Li, Z. (2010, October). A novel AHP and GRA based handover decision mechanism in heterogeneous wire less networks. En International Conference on Information Computing and Applications (pp. 213-220). Tangshan, China, October 15-18, 2010.
Fudenberg, D., & Tirole, J. (1991). Game Theory. MIT Press. Recuperado de https://books.google.com.co/books?id=pFPHKwXro3QC
Gallardo-Medina, J. R., Pineda-Rico, U., & Stevens-Navarro, E. (2009). VIKOR method for vertical handoff decision in beyond 3G wireless net works. En International Conference on Electrical Engineering, Computing Science and Automatic Control. 10 Nov - 13 Nov 2009, Toluca, México.
Garrett, M. W., & Willinger, W. (1994). Analysis, modeling and generation of self-similar VBR video traffic. En ACM Sigcomm (pp. 269-280). En ACM SIGCOMM computer communication review, 24(4), (pp. 269- 280). ACM.
Gavrilovska, L., Atanasovski, V., Macaluso, I., & Dasilva, L. A. (2013). Lear ning and reasoning in cognitive radio networks. IEEE Communications Surveys and Tutorials, 15(4), 1761-1777.
Giupponi, L., & Pérez-Neira, A. I. (2008). Fuzzy-based spectrum handoff in cognitive radio networks. En International Conference on Cognitive Radio Oriented Wireless Networks and Communications. 15 May - 17 May 2008, Singapur, Singapur
Gódor, G., & Détári, G. (2007). Novel network selection algorithm for va rious wireless network interfaces. En IST Mobile and Wireless Communica tions Summit (pp. 1-5). Budapest, Hungria 01 Jul - 05 Jul 2007.
Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Machine Learning, 3(2), 95-99.
Green, K. C., Armstrong, J. S., & Graefe, A. (2007). Methods to elicit fore casts from groups: Delphi and prediction markets compared. Social Scien ce Research Network, 8, 17-20.
Guerrero, V. M. (2003). Análisis estadístico de series de tiempo económicas (2.a ed.). México: Thomson.
Hamilton, J. D. (1994). Time series analysis. New Jersey: Princeton University Press.
Han, J., Kamber, M., & Pei, J. (2012). Data mining: concepts and techniques. Elsevier. San Francisco, CA, Estados Unidos.
Han, Z., & Liu, K. J. R. (2008). Resource allocation for wireless networks: basics, techniques, and applications. Reino Unido: Cambridge University Press. Cambridge, Reino Unido.
Harvey, A. C. (1993). Time series models. Pearson. New York, Estados Unidos.
Hasswa, A., Nasser, N., & Hassanein, H. (2006). Tramcar: A context-aware cross-layer architecture for next generation heterogeneous wireless net works. En IEEE International Conference on Communications (vol. 1, pp. 240-245). 11 Jun - 15 Jun 2006. Estambul, Turquia.
Haykin, S. (1998). Neural networks: A Comprehensive foundation (2.a ed.). Up per Saddle River, NJ, Estados Unidos: Prentice Hall PTR. Nueva Jersey, Estados Unidos.
He, A., Bae, K. K., Newman, T. R., Gaeddert, J., Kim, K., Menon, R., et al (2010). A survey of artificial intelligence for cognitive radios. IEEE Tran sactions on Vehicular Technology, 59(4), 1578-1592
Hernández, C., & Giral, D. (2015). Spectrum mobility analytical tool for cog nitive wireless networks. International Journal of Applied Engineering Re search, 10(21), 42265-42274
Hernández, C., Giral, D., & Páez, I. (2015a). Benchmarking of the perfor mance of spectrum mobility models in cognitive radio networks. Interna tional Journal of Applied Engineering Research (IJAER), 10(21)
Hernández, C., Giral, D., & Páez, I. (2015b). Hybrid algorithm for frequency channel selection in Wi-Fi networks. World Academy of Science, Enginee ring and Technology, 9(12), 1212-1215.
Hernández, C., Giral, D., & Santa, F. (2015). MCDM spectrum handover models for cognitive wireless networks. World Academy of Science, Engi neering and Technology, 9(10), 679-682
Hernández, C., Páez, I., & Giral, D. (2015). Modelo AHP-VIKOR para han doff espectral en redes de radio cognitiva. Tecnura, 19(45), 29-39
Hernández, C., Pedraza L. F., & Martínez F. (2016). Algoritmos para asigna ción de espectro en redes de radio cognitiva. Tecnura, 20(48)
Hernández, C., Pedraza, L. F., & Rodriguez-Colina, E. (2016). Fuzzy fee dback algorithm for the spectral handoff in cognitive radio networks. Re vista Facultad de Ingeniería Universidad de Antioquia, (80), 47-62.
Hernández, C., Salcedo, O., & Pedraza, L. F. (2009). An ARIMA model for forecasting Wi-Fi data network traffic values. Ingeniería e Investigación, 29(2), 65-69.
Hernández, C., Salgado, C., & Salcedo, O. (2013). Performance of multiva riable traffic model that allows estimating throughput mean values. Revista Facultad de Ingeniería Universidad de Antioquia, (67), 52-62. Hernández, C., Vasquez, H., & Páez, I. (2015). Proactive spectrum handoff model with time series prediction. International Journal of Applied Engineering Research (IJAER), 10(21), 42259-42264.
Hernández, C., Salgado, C., López, H., & Rodríguez-Colina, E. (2015). Mul tivariable algorithm for dynamic channel selection in cognitive radio networks. EURASIP Journal on Wireless Communications and Networking, 2015(1), 1-17.
Hernández-Guillen, J., Rodríguez-Colina, E., Marcelín-Jiménez, R., & Pas coe-Chalke, M. (2012). CRUAM-MAC: A novel cognitive radio MAC protocol for dynamic spectrum access. En IEEE Latin-America Conference on Communications (pp. 1-6). Ecuador: IEEE. Cuenca, Ecuador.
Hernández-Sampieri, R., Fernández-Collado, C., & Baptista, P. (2006). Meto dología de la investigación. McGraw-Hill. Ciudad de México.
Hong, M., Kim, J., Kim, H., & Shin, Y. (2008). An adaptive transmission scheme for cognitive radio systems based on interference temperature model. En IEEE Consumer Communications and Networking Conference (pp. 69-73). 10 Jan - 12 Jan 2008, Las Vegas, NV, Estados Unidos.
Hoven, N., Tandra, R., & Sahai, A. (2005). Some fundamental limits on cog nitive radio. Wireless Foundations EECS, University of California, Berkeley.
Höyhtyä, M., Mustonen, M., Sarvanko, H., Hekkala, A., Katz, M., Mäm melä, A., et al. (2008). Cognitive radio: An intelligent wireless communication system. Research Report VTT-R-02219-08.
Hübner, R. (2007). Strategic supply chain management in process industries: An application to specialty chemicals production network design (vol. 594). Sprin ger Science & Business Media. Berlin, Alemania.
IEEE COMSOC. (2008). IEEE Standard definitions and concepts for dynamic spectrum access: terminology relating to emerging wireless networks, system functionality, and spectrum management. IEEE Std 1900.1-2008.
IEEE Standards Coordinating Committee 41 on Dynamic Spectrum. (2008). 1900.1-2008 - IEEE standard definitions and concepts for dynamic spectrum access: terminology relating to emerging wireless networks, system functiona lity, and spectrum management. IEEE Standard 1900.1-2008. Recupera do de papers2://publication/uuid/ 6010BFFD-CE4E-4C69-A2B0- 0539E75F5422
Inwhee, J., Won-Tae, K., & Seokjoon, H. (2007). A network selection al gorithm considering power consumption in hybrid wireless networks. En International Conference on Computer Communications and Networks (pp. 1240-1243). 13 Aug - 16 Aug 2007, Honolulu, HI, Estados Unidos.
Issariyakul, T., Pillutla, L. S., & Krishnamurthy, V. (2009). Tuning radio re source in an overlay cognitive radio network for TCP: Greed isn’t good. IEEE Communications Magazine, 47(7), 57-63.
Jayaweera, S., & Christodoulou, C. (2011). Radiobots: architecture, algorithms and realtime reconfigurable antenna designs for autonomous, self-learning future cogni tive radios. Albuquerque, Nuevo Mexico: Universidad de Nuevo Mexico.
Ji, Z., & Liu, K. J. R. (2007). Cognitive radios for dynamic spectrum access - dynamic spectrum sharing: a game theoretical overview. IEEE Commu nications Magazine, 45(5), 88-94.
Jiang, C., Chen, Y., & Liu, K. J. R. (2014). Multi-channel sensing and access game: Bayesian social learning with negative network externality. IEEE Transactions on Wireless Communications, 13(4), 2176-2188.
Jiménez, G. (2015). Ventajas y desventajas de las simulaciones. Recuperado el 12 de agosto del 2015, de http://www.virtual.unal.edu.co/cursos/sedes/ manizales/4060015/Lecciones/ Capitulo VI/ventajas.htm
Kaleem, F. (2012). VHITS: vertical handoff initiation and target selection in a he terogeneous wireless network. (Tesis de doctorado). Universidad Internacio nal de Florida.
Kanodia, V., Sabharwal, A., & Knightly, E. (2004). MOAR: A multi-channel opportunistic auto-rate media access protocol for ad hoc networks. En IEEE International Conference on Broadband Networks (pp. 600-610). 25-29 Oct. 2004, San Jose, California, Estados Unidos.
Kassar, M., Kervella, B., & Pujolle, G. (2008). An overview of vertical han dover decision strategies in heterogeneous wireless networks. Computer Communications, 31(10), 2607-2620.
Kaya, T., & Kahraman, C. (2010). Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul. Energy, 35(6), 2517-2527.
Khan, A. R., Bilal, S. M., & Othman, M. (2012). A performance comparison of open source network simulators for wireless networks. En Internatio nal Conference on Control System, Computing and Engineering (pp. 34-38). 23 Nov. - 25 Nov. 201, 2Penang, Malasia.
Kibria, M. R., Jamalipour, A., & Mirchandani, V. (2005). A location aware three-step vertical handoff scheme for 4G/B3G networks. En Global Tele communications Conference (vol. 5, pp. 2752-2756). 28 Nov.- 2 Dec. 2005, St. Louis, Estados Unidos.
Kim, H., & Shin, K. G. (2008). Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks. IEEE Transactions on Mobile Computing, 7(5), 533-545.
Kim, W., Kassler, A. J., Di Felice, M., & Gerla, M. (2010). Urban-X: Towards distributed channel assignment in cognitive multi-radio mesh networks. En IFIP Wireless Days. 20-22 Oct. 2010, Venice, Italia.
Köksal, M. (2008). A survey of network simulators supporting wireless networks. Middle East Technical University. Ankara, Turquia.
Kondareddy, Y. R., Agrawal, P., & Sivalingam, K. (2008). Cognitive radio network setup without a common control channel. En IEEE Military Communications Conference. 16 Nov - 19 Nov 2008, San Diego, CA, Esta dos Unidos.
Kumar, K., Prakash, A., & Tripathi, R. (2016). Spectrum handoff in cogniti ve radio networks: A classification and comprehensive survey. Journal of Network and Computer Applications, 61, 161-188.
Lahby, M., Cherkaoui, L., & Adib, A. (2013). Hybrid network selection stra tegy by using M-AHP/E-TOPSIS for heterogeneous networks. En Inter national Conference on Intelligent Systems: Theories and Applications (pp. 1-6). May 8, 2013 - May 9, 2013, Rabat, Marruecos.
Lahby, M., Leghris, C., & Adib, A. (2011). A hybrid approach for network selection in heterogeneous multi-access environments. En International Conference on New Technologies, Mobility and Security (pp. 1-5). 7 Feb - 10 Feb 2011, Paris, Francia.
Lee, W. Y., & Akyildiz, I. F. (2008). Optimal spectrum sensing framework for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(10), 3845-3857.
Lertsinsrubtavee, A., & Malouch, N. (2016). Hybrid spectrum sharing through adaptive spectrum handoff and selection. IEEE Transactions on Mobile Computing, 15(11), 2781-2793.
Li, X., & Zekavat, S. A. (2008). Traffic pattern prediction and performan ce investigation for cognitive radio systems. En IEEE Wireless Communi cations and Networking Conference (pp. 894-899). March 31 2008-April 3 2008., Las Vegas, NV, Estados Unidos.
Liu, F., Xu, Y., Guo, X., Zhang, W., Zhang, D., & Li, C. (2013). A spec trum handoff strategy based on channel reservation for cognitive radio network. En International Conference on Intelligent System Design and Engineering Applications (pp. 179-182). 6-7 November 2013, Zhangjiajie, Hunan, China.
Liu, S. M., Pan, S., Mi, Z. K., Meng, Q. M., & Xu, M. H. (2010). A simple additive weighting vertical handoff algorithm based on SINR and AHP for heterogeneous wireless networks. En International Conference on Intelli gent Computation Technology and Automation (vol. 1, pp. 347-350). 11 May - 12 May 2010, Changsha, China.
Liu, Y., & Tewfik, A. (2014). Primary traffic characterization and secondary transmissions. IEEE Transactions on Wireless Communications, 13(6), 3003- 3016.
López, D. A., García, N. Y., & Herrera, J. F. (2015). Desarrollo de un modelo predictivo para la estimación del comportamiento de variables en una infraestructura de red. Información Tecnológica, 26(5), 143-154.
López, D. A., Trujillo, E. R., & Gualdrón, O. E. (2015). Elementos funda mentales que Componen la radio cognitiva y asignación de bandas es pectrales. Información Tecnológica, 26(1), 23-40.
Ma, L., Shen, C. C., & Ryu, B. (2007). Single-radio adaptive channel algo rithm for spectrum agile wireless ad hoc networks. En IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 547- 558). 18 Apr - 20 Apr 2007, Dublin, Irlanda.
Marinho, J., & Monteiro, E. (2012). Cognitive radio: Survey on communica tion protocols, spectrum decision issues, and future research directions. Wireless Networks, 18(2), 147-164.
Masonta, M. T., Mzyece, M., & Ntlatlapa, N. (2013). Spectrum decision in cognitive radio networks: a survey. IEEE Communications Surveys & Tuto rials, 15(3), 1088-1107.
Matinmikko, M., Del-Ser, J., Rauma, T., & Mustonen, M. (2013). Fuzzy logic based framework for spectrum availability assessment in cognitive radio systems. IEEE Journal on Selected Areas in Communications, 31(11), 2173-2184.
Matlab. (2015). Matlab getting starte guide. Recuperado el 19 de agosto del 2015, de http://www.mathworks.com/academia/student_version/lear nmatlab.pdf
Mehbodniya, A., Kaleem, F., Yen, K. K., & Adachi, F. (2012). A fuzzy MADM ranking approach for vertical mobility in next generation hybrid networks. En International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (pp. 262-267). 03 Oct - 05 Oct 2012, St. Petersburg, Rusia.
Méndez, L., Rodríguez-Colina, E., & Medina, C. (2013). Toma de decisiones basadas en el algoritmo de Dijkstra’s. Una solución para radio cognitiva. Redes de Ingeniería, 4(2), 35-42.
Mir, U., Merghem-Boulahia, L., Esseghir, M., & Gaïti, D. (2011). Dynamic spectrum sharing for cognitive radio networks using multiagent system. En IEEE Conference on Consumer Communications and Networking (pp. 658- 663). 9 Jan - 12 Jan 2011, Las Vegas, NV, Estados Unidos.
Miranda, E. (2001). Improving subjective estimates using paired compari sons. IEEE Software, 18(1), 87-91
Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: making software radios more personal. IEEE Personal Communications, 6(4), 13-18.
Na, D.-H., Nan, H., & Yoo, S.-J. (2007). Policy-based dynamic channel selec tion architecture for cognitive radio networks. En International Conference on Communications and Networking in China (pp. 1190-1194). IEEE. 22nd– 24th Aug 2007, Shanghai, China.
Nisan, N., Roughgarden, T., Tardos, E., & Vazirani, V. V. (2007). Algorithmic game theory (vol. 1). Cambridge, Reino Unido: Cambridge University Press.
OMNet++. (2015). User manual OMNeT++. Recuperado el 19 de agosto del 2015, de https://omnetpp.org/doc/omnetpp/manual/usman.htm
Ormond, O., Murphy, J., & Muntean, G. (2006). Utility-based intelligent net work selection in beyond 3G systems. En IEEE International Conference on Communications (vol. 4, pp. 1831-1836).
Ozger, M., & Akan, O. B. (2016). On the utilization of spectrum opportunity in cognitive radio networks. IEEE Communications Letters, 20(1), 157-160.
Páez, F. J., & Ortiz, J. E. (2010). Simulación de enlaces Wi-Fi y UMTS con J-SIM para estimar el BER y PER. Vínculos, 7(1), 17-24.
Patil, S. K., & Kant, R. (2014). A fuzzy AHP-TOPSIS framework for ran king the solutions of knowledge management adoption in supply chain to overcome its barriers. Expert Systems with Applications, 41(2), 679-693.
Pedraza, L. F., Forero, F., & Páez, I. (2014). Evaluación de ocupación del espectro radioeléctrico en Bogotá-Colombia. Ingenieria y Ciencia, 10(19), 127-143.
Pedraza, L. F., Hernández, C., Galeano, K., Rodríguez-Colina, E., & Páez, I. (2016). Ocupación espectral y modelo de radio cognitiva para Bogotá. Bogotá: Universidad Distrital Francisco José de Caldas.
Pedraza, L. F., López, D., & Salcedo, O. (2011). Enrutamiento basado en el algoritmo de Dijkstra para una red de radio cognitiva. Tecnura, 15(30), 93-100.
Petrova, M., Mahonen, P., & Osuna, A. (2010). Multi-class classification of analog and digital signals in cognitive radios using support vector machi nes. En International Symposium on Wireless Communication Systems (pp. 986-990). 19 Sep - 22 Sep 2010M, York, Reino Unido.
Pham, C., Tran, N. H., Do, C. T., Moon, S. Il, & Hong, C. S. (2014). Spec trum handoff model based on hidden Markov model in cognitive radio networks. En International Conference on Information Networking (pp. 406- 411). IEEE. 10 Feb. - 12 Feb. 2014, Phuket, Tailandia.
Pla, V., Vidal, J. R., Martínez-Bauset, J., & Guijarro, L. (2010). Modeling and characterization of spectrum white spaces for underlay cognitive radio networks. En IEEE International Conference on Communications. Mayo 23- 17 de 2010, Cape Town, South Africa.
Rahimian, N., Georghiades, C. N., Shakir, M. Z., & Qaraqe, K. A. (2014). On the probabilistic model for primary and secondary user activity for OFDMA-based cognitive radio systems: Spectrum occupancy and sys tem throughput perspectives. IEEE Transactions on Wireless Communica tions, 13(1), 356-369
Ramírez Pérez, C., & Ramos Ramos, V. M. (2010). Handover vertical: un problema de toma de decisión múltiple. En Congreso Internacional sobre In novación y Desarrollo Tecnológico. 24 al 26 de noviembre 2010, Cuernavaca, Morelos, México.
Ramírez-Pérez, C., & Ramos-R, V. (2013). On the effectiveness of multi criteria decision mechanisms for vertical handoff. En International Confe rence on Advanced Information Networking and Applications (pp. 1157-1164). March 25-28, 2013, Barcelona, Spain.
Rodríguez, A. B., Ramírez, L. J., & Chahuan, J. (2015). Nueva Generación de heurísticas para redes de fibra óptica WDM (Wavelength División Multiplexing) bajo tráfico dinamico. Información Tecnológica, 26(5), 135- 142.
Rodríguez-Colina, E., Ramírez, P., Carrillo, A., & Ernesto, C. (2011). Multi ple attribute dynamic spectrum decision making for cognitive radio net works. En International Conference on Wireless and Optical Communications Networks (pp. 1-5).
Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9-26.
Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man and Cybernetics, 21(3), 660-674.
Sgora, A., Vergados, D. D., & Chatzimisios, P. (2010). An access network se lection algorithm for heterogeneous wireless environments. En The IEEE symposium on Computers and Communications (pp. 890-892). Junio 22 al 25 de 2010, Riccione, Italia.
Shun-Fang, Y., Jung-Shyr, W., & Hsu-Hung, H. (2008). A vertical media independent handover decision algorithm across Wi-Fi networks. En In ternational Conference on Wireless and Optical Communications Networks. 5-7 May 2008, Surabaya, Indonesia.
Song, Q., & Jamalipour, A. (2005). A network selection mechanism for next generation networks. En IEEE International Conference on Communications (vol. 2, pp. 1418-1422).
Song, Y., & Xie, J. (2010). Proactive spectrum handoff in cognitive radio ad hoc networks based on common hopping coordination. En IEEE Confe rence on Computer Communications (pp. 1-2). Marzo 15 al 19. San Diego, CA, Estados Unidos.
Sriram, K., & Whitt, W. (1986). Characterizing superposition arrival pro cesses in packet multiplexers for voice and data. IEEE Journal on Selected Areas in Communications, 4(6), 833-846.
Steenkiste, P., Sicker, D., Minden, G., & Raychaudhuri, D. (2009). Future di rections in cognitive radio network research. NSF workshop report. Recuperado de https://www.cs.cmu.edu/~prs/NSF_CRN_Report_Final.pdf
Stevens-Navarro, E., & Wong, V. (2007). A vertical handoff decision algo rithm for heterogeneous wireless networks. En IEEE Wireless Communica tions and Networking Conference (pp. 3199-3204). Marzo 11 al 15 de 2007, Hong Kong, China.
Stevens-Navarro, E., & Wong, V. W. S. (2006). Comparison between verti cal handoff decision algorithms for heterogeneous wireless networks. En IEEE Vehicular Technology Conference (vol. 2, pp. 947-951).
Stevens-Navarro, E., Gallardo-Medina, R., Pineda-Rico, U., & Acosta-Elías, J. (2012). Application of MADM method VIKOR for vertical handoff in heterogeneous wireless networks. IEICE Transactions on Communications, 95(2), 599-602.
Stevens-Navarro, E., Lin, Y., & Wong, V. W. S. (2008). An MDP-based verti cal handoff decision algorithm for heterogeneous wireless networks. IEEE Transactions on Vehicular Technology, 57(2), 1243-1254.
Stevens-Navarro, E., Martínez-Morales, J. D., & Pineda-Rico, U. (2012). Evaluation of vertical handoff decision algorightms based on MADM methods for heterogeneous wireless networks. Journal of Applied Research and Technology, 10(4), 534-548.
Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: an introduc tion. IEEE Transactions on Neural Networks, 9(5), 1054.
Taj, M. I., & Akil, M. (2011). Cognitive radio spectrum evolution prediction using a rtificial neural networks based multivariate time series modelling. En Wireless Conference Sustainable Wireless Technologies (pp. 1-6). VDE. April 27-29, 2011, Vienna, Austria.
Tanino, T., Tanaka, T., & Inuiguchi, M. (2003). Multi-objective programming and goal programming: theory and applications. Berlin, Alemania: Springer Science & Business Media.
Tragos, E., Zeadally, S., Fragkiadakis, A., & Siris, V. (2013). Spectrum assig nment in cognitive radio networks: A comprehensive survey. IEEE Com munications Surveys and Tutorials, 15(3), 1108-1135.
Trigui, E., Esseghir, M., & Merghem-Boulahia, L. (2012). Multi-agent sys tems negotiation approach for handoff in mobile cognitive radio networks. En International Conference on New Technologies, Mobility and Security (pp. 1-5). 7 May - 10 May, 2012, Estambul, Turquia.
Tsiropoulos, G., Dobre, O., Ahmed, M., & Baddour, K. (2016). Radio resou rce allocation techniques for efficient spectrum access in cognitive radio networks. IEEE Communications Surveys & Tutorials, 18(1), 824-847.
Tuan, T. A., Tong, L. C., & Premkumar, A. B. (2010). An adaptive learning automata algorithm for channel selection in cognitive radio network. En IEEE International Conference on Communications and Mobile Computing (vol. 2, pp. 159-163). 12 al 14 de Abril de 2010, Shenzhen, China.
Universidad Politécnica de Cataluña. (2004). User manual OPNET. Recupera do el 19 de agosto del 2015, de http://ansat.es/soporte/docs/fragmen tacion/OPNET_Modeler_Manual.pdf
Valenta, V., Maršálek, R., Baudoin, G., Villegas, M., Suárez, M., & Robert, F. (2010). Survey on spectrum utilization in Europe: Measurements, analy ses and observations. En International Conference on Cognitive Radio Oriented Wireless Networks (pp. 2-6). Jun 16, 2010 - Jun 18, 2010, Cannes, France.
Van, B., Prasad, R. V., & Niemegeers, I. (2012). A survey on handoffs - Les sons for 60 GHz based wireless systems. IEEE Communications Surveys and Tutorials, 14(1), 64-86.
Villavicencio, J. (2014). Introducción a series de tiempo. Recuperado el 10 de diciembre de 2014, de http://www.estadisticas.gobierno.pr/iepr/Link Click.aspx?fileticket=4_BxecUaZmg=
Wang, C. W., & Wang, L. C. (2009). Modeling and analysis for proactive decision spectrum handoff in cognitive radio networks. En IEEE Interna tional Conference on Communications (pp. 1-6).
Wang, L.-C., & Wang, C.-W. (2008). Spectrum handoff for cognitive radio networks: reactive-sensing or proactive-sensins? En IEEE International Conference on High Performance, Computing and Communications (pp. 343- 348). 25 Sep. - 27 Sep. 2008, Dalian, China.
Wang, L.-C., Wang, C.-W., & Chang, C.-J. (2012). Modeling and analysis for spectrum handoffs in cognitive radio networks. IEEE Transactions on Mobile Computing, 11(9), 1499-1513.
Wang, X., Wong, A., & Ho, P.-H. (2010). Dynamically optimized spatiotem poral prioritization for spectrum sensing in cooperative cognitive radio. Wireless Networks, 16(4), 889-901.
Wei, Q., Farkas, K., Prehofer, C., Mendes, P., & Plattner, B. (2006). Context aware handover using active network technology. Computer Networks, 50(15), 2855-2872.
Wei, Y., Li, X., Song, M., & Song, J. (2008). Cooperation radio resource management and adaptive vertical handover in heterogeneous wireless networks. En International Conference on Natural Computation (vol. 5, pp. 197-201).
Weingart, T., Sicker, D. C., & Grunwald, D. (2007). A statistical method for reconfiguration of cognitive radios. IEEE Wireless Communications, 14(4), 34-40.
Willkomm, D., Machiraju, S., Bolot, J., & Wolisz, A. (2008). Primary users in cellular networks: a large-scale measurement study. En IEEE Sympo sium on New Frontiers in Dynamic Spectrum Access Networks (pp. 401-411). 14-17 Oct. 2008, Chicago, Illinois, Estados Unidos.
Woods, W. A. (1986). Important issues in knowledge representation. Procee dings of the IEEE, 74(10), 1322-1334.
Wooldridge, M. (2009). An introduction to multiagent systems. Glasgow, Gran Bretaña: John Wiley & Sons.
Wu, Y., Yang, K., Zhao, L., & Cheng, X. (2009). Congestion-aware proactive vertical handoff algorithm in heterogeneous wireless networks. IET Communications, 3(7), 1103.
Wu, Y., Yang, Q., Liu, X., & Kwak, K. (2016). Delay-Constrained optimal transmission with proactive spectrum handoff in cognitive radio networks. IEEE Transactions on Communications. 15(3), 627-640.
Xian, X., Shi, W., & Huang, H. (2008). Comparison of OMNET++ and other simulator for WSN simulation. En IEEE Conference on Industrial Electro nics and Applications (pp. 1439-1443). 3-5 June 2008. Singapur, Singapur.
Xu, G., & Lu, Y. (2006). Channel and modulation selection based on support vector machines for cognitive radio. En International Conference on Wireless Communications, Networking and Mobile Computing (pp. 4-7). 22 Sep - 24 Sep 2006, Wuhan, China.
Xu, Y., Anpalagan, A., Wu, Q., Shen, L., Gao, Z., & Wang, J. (2013). Deci sion-Theoretic distributed channel selection for opportunistic spectrum access: strategies, challenges and solutions. IEEE Communications Surveys & Tutorials, 15(4), 1689-1713.
Yang, C., Lou, W., Fu, Y., Xie, S., & Yu, R. (2016). On throughput maximi zation in multichannel cognitive radio networks via generalized access strategy. IEEE Transactions on Communications, 64(4), 1384-1398.
Yang, P., Sun, Y., Liu, C., Li, W., & Wen, X. (2013). A novel fuzzy logic based vertical handoff decision algorithm for heterogeneous wireless net works. En International Symposium on Wireless Personal Multimedia Com munications (pp. 1-5). 24 Jun. - 27 Jun. 2013, Atlantic City, NJ, Estados Unidos.
Yang, S. F., & Wu, J. S. (2008). A IEEE 802.21 handover design with QOS provision across WLAN and WMAN. En International Conference on Communications, Circuits and Systems (pp. 548-552). 25-27 May 2008, Fu jian, China.
Yang, S. J., & Tseng, W. C. (2013). Design novel weighted rating of multiple attributes scheme to enhance handoff efficiency in heterogeneous wireless networks. Computer Communications, 36(14), 1498-1514.
Yi-Bing, L., & Ai-Chun, P. (2000). Comparing soft and hard handoffs. IEEE Transactions on Vehicular Technology, 49(3), 192-798.
Yifei, W., Yinglei, T., Li, W., Mei, S., & Xiaojun, W. (2013). QoS provisioning energy saving dynamic access policy for overlay cognitive radio networks with hidden Markov channels. China Communications, 10(12), 92-101.
Ying, W., Jun, Y., Yun, Z., Gen, L., & Ping, Z. (2008). Vertical handover de cision in an enhanced media independent handover framework. En Wire less Communications and Networking Conference (pp. 2693-2698). March 31 2008-April 3 2008, Las Vegas, NV, Estados Unidos.
Yonghui, C. (2010). Study of the bayesian networks. En IEEE International Conference on E-Health Networking, Digital Ecosystems and Technologies (vol. 1, pp. 172-174). 17 Apr - 18 Apr 2010, Shenzhen, China.
Yoon, K. P., & Hwang, C.-L. (1995). Multiple attribute decision making: an in troduction (vol. 104). Thousand Oaks, Estados Unidos: Sage Publications.
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.
Zapata, J. A., Arango, M. D., & Adarme, W. (2012). Applying fuzzy exten ded analytical hierarchy (FEAHP) for selecting logistics software. Inge niería e Investigación, 32(1), 94-99.
Zhang, W. (2004). Handover decision using fuzzy MADM in heterogeneous networks. En IEEE Wireless Communications and Networking Conference (vol. 2, pp. 653-658). 21 al 25 de marzo de 2004, Atlanta, Estados Unidos.
Zhang, Y., Tay, W. P., Li, K. H., Esseghir, M., & Gaïti, D. (2016). Oppor tunistic Spectrum access with temporal-spatial reuse in cognitive radio networks. En IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 3661-3665). 20 al 25 de marzo de 2016, Shangai, China.
Zhao, Y., Mao, S., Neel, J. O., & Reed, J. H. (2009). Performance evaluation of cognitive radios: Metrics, utility functions, and methodology. Procee dings of the IEEE, 97(4), 642-658.
Zheng, H., & Cao, L. (2005). Device-centric spectrum management. En IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Net works (pp. 56-65). 8 Nov. - 11 Nov. 2005. Baltimore, MD, Estados Unidos.
bitstream.url.fl_str_mv http://repository.udistrital.edu.co/bitstream/11349/33023/1/pags%20internas.pdf
http://repository.udistrital.edu.co/bitstream/11349/33023/4/Captura.JPG
http://repository.udistrital.edu.co/bitstream/11349/33023/5/pags%20internas.pdf.jpg
http://repository.udistrital.edu.co/bitstream/11349/33023/2/license_rdf
http://repository.udistrital.edu.co/bitstream/11349/33023/3/license.txt
bitstream.checksum.fl_str_mv e702eaacc48deb75e35871bd21ac8460
1cb1fae22e5489c6194082f8586ca168
a16489031cdc76cfaeebb00847a17bf2
4460e5956bc1d1639be9ae6146a50347
997daf6c648c962d566d7b082dac908d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Distrital - RIUD
repository.mail.fl_str_mv repositorio@udistrital.edu.co
_version_ 1814111212580896768
spelling will be generated::orcid::0009-0008-1033-8714600will be generated::orcid::0000-0001-9983-45556002023-11-30T21:34:54Z2023-11-30T21:34:54Z2017-04978-958-5434-01-1http://hdl.handle.net/11349/33023Universidad Distrital Francisco José de Caldas. Centro de Investigaciones y Desarrollo CientíficoEl handoff espectral, en las redes de radio cognitiva, ocurre cuando el usuario secundario debe dejar el canal de frecuencia que está utilizando y continuar su comunicación en otra oportunidad espectral. Este proceso es un aspecto clave para garantizar una adecuada calidad de servicio y mejorar el desempeño en las comunicaciones del usuario secundario. Este libro de investigación tiene por objetivo presentar una propuesta de modelo adaptativo multivariable de handoff espectral para redes móviles de radio cognitiva. Para lo anterior, se desarrollaron tres algoritmos para la toma de decisiones durante un handoff espectral, con diferentes enfoques: difuso, realimentado y predictivo; estos conforman el modelo adaptativo multivariable de handoff espectral propuesto. Para evaluar el nivel de desempeño de los algoritmos desarrollados se realizó un análisis comparativo entre estos y los algoritmos de handoff espectral más relevantes en la literatura actual. A diferencia de los trabajos relacionados, la evaluación comparativa se validó a través de una traza de datos reales de ocupación espectral capturados en la banda de frecuencia GSM y Wi-Fi, que modelan el comportamiento real de los usuarios primarios. En la fase de validación, se propusieron ocho escenarios de evaluación, al considerar, dos tipos de redes: GSM y Wi-Fi, dos clases de aplicaciones: tiempo-real y mejor-esfuerzo, dos niveles de tráfico: alto y bajo, y diez métricas de evaluación.Spectral handoff, in cognitive radio networks, occurs when the secondary user must leave the frequency channel they are using and continue their communication at another spectral opportunity. This process is a key aspect to guarantee adequate quality of service and improve performance in secondary user communications. This research book aims to present a proposal for a multivariate adaptive spectral handoff model for mobile cognitive radio networks. For this purpose, three algorithms were developed for decision-making during a spectral handoff, with different approaches: fuzzy, feedback and predictive; These make up the proposed adaptive multivariate spectral handoff model. To evaluate the level of performance of the developed algorithms, a comparative analysis was carried out between them and the most relevant spectral handoff algorithms in current literature. Unlike related works, the benchmark was validated through a trace of real spectral occupancy data captured in the GSM and Wi-Fi frequency band, which models the real behavior of primary users. In the validation phase, eight evaluation scenarios were proposed, considering two types of networks: GSM and Wi-Fi, two classes of applications: real-time and best-effort, two traffic levels: high and low, and ten evaluation metrics.BogotápdfspaEspaciosAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Redes de radio cognitivaModelo adaptativo multivariableAlgoritmos de toma de decisionesMétricas de evaluaciónEspectro electromagnéticoEspectro radioeléctricoTelecomunicacionesAlgoritmosCognitive radio networksMultivariable adaptive modelDecision making algorithmsEvaluation MetricsModelo adaptativo multivariable de handoff espectral para incrementar el desempeño en redes móviles de radio cognitivaAdaptive multivariate spectral handoff model to increase performance in mobile cognitive radio networksbookinfo:eu-repo/semantics/bookhttp://purl.org/coar/resource_type/c_2f33Abbas, N., Nasser, Y., & Ahmad, K. El. (2015). Recent advances on artificial intelligence and learning techniques in cognitive radio networks. EUR ASIP Journal on Wireless Communications and Networking, (1), 1-20.Aguilar, J., & Navarro, A. (2011). Radio cognitiva - estado del arte. Sistemas y Telemática, 9(16), 31-53.Ahmed, A., Boulahia, L. M., & Gaïti, D. (2014). Enabling vertical handover decisions in heterogeneous wireless networks: A state-of-the-art and a classification. IEEE Communications Surveys and Tutorials, 16(2), 776-811.Ahmed, E., Gani, A., Abolfazli, S., Yao, L. J., & Khan, S. U. (2016). Chan nel assignment algorithms in cognitive radio networks: Taxonomy, open issues, and challenges. IEEE Communications Surveys & Tutorials, 18(1), 795-823.Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. En International Symposium on Information Theory (pp. 267-281). Academinai Kiado, Budapest.Akin, S., & Fidler, M. (2016). On the transmission rate strategies in cognitive radios. IEEE Transactions on Wireless Communications, 15(3), 2335-2350.Akter, L., Natarajan, B., & Scoglio, C. (2008). Modeling and forecasting se condary user activity in cognitive radio networks. En 17th International Conference on Computer Communications and Networks. August 3-7, 2008. (pp. 1-6). St. Thomas, US Virgin Islands.Akyildiz, I. F., & Li, Y. (2006). OCRA: OFDM-based cognitive radio networks. Broadband and Wireless Networking Laboratory Technical Report.Akyildiz, I. F., Lee, W.-Y., & Chowdhury, K. R. (2009). CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks, 7(5), 810-836.Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communica tions Magazine, 46(4), 40-48.Akyildiz, I. F., Won-Yeol, L., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127-2159.Almasaeid, H. M., & Kamal, A. E. (2010). Receiver-based channel allocation for wireless cognitive radio mesh networks. In IEEE Symposium on New Frontiers in Dynamic Spectrum (pp. 1-10). 6 Apr - 09 Apr 2010. Singapur, Singapur.Alnwaimi, G., Arshad, K., & Moessner, K. (2011). Dynamic spectrum allo cation algorithm with interference management in co-existing networks. IEEE Communications Letters, 15(9), 932-934.Alsarhan, A., & Agarwal, A. (2009). Cluster-based spectrum management using cognitive radios in wireless mesh network. En Internatonal Conferen ce on Computer Communications and Networks (pp. 1-6). August 3–6, 2009. San Francisco, C.A., Estados Unidos.Al-Surmi, I., Othman, M., & Mohd Ali, B. (2012). Mobility management for IP-based next generation mobile networks: Review, challenge and pers pective. Journal of Network and Computer Applications, 35(1), 295-315.Anderson, T. W. (1980). Maximum likelihood estimation for vector autoregressive moving-average models, directions in time series. Institute of Mathematical Statistics. Stanford University, Stanford, California, Estados Unidos.Bâlan, I. M., Moerman, I., Sas, B., & Demeester, P. (2012). Signalling mini mizing handover parameter optimization algorithm for LTE networks. Wireless Networks, 18(3), 295-306.Bari, F., & Leung, V. (2007). Application of ELECTRE to network selection in a hetereogeneous wireless network environment. En IEEE Wireless Communications and Networking Conference (pp. 3810-3815). 11-15 march 2007. Hong Kong, China.Bennai, M., Sydor, J., & Rahman, M. (2010). Automatic channel selection for cognitive radio systems. En IEEE International Symposium on Personal Indoor and Mobile Radio Communications (pp. 1831-1835). IEEE. 26 Sep - 30 Sep 2010. Estambul, Turquia.Bkassiny, M., Li, Y., & Jayaweera, S. K. (2013). A survey on machine-lear ning techniques in cognitive radios. IEEE Communications Surveys and Tu torials, 15(3), 1136-1159.Bolstad, W. M. (2007). Introduction to bayesian statistics. John Wiley and Sons. New Jersey, Estados Unidos.Box, G. E. P., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society, 26(2), 211-252.Box, G. E. P., & Jenkins, G. M. (1976). Time series analysis: Forecasting and control (Revised Ed). Oakland, California: Holden-Day.Brillinger, D. R. (2001). Time series: data analysis and theory. Oakland, Califor nia: Holden-Day.Brockwell, P. J. (2001). On continuous-time ARMA processes. En Handbook of statistics (pp. 249-276). Ámsterdam: Elsevier.Brockwell, P. J., & Davis, R. A. (1991). Time series: theory and methods. Nueva York: Springer Verlag.Brockwell, P. J., & Davis, R. A. (2002). Introduction to time series and forecasting (2.a ed.). Nueva York: Springer.Büyüközkan, G., & Çifçi, G. (2012). A combined fuzzy AHP and fuzzy TOP SIS based strategic analysis of electronic service quality in healthcare industry. Expert Systems with Applications, 39(3), 2341-2354.Büyüközkan, G., Kahraman, C., & Ruan, D. (2004). A fuzzy multi-criteria decision approach for software development strategy selection. Interna tional Journal of General Systems, 33(2-3), 259-280.Byun, S. S., Balasingham, I., & Liang, X. (2008). Dynamic spectrum allocation in wireless cognitive sensor networks: Improving fairness and energy efficiency. En IEEE Vehicular Technology Conference. 21-24 Sept. 2008, Calgary, Canada.Cárdenas-Juárez, M., Díaz-Ibarra, M. A., Pineda-Rico, U., Arce, A., & Ste vens-Navarro, E. (2016). On spectrum occupancy measurements at 2.4 GHz ISM band for cognitive radio applications. En International Confe rence on Electronics, Communications and Computers (pp. 25-31). 24 Feb - 26 Feb 2016, Cholula, México.Chang, D.-Y. (1996). Applications of the extent analysis method on fuzzy AHP. European Journal of Operational Research, 95(3), 649-655. doi:http:// doi.org/10.1016/0377-2217(95)00300-2.Chen, D., Zhang, Q., & Jia, W. (2008). Aggregation aware spectrum assign ment in cognitive ad-hoc networks. En International Conference on Cogniti ve Radio Oriented Wireless Networks and Communications. 15 May - 17 May 2008, Singapur, Singapur.Chen, T., Zhang, H., Maggio, G. M., & Chlamtac, I. (2007). CogMesh: A cluster-based cognitive radio network. En IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 168-178). 18 Apr - 20 Apr 2007, Dublin, Irlanda.Chen, Y., & Hee-Seok, O. (2016). A survey of measurement-based spectrum occupancy modeling for cognitive radios. IEEE Communications Surveys & Tutorials, 18(1), 848-859.Cheng, X., & Jiang, M. (2011). Cognitive radio spectrum assignment based on artificial bee colony algorithm. En IEEE International Conference on Communication Technology (pp. 161-164).Cho, J., & Lee, J. (2013). Development of a new technology product eva luation model for assessing commercialization opportunities using Del phi method and fuzzy AHP approach. Expert Systems with Applications, 40(13), 5314-5330.Chou, C. T., Shankar, S., Kim, H., & Shin, K. G. (2007). What and how much to gain by spectrum agility? IEEE Journal on Selected Areas in Com munications, 25(3), 576-587.Choudhary, D., & Shankar, R. (2012). An STEEP-fuzzy AHP-TOPSIS fra mework for evaluation and selection of thermal power plant location: A case study from India. Energy, 42(1), 510-521.Christian, I., Moh, S., Chung, I., & Lee, J. (2012). Spectrum mobility in cog nitive radio networks. IEEE Communications Magazine, 50(6), 114-121Correa, E. (2004). Series de tiempo: conceptos básicos. Medellín: Universidad Nacional de Colombia.Cortés, J. (2011). Metodología para la implementación de tecnologías de la informa ción y las comunicaciones TIC’s para soportar una estrategia de cadena de suminis tro esbelta (tesis de maestría). Universidad Nacional de Colombia, Bogotá.Csurgai-Horvath, L., & Bito, J. (2011). Primary and secondary user activi ty models for cognitive wireless network. En International Conference on Telecommunications (pp. 301-306). 08 May - 11 May 2011, Ayia Napa, Cyprus.Dadallage, S., Yi, C., & Cai, J. (2016). Joint beamforming, power and channel allocation in multi-user and multi-channel underlay MISO cognitive ra dio networks. IEEE Transactions on Vehicular Technology, 65(5), 3349-3359Dadios, E. P. (2012). Fuzzy logic: Algorithms, techniques and implementations. InTech. Rijeka, Croatia.Delgado, M., & Rodríguez, B. (2016). Opportunities for a more efficient use of the spectrum based in cognitive radio. IEEE Latin America Transactions, 14(2), 610-616.Del-Ser, J., Matinmikko, M., Gil-López, S., & Mustonen, M. (2010). A novel Harmony search based spectrum allocation technique for cognitive radio networks. En International Symposium on Wireless Communication Systems (pp. 233-237). 19 Sep - 22 Sep 2010, York, United Kingdom.Devore, J. L. (2001). Probabilidad y estadística para ingeniería y ciencias (5.a ed.). México: Thomson.Ding, L., Melodia, T., Batalama, S. N., Matyjas, J. D., & Medley, M. J. (2010). Cross-layer routing and dynamic spectrum allocation in cognitive radio ad hoc networks. IEEE Transactions on Vehicular Technology, 59(4), 1969- 1979.Duan, J., & Li, Y. (2011). An optimal spectrum handoff scheme for cognitive radio mobile ad hoc networks. Advances in Electrical and Computer Enginee ring, 11(3), 11-16.ETSI. (2012). 3GPP TS 23.107 version 11.0.0 Release 11.Federal Communications Commission. (2003). Notice of proposed rulemaking and order. Washington, D.C.: autor.Ferber, J. (1999). Multi-agent systems: An introduction to distributed artificial intel ligence. Addison-Wesley. Boston, MA, Estados UnidosFerro, R. A., Pedraza, L. F., & Hernández, C. (2011). Maximización del throughput en una red de radio cognitiva basado en la probabilidad de falsa alarma. Tecnura, 15(30), 64-70.Fonte, J. P., & Mora, F. E. (2008, June). Implementación de protocolos de capar de enlace de datos en los simuladores Omnet++ Y Ns-2. Quito: EPN..Forero, F. (2012). Detección de códigos de usuarios primarios para redes de radio cognitiva en un canal de acceso DCMA. Colombia. Bogotá, Colombia: Uni versidad Distrital Francisco José de Caldas.Fraser, A. M. (2008). Hidden Markov models and dynamical systems. SIAM. (So ciety for Industrial and Applied Mathematics). Filadelfia, Estados Unidos.Fu, J., Wu, J., Zhang, J., Ping, L., & Li, Z. (2010, October). A novel AHP and GRA based handover decision mechanism in heterogeneous wire less networks. En International Conference on Information Computing and Applications (pp. 213-220). Tangshan, China, October 15-18, 2010.Fudenberg, D., & Tirole, J. (1991). Game Theory. MIT Press. Recuperado de https://books.google.com.co/books?id=pFPHKwXro3QCGallardo-Medina, J. R., Pineda-Rico, U., & Stevens-Navarro, E. (2009). VIKOR method for vertical handoff decision in beyond 3G wireless net works. En International Conference on Electrical Engineering, Computing Science and Automatic Control. 10 Nov - 13 Nov 2009, Toluca, México.Garrett, M. W., & Willinger, W. (1994). Analysis, modeling and generation of self-similar VBR video traffic. En ACM Sigcomm (pp. 269-280). En ACM SIGCOMM computer communication review, 24(4), (pp. 269- 280). ACM.Gavrilovska, L., Atanasovski, V., Macaluso, I., & Dasilva, L. A. (2013). Lear ning and reasoning in cognitive radio networks. IEEE Communications Surveys and Tutorials, 15(4), 1761-1777.Giupponi, L., & Pérez-Neira, A. I. (2008). Fuzzy-based spectrum handoff in cognitive radio networks. En International Conference on Cognitive Radio Oriented Wireless Networks and Communications. 15 May - 17 May 2008, Singapur, SingapurGódor, G., & Détári, G. (2007). Novel network selection algorithm for va rious wireless network interfaces. En IST Mobile and Wireless Communica tions Summit (pp. 1-5). Budapest, Hungria 01 Jul - 05 Jul 2007.Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Machine Learning, 3(2), 95-99.Green, K. C., Armstrong, J. S., & Graefe, A. (2007). Methods to elicit fore casts from groups: Delphi and prediction markets compared. Social Scien ce Research Network, 8, 17-20.Guerrero, V. M. (2003). Análisis estadístico de series de tiempo económicas (2.a ed.). México: Thomson.Hamilton, J. D. (1994). Time series analysis. New Jersey: Princeton University Press.Han, J., Kamber, M., & Pei, J. (2012). Data mining: concepts and techniques. Elsevier. San Francisco, CA, Estados Unidos.Han, Z., & Liu, K. J. R. (2008). Resource allocation for wireless networks: basics, techniques, and applications. Reino Unido: Cambridge University Press. Cambridge, Reino Unido.Harvey, A. C. (1993). Time series models. Pearson. New York, Estados Unidos.Hasswa, A., Nasser, N., & Hassanein, H. (2006). Tramcar: A context-aware cross-layer architecture for next generation heterogeneous wireless net works. En IEEE International Conference on Communications (vol. 1, pp. 240-245). 11 Jun - 15 Jun 2006. Estambul, Turquia.Haykin, S. (1998). Neural networks: A Comprehensive foundation (2.a ed.). Up per Saddle River, NJ, Estados Unidos: Prentice Hall PTR. Nueva Jersey, Estados Unidos.He, A., Bae, K. K., Newman, T. R., Gaeddert, J., Kim, K., Menon, R., et al (2010). A survey of artificial intelligence for cognitive radios. IEEE Tran sactions on Vehicular Technology, 59(4), 1578-1592Hernández, C., & Giral, D. (2015). Spectrum mobility analytical tool for cog nitive wireless networks. International Journal of Applied Engineering Re search, 10(21), 42265-42274Hernández, C., Giral, D., & Páez, I. (2015a). Benchmarking of the perfor mance of spectrum mobility models in cognitive radio networks. Interna tional Journal of Applied Engineering Research (IJAER), 10(21)Hernández, C., Giral, D., & Páez, I. (2015b). Hybrid algorithm for frequency channel selection in Wi-Fi networks. World Academy of Science, Enginee ring and Technology, 9(12), 1212-1215.Hernández, C., Giral, D., & Santa, F. (2015). MCDM spectrum handover models for cognitive wireless networks. World Academy of Science, Engi neering and Technology, 9(10), 679-682Hernández, C., Páez, I., & Giral, D. (2015). Modelo AHP-VIKOR para han doff espectral en redes de radio cognitiva. Tecnura, 19(45), 29-39Hernández, C., Pedraza L. F., & Martínez F. (2016). Algoritmos para asigna ción de espectro en redes de radio cognitiva. Tecnura, 20(48)Hernández, C., Pedraza, L. F., & Rodriguez-Colina, E. (2016). Fuzzy fee dback algorithm for the spectral handoff in cognitive radio networks. Re vista Facultad de Ingeniería Universidad de Antioquia, (80), 47-62.Hernández, C., Salcedo, O., & Pedraza, L. F. (2009). An ARIMA model for forecasting Wi-Fi data network traffic values. Ingeniería e Investigación, 29(2), 65-69.Hernández, C., Salgado, C., & Salcedo, O. (2013). Performance of multiva riable traffic model that allows estimating throughput mean values. Revista Facultad de Ingeniería Universidad de Antioquia, (67), 52-62. Hernández, C., Vasquez, H., & Páez, I. (2015). Proactive spectrum handoff model with time series prediction. International Journal of Applied Engineering Research (IJAER), 10(21), 42259-42264.Hernández, C., Salgado, C., López, H., & Rodríguez-Colina, E. (2015). Mul tivariable algorithm for dynamic channel selection in cognitive radio networks. EURASIP Journal on Wireless Communications and Networking, 2015(1), 1-17.Hernández-Guillen, J., Rodríguez-Colina, E., Marcelín-Jiménez, R., & Pas coe-Chalke, M. (2012). CRUAM-MAC: A novel cognitive radio MAC protocol for dynamic spectrum access. En IEEE Latin-America Conference on Communications (pp. 1-6). Ecuador: IEEE. Cuenca, Ecuador.Hernández-Sampieri, R., Fernández-Collado, C., & Baptista, P. (2006). Meto dología de la investigación. McGraw-Hill. Ciudad de México.Hong, M., Kim, J., Kim, H., & Shin, Y. (2008). An adaptive transmission scheme for cognitive radio systems based on interference temperature model. En IEEE Consumer Communications and Networking Conference (pp. 69-73). 10 Jan - 12 Jan 2008, Las Vegas, NV, Estados Unidos.Hoven, N., Tandra, R., & Sahai, A. (2005). Some fundamental limits on cog nitive radio. Wireless Foundations EECS, University of California, Berkeley.Höyhtyä, M., Mustonen, M., Sarvanko, H., Hekkala, A., Katz, M., Mäm melä, A., et al. (2008). Cognitive radio: An intelligent wireless communication system. Research Report VTT-R-02219-08.Hübner, R. (2007). Strategic supply chain management in process industries: An application to specialty chemicals production network design (vol. 594). Sprin ger Science & Business Media. Berlin, Alemania.IEEE COMSOC. (2008). IEEE Standard definitions and concepts for dynamic spectrum access: terminology relating to emerging wireless networks, system functionality, and spectrum management. IEEE Std 1900.1-2008.IEEE Standards Coordinating Committee 41 on Dynamic Spectrum. (2008). 1900.1-2008 - IEEE standard definitions and concepts for dynamic spectrum access: terminology relating to emerging wireless networks, system functiona lity, and spectrum management. IEEE Standard 1900.1-2008. Recupera do de papers2://publication/uuid/ 6010BFFD-CE4E-4C69-A2B0- 0539E75F5422Inwhee, J., Won-Tae, K., & Seokjoon, H. (2007). A network selection al gorithm considering power consumption in hybrid wireless networks. En International Conference on Computer Communications and Networks (pp. 1240-1243). 13 Aug - 16 Aug 2007, Honolulu, HI, Estados Unidos.Issariyakul, T., Pillutla, L. S., & Krishnamurthy, V. (2009). Tuning radio re source in an overlay cognitive radio network for TCP: Greed isn’t good. IEEE Communications Magazine, 47(7), 57-63.Jayaweera, S., & Christodoulou, C. (2011). Radiobots: architecture, algorithms and realtime reconfigurable antenna designs for autonomous, self-learning future cogni tive radios. Albuquerque, Nuevo Mexico: Universidad de Nuevo Mexico.Ji, Z., & Liu, K. J. R. (2007). Cognitive radios for dynamic spectrum access - dynamic spectrum sharing: a game theoretical overview. IEEE Commu nications Magazine, 45(5), 88-94.Jiang, C., Chen, Y., & Liu, K. J. R. (2014). Multi-channel sensing and access game: Bayesian social learning with negative network externality. IEEE Transactions on Wireless Communications, 13(4), 2176-2188.Jiménez, G. (2015). Ventajas y desventajas de las simulaciones. Recuperado el 12 de agosto del 2015, de http://www.virtual.unal.edu.co/cursos/sedes/ manizales/4060015/Lecciones/ Capitulo VI/ventajas.htmKaleem, F. (2012). VHITS: vertical handoff initiation and target selection in a he terogeneous wireless network. (Tesis de doctorado). Universidad Internacio nal de Florida.Kanodia, V., Sabharwal, A., & Knightly, E. (2004). MOAR: A multi-channel opportunistic auto-rate media access protocol for ad hoc networks. En IEEE International Conference on Broadband Networks (pp. 600-610). 25-29 Oct. 2004, San Jose, California, Estados Unidos.Kassar, M., Kervella, B., & Pujolle, G. (2008). An overview of vertical han dover decision strategies in heterogeneous wireless networks. Computer Communications, 31(10), 2607-2620.Kaya, T., & Kahraman, C. (2010). Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul. Energy, 35(6), 2517-2527.Khan, A. R., Bilal, S. M., & Othman, M. (2012). A performance comparison of open source network simulators for wireless networks. En Internatio nal Conference on Control System, Computing and Engineering (pp. 34-38). 23 Nov. - 25 Nov. 201, 2Penang, Malasia.Kibria, M. R., Jamalipour, A., & Mirchandani, V. (2005). A location aware three-step vertical handoff scheme for 4G/B3G networks. En Global Tele communications Conference (vol. 5, pp. 2752-2756). 28 Nov.- 2 Dec. 2005, St. Louis, Estados Unidos.Kim, H., & Shin, K. G. (2008). Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks. IEEE Transactions on Mobile Computing, 7(5), 533-545.Kim, W., Kassler, A. J., Di Felice, M., & Gerla, M. (2010). Urban-X: Towards distributed channel assignment in cognitive multi-radio mesh networks. En IFIP Wireless Days. 20-22 Oct. 2010, Venice, Italia.Köksal, M. (2008). A survey of network simulators supporting wireless networks. Middle East Technical University. Ankara, Turquia.Kondareddy, Y. R., Agrawal, P., & Sivalingam, K. (2008). Cognitive radio network setup without a common control channel. En IEEE Military Communications Conference. 16 Nov - 19 Nov 2008, San Diego, CA, Esta dos Unidos.Kumar, K., Prakash, A., & Tripathi, R. (2016). Spectrum handoff in cogniti ve radio networks: A classification and comprehensive survey. Journal of Network and Computer Applications, 61, 161-188.Lahby, M., Cherkaoui, L., & Adib, A. (2013). Hybrid network selection stra tegy by using M-AHP/E-TOPSIS for heterogeneous networks. En Inter national Conference on Intelligent Systems: Theories and Applications (pp. 1-6). May 8, 2013 - May 9, 2013, Rabat, Marruecos.Lahby, M., Leghris, C., & Adib, A. (2011). A hybrid approach for network selection in heterogeneous multi-access environments. En International Conference on New Technologies, Mobility and Security (pp. 1-5). 7 Feb - 10 Feb 2011, Paris, Francia.Lee, W. Y., & Akyildiz, I. F. (2008). Optimal spectrum sensing framework for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(10), 3845-3857.Lertsinsrubtavee, A., & Malouch, N. (2016). Hybrid spectrum sharing through adaptive spectrum handoff and selection. IEEE Transactions on Mobile Computing, 15(11), 2781-2793.Li, X., & Zekavat, S. A. (2008). Traffic pattern prediction and performan ce investigation for cognitive radio systems. En IEEE Wireless Communi cations and Networking Conference (pp. 894-899). March 31 2008-April 3 2008., Las Vegas, NV, Estados Unidos.Liu, F., Xu, Y., Guo, X., Zhang, W., Zhang, D., & Li, C. (2013). A spec trum handoff strategy based on channel reservation for cognitive radio network. En International Conference on Intelligent System Design and Engineering Applications (pp. 179-182). 6-7 November 2013, Zhangjiajie, Hunan, China.Liu, S. M., Pan, S., Mi, Z. K., Meng, Q. M., & Xu, M. H. (2010). A simple additive weighting vertical handoff algorithm based on SINR and AHP for heterogeneous wireless networks. En International Conference on Intelli gent Computation Technology and Automation (vol. 1, pp. 347-350). 11 May - 12 May 2010, Changsha, China.Liu, Y., & Tewfik, A. (2014). Primary traffic characterization and secondary transmissions. IEEE Transactions on Wireless Communications, 13(6), 3003- 3016.López, D. A., García, N. Y., & Herrera, J. F. (2015). Desarrollo de un modelo predictivo para la estimación del comportamiento de variables en una infraestructura de red. Información Tecnológica, 26(5), 143-154.López, D. A., Trujillo, E. R., & Gualdrón, O. E. (2015). Elementos funda mentales que Componen la radio cognitiva y asignación de bandas es pectrales. Información Tecnológica, 26(1), 23-40.Ma, L., Shen, C. C., & Ryu, B. (2007). Single-radio adaptive channel algo rithm for spectrum agile wireless ad hoc networks. En IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (pp. 547- 558). 18 Apr - 20 Apr 2007, Dublin, Irlanda.Marinho, J., & Monteiro, E. (2012). Cognitive radio: Survey on communica tion protocols, spectrum decision issues, and future research directions. Wireless Networks, 18(2), 147-164.Masonta, M. T., Mzyece, M., & Ntlatlapa, N. (2013). Spectrum decision in cognitive radio networks: a survey. IEEE Communications Surveys & Tuto rials, 15(3), 1088-1107.Matinmikko, M., Del-Ser, J., Rauma, T., & Mustonen, M. (2013). Fuzzy logic based framework for spectrum availability assessment in cognitive radio systems. IEEE Journal on Selected Areas in Communications, 31(11), 2173-2184.Matlab. (2015). Matlab getting starte guide. Recuperado el 19 de agosto del 2015, de http://www.mathworks.com/academia/student_version/lear nmatlab.pdfMehbodniya, A., Kaleem, F., Yen, K. K., & Adachi, F. (2012). A fuzzy MADM ranking approach for vertical mobility in next generation hybrid networks. En International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (pp. 262-267). 03 Oct - 05 Oct 2012, St. Petersburg, Rusia.Méndez, L., Rodríguez-Colina, E., & Medina, C. (2013). Toma de decisiones basadas en el algoritmo de Dijkstra’s. Una solución para radio cognitiva. Redes de Ingeniería, 4(2), 35-42.Mir, U., Merghem-Boulahia, L., Esseghir, M., & Gaïti, D. (2011). Dynamic spectrum sharing for cognitive radio networks using multiagent system. En IEEE Conference on Consumer Communications and Networking (pp. 658- 663). 9 Jan - 12 Jan 2011, Las Vegas, NV, Estados Unidos.Miranda, E. (2001). Improving subjective estimates using paired compari sons. IEEE Software, 18(1), 87-91Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: making software radios more personal. IEEE Personal Communications, 6(4), 13-18.Na, D.-H., Nan, H., & Yoo, S.-J. (2007). Policy-based dynamic channel selec tion architecture for cognitive radio networks. En International Conference on Communications and Networking in China (pp. 1190-1194). IEEE. 22nd– 24th Aug 2007, Shanghai, China.Nisan, N., Roughgarden, T., Tardos, E., & Vazirani, V. V. (2007). Algorithmic game theory (vol. 1). Cambridge, Reino Unido: Cambridge University Press.OMNet++. (2015). User manual OMNeT++. Recuperado el 19 de agosto del 2015, de https://omnetpp.org/doc/omnetpp/manual/usman.htmOrmond, O., Murphy, J., & Muntean, G. (2006). Utility-based intelligent net work selection in beyond 3G systems. En IEEE International Conference on Communications (vol. 4, pp. 1831-1836).Ozger, M., & Akan, O. B. (2016). On the utilization of spectrum opportunity in cognitive radio networks. IEEE Communications Letters, 20(1), 157-160.Páez, F. J., & Ortiz, J. E. (2010). Simulación de enlaces Wi-Fi y UMTS con J-SIM para estimar el BER y PER. Vínculos, 7(1), 17-24.Patil, S. K., & Kant, R. (2014). A fuzzy AHP-TOPSIS framework for ran king the solutions of knowledge management adoption in supply chain to overcome its barriers. Expert Systems with Applications, 41(2), 679-693.Pedraza, L. F., Forero, F., & Páez, I. (2014). Evaluación de ocupación del espectro radioeléctrico en Bogotá-Colombia. Ingenieria y Ciencia, 10(19), 127-143.Pedraza, L. F., Hernández, C., Galeano, K., Rodríguez-Colina, E., & Páez, I. (2016). Ocupación espectral y modelo de radio cognitiva para Bogotá. Bogotá: Universidad Distrital Francisco José de Caldas.Pedraza, L. F., López, D., & Salcedo, O. (2011). Enrutamiento basado en el algoritmo de Dijkstra para una red de radio cognitiva. Tecnura, 15(30), 93-100.Petrova, M., Mahonen, P., & Osuna, A. (2010). Multi-class classification of analog and digital signals in cognitive radios using support vector machi nes. En International Symposium on Wireless Communication Systems (pp. 986-990). 19 Sep - 22 Sep 2010M, York, Reino Unido.Pham, C., Tran, N. H., Do, C. T., Moon, S. Il, & Hong, C. S. (2014). Spec trum handoff model based on hidden Markov model in cognitive radio networks. En International Conference on Information Networking (pp. 406- 411). IEEE. 10 Feb. - 12 Feb. 2014, Phuket, Tailandia.Pla, V., Vidal, J. R., Martínez-Bauset, J., & Guijarro, L. (2010). Modeling and characterization of spectrum white spaces for underlay cognitive radio networks. En IEEE International Conference on Communications. Mayo 23- 17 de 2010, Cape Town, South Africa.Rahimian, N., Georghiades, C. N., Shakir, M. Z., & Qaraqe, K. A. (2014). On the probabilistic model for primary and secondary user activity for OFDMA-based cognitive radio systems: Spectrum occupancy and sys tem throughput perspectives. IEEE Transactions on Wireless Communica tions, 13(1), 356-369Ramírez Pérez, C., & Ramos Ramos, V. M. (2010). Handover vertical: un problema de toma de decisión múltiple. En Congreso Internacional sobre In novación y Desarrollo Tecnológico. 24 al 26 de noviembre 2010, Cuernavaca, Morelos, México.Ramírez-Pérez, C., & Ramos-R, V. (2013). On the effectiveness of multi criteria decision mechanisms for vertical handoff. En International Confe rence on Advanced Information Networking and Applications (pp. 1157-1164). March 25-28, 2013, Barcelona, Spain.Rodríguez, A. B., Ramírez, L. J., & Chahuan, J. (2015). Nueva Generación de heurísticas para redes de fibra óptica WDM (Wavelength División Multiplexing) bajo tráfico dinamico. Información Tecnológica, 26(5), 135- 142.Rodríguez-Colina, E., Ramírez, P., Carrillo, A., & Ernesto, C. (2011). Multi ple attribute dynamic spectrum decision making for cognitive radio net works. En International Conference on Wireless and Optical Communications Networks (pp. 1-5).Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9-26.Safavian, S. R., & Landgrebe, D. (1991). A survey of decision tree classifier methodology. IEEE Transactions on Systems, Man and Cybernetics, 21(3), 660-674.Sgora, A., Vergados, D. D., & Chatzimisios, P. (2010). An access network se lection algorithm for heterogeneous wireless environments. En The IEEE symposium on Computers and Communications (pp. 890-892). Junio 22 al 25 de 2010, Riccione, Italia.Shun-Fang, Y., Jung-Shyr, W., & Hsu-Hung, H. (2008). A vertical media independent handover decision algorithm across Wi-Fi networks. En In ternational Conference on Wireless and Optical Communications Networks. 5-7 May 2008, Surabaya, Indonesia.Song, Q., & Jamalipour, A. (2005). A network selection mechanism for next generation networks. En IEEE International Conference on Communications (vol. 2, pp. 1418-1422).Song, Y., & Xie, J. (2010). Proactive spectrum handoff in cognitive radio ad hoc networks based on common hopping coordination. En IEEE Confe rence on Computer Communications (pp. 1-2). Marzo 15 al 19. San Diego, CA, Estados Unidos.Sriram, K., & Whitt, W. (1986). Characterizing superposition arrival pro cesses in packet multiplexers for voice and data. IEEE Journal on Selected Areas in Communications, 4(6), 833-846.Steenkiste, P., Sicker, D., Minden, G., & Raychaudhuri, D. (2009). Future di rections in cognitive radio network research. NSF workshop report. Recuperado de https://www.cs.cmu.edu/~prs/NSF_CRN_Report_Final.pdfStevens-Navarro, E., & Wong, V. (2007). A vertical handoff decision algo rithm for heterogeneous wireless networks. En IEEE Wireless Communica tions and Networking Conference (pp. 3199-3204). Marzo 11 al 15 de 2007, Hong Kong, China.Stevens-Navarro, E., & Wong, V. W. S. (2006). Comparison between verti cal handoff decision algorithms for heterogeneous wireless networks. En IEEE Vehicular Technology Conference (vol. 2, pp. 947-951).Stevens-Navarro, E., Gallardo-Medina, R., Pineda-Rico, U., & Acosta-Elías, J. (2012). Application of MADM method VIKOR for vertical handoff in heterogeneous wireless networks. IEICE Transactions on Communications, 95(2), 599-602.Stevens-Navarro, E., Lin, Y., & Wong, V. W. S. (2008). An MDP-based verti cal handoff decision algorithm for heterogeneous wireless networks. IEEE Transactions on Vehicular Technology, 57(2), 1243-1254.Stevens-Navarro, E., Martínez-Morales, J. D., & Pineda-Rico, U. (2012). Evaluation of vertical handoff decision algorightms based on MADM methods for heterogeneous wireless networks. Journal of Applied Research and Technology, 10(4), 534-548.Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: an introduc tion. IEEE Transactions on Neural Networks, 9(5), 1054.Taj, M. I., & Akil, M. (2011). Cognitive radio spectrum evolution prediction using a rtificial neural networks based multivariate time series modelling. En Wireless Conference Sustainable Wireless Technologies (pp. 1-6). VDE. April 27-29, 2011, Vienna, Austria.Tanino, T., Tanaka, T., & Inuiguchi, M. (2003). Multi-objective programming and goal programming: theory and applications. Berlin, Alemania: Springer Science & Business Media.Tragos, E., Zeadally, S., Fragkiadakis, A., & Siris, V. (2013). Spectrum assig nment in cognitive radio networks: A comprehensive survey. IEEE Com munications Surveys and Tutorials, 15(3), 1108-1135.Trigui, E., Esseghir, M., & Merghem-Boulahia, L. (2012). Multi-agent sys tems negotiation approach for handoff in mobile cognitive radio networks. En International Conference on New Technologies, Mobility and Security (pp. 1-5). 7 May - 10 May, 2012, Estambul, Turquia.Tsiropoulos, G., Dobre, O., Ahmed, M., & Baddour, K. (2016). Radio resou rce allocation techniques for efficient spectrum access in cognitive radio networks. IEEE Communications Surveys & Tutorials, 18(1), 824-847.Tuan, T. A., Tong, L. C., & Premkumar, A. B. (2010). An adaptive learning automata algorithm for channel selection in cognitive radio network. En IEEE International Conference on Communications and Mobile Computing (vol. 2, pp. 159-163). 12 al 14 de Abril de 2010, Shenzhen, China.Universidad Politécnica de Cataluña. (2004). User manual OPNET. Recupera do el 19 de agosto del 2015, de http://ansat.es/soporte/docs/fragmen tacion/OPNET_Modeler_Manual.pdfValenta, V., Maršálek, R., Baudoin, G., Villegas, M., Suárez, M., & Robert, F. (2010). Survey on spectrum utilization in Europe: Measurements, analy ses and observations. En International Conference on Cognitive Radio Oriented Wireless Networks (pp. 2-6). Jun 16, 2010 - Jun 18, 2010, Cannes, France.Van, B., Prasad, R. V., & Niemegeers, I. (2012). A survey on handoffs - Les sons for 60 GHz based wireless systems. IEEE Communications Surveys and Tutorials, 14(1), 64-86.Villavicencio, J. (2014). Introducción a series de tiempo. Recuperado el 10 de diciembre de 2014, de http://www.estadisticas.gobierno.pr/iepr/Link Click.aspx?fileticket=4_BxecUaZmg=Wang, C. W., & Wang, L. C. (2009). Modeling and analysis for proactive decision spectrum handoff in cognitive radio networks. En IEEE Interna tional Conference on Communications (pp. 1-6).Wang, L.-C., & Wang, C.-W. (2008). Spectrum handoff for cognitive radio networks: reactive-sensing or proactive-sensins? En IEEE International Conference on High Performance, Computing and Communications (pp. 343- 348). 25 Sep. - 27 Sep. 2008, Dalian, China.Wang, L.-C., Wang, C.-W., & Chang, C.-J. (2012). Modeling and analysis for spectrum handoffs in cognitive radio networks. IEEE Transactions on Mobile Computing, 11(9), 1499-1513.Wang, X., Wong, A., & Ho, P.-H. (2010). Dynamically optimized spatiotem poral prioritization for spectrum sensing in cooperative cognitive radio. Wireless Networks, 16(4), 889-901.Wei, Q., Farkas, K., Prehofer, C., Mendes, P., & Plattner, B. (2006). Context aware handover using active network technology. Computer Networks, 50(15), 2855-2872.Wei, Y., Li, X., Song, M., & Song, J. (2008). Cooperation radio resource management and adaptive vertical handover in heterogeneous wireless networks. En International Conference on Natural Computation (vol. 5, pp. 197-201).Weingart, T., Sicker, D. C., & Grunwald, D. (2007). A statistical method for reconfiguration of cognitive radios. IEEE Wireless Communications, 14(4), 34-40.Willkomm, D., Machiraju, S., Bolot, J., & Wolisz, A. (2008). Primary users in cellular networks: a large-scale measurement study. En IEEE Sympo sium on New Frontiers in Dynamic Spectrum Access Networks (pp. 401-411). 14-17 Oct. 2008, Chicago, Illinois, Estados Unidos.Woods, W. A. (1986). Important issues in knowledge representation. Procee dings of the IEEE, 74(10), 1322-1334.Wooldridge, M. (2009). An introduction to multiagent systems. Glasgow, Gran Bretaña: John Wiley & Sons.Wu, Y., Yang, K., Zhao, L., & Cheng, X. (2009). Congestion-aware proactive vertical handoff algorithm in heterogeneous wireless networks. IET Communications, 3(7), 1103.Wu, Y., Yang, Q., Liu, X., & Kwak, K. (2016). Delay-Constrained optimal transmission with proactive spectrum handoff in cognitive radio networks. IEEE Transactions on Communications. 15(3), 627-640.Xian, X., Shi, W., & Huang, H. (2008). Comparison of OMNET++ and other simulator for WSN simulation. En IEEE Conference on Industrial Electro nics and Applications (pp. 1439-1443). 3-5 June 2008. Singapur, Singapur.Xu, G., & Lu, Y. (2006). Channel and modulation selection based on support vector machines for cognitive radio. En International Conference on Wireless Communications, Networking and Mobile Computing (pp. 4-7). 22 Sep - 24 Sep 2006, Wuhan, China.Xu, Y., Anpalagan, A., Wu, Q., Shen, L., Gao, Z., & Wang, J. (2013). Deci sion-Theoretic distributed channel selection for opportunistic spectrum access: strategies, challenges and solutions. IEEE Communications Surveys & Tutorials, 15(4), 1689-1713.Yang, C., Lou, W., Fu, Y., Xie, S., & Yu, R. (2016). On throughput maximi zation in multichannel cognitive radio networks via generalized access strategy. IEEE Transactions on Communications, 64(4), 1384-1398.Yang, P., Sun, Y., Liu, C., Li, W., & Wen, X. (2013). A novel fuzzy logic based vertical handoff decision algorithm for heterogeneous wireless net works. En International Symposium on Wireless Personal Multimedia Com munications (pp. 1-5). 24 Jun. - 27 Jun. 2013, Atlantic City, NJ, Estados Unidos.Yang, S. F., & Wu, J. S. (2008). A IEEE 802.21 handover design with QOS provision across WLAN and WMAN. En International Conference on Communications, Circuits and Systems (pp. 548-552). 25-27 May 2008, Fu jian, China.Yang, S. J., & Tseng, W. C. (2013). Design novel weighted rating of multiple attributes scheme to enhance handoff efficiency in heterogeneous wireless networks. Computer Communications, 36(14), 1498-1514.Yi-Bing, L., & Ai-Chun, P. (2000). Comparing soft and hard handoffs. IEEE Transactions on Vehicular Technology, 49(3), 192-798.Yifei, W., Yinglei, T., Li, W., Mei, S., & Xiaojun, W. (2013). QoS provisioning energy saving dynamic access policy for overlay cognitive radio networks with hidden Markov channels. China Communications, 10(12), 92-101.Ying, W., Jun, Y., Yun, Z., Gen, L., & Ping, Z. (2008). Vertical handover de cision in an enhanced media independent handover framework. En Wire less Communications and Networking Conference (pp. 2693-2698). March 31 2008-April 3 2008, Las Vegas, NV, Estados Unidos.Yonghui, C. (2010). Study of the bayesian networks. En IEEE International Conference on E-Health Networking, Digital Ecosystems and Technologies (vol. 1, pp. 172-174). 17 Apr - 18 Apr 2010, Shenzhen, China.Yoon, K. P., & Hwang, C.-L. (1995). Multiple attribute decision making: an in troduction (vol. 104). Thousand Oaks, Estados Unidos: Sage Publications.Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.Zapata, J. A., Arango, M. D., & Adarme, W. (2012). Applying fuzzy exten ded analytical hierarchy (FEAHP) for selecting logistics software. Inge niería e Investigación, 32(1), 94-99.Zhang, W. (2004). Handover decision using fuzzy MADM in heterogeneous networks. En IEEE Wireless Communications and Networking Conference (vol. 2, pp. 653-658). 21 al 25 de marzo de 2004, Atlanta, Estados Unidos.Zhang, Y., Tay, W. P., Li, K. H., Esseghir, M., & Gaïti, D. (2016). Oppor tunistic Spectrum access with temporal-spatial reuse in cognitive radio networks. En IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 3661-3665). 20 al 25 de marzo de 2016, Shangai, China.Zhao, Y., Mao, S., Neel, J. O., & Reed, J. H. (2009). Performance evaluation of cognitive radios: Metrics, utility functions, and methodology. Procee dings of the IEEE, 97(4), 642-658.Zheng, H., & Cao, L. (2005). Device-centric spectrum management. En IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Net works (pp. 56-65). 8 Nov. - 11 Nov. 2005. Baltimore, MD, Estados Unidos.Páez-Parra, Ingrid Patricia [0009-0008-1033-8714]Giral Ramírez, Diego Armando [0000-0001-9983-4555]Hernández Suárez, César Augusto [0000-0001-9409-8341]Hernández Suárez, Cesar AugustoPáez-Parra, Ingrid PatriciaGiral Ramírez, Diego ArmandoORIGINALpags internas.pdfpags internas.pdfapplication/pdf19006214http://repository.udistrital.edu.co/bitstream/11349/33023/1/pags%20internas.pdfe702eaacc48deb75e35871bd21ac8460MD51open accessTHUMBNAILCaptura.JPGCaptura.JPGimage/jpeg119381http://repository.udistrital.edu.co/bitstream/11349/33023/4/Captura.JPG1cb1fae22e5489c6194082f8586ca168MD54open accesspags internas.pdf.jpgpags internas.pdf.jpgIM Thumbnailimage/jpeg1456http://repository.udistrital.edu.co/bitstream/11349/33023/5/pags%20internas.pdf.jpga16489031cdc76cfaeebb00847a17bf2MD55open accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repository.udistrital.edu.co/bitstream/11349/33023/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-87167http://repository.udistrital.edu.co/bitstream/11349/33023/3/license.txt997daf6c648c962d566d7b082dac908dMD53open access11349/33023oai:repository.udistrital.edu.co:11349/330232024-04-08 16:15:05.599open accessRepositorio Institucional Universidad Distrital - RIUDrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyBERSBDT05URU5JRE9TIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgREUgTEEgVU5JVkVSU0lEQUQgRElTVFJJVEFMCgpUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyAoUklVRCkKCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCBjb25maWVybyAoZXJpbW9zKSBhIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIChlbiBhZGVsYW50ZSwgTEEgVU5JVkVSU0lEQUQpIHVuYSBsaWNlbmNpYSBwYXJhIHVzbyBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgaW50ZWdyYXLDoSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIChlbiBhZGVsYW50ZSwgUklVRCksIGRlIGFjdWVyZG8gYSBsYXMgc2lndWllbnRlcyByZWdsYXMsIGxhcyBjdWFsZXMgZGVjbGFybyAoYW1vcykgY29ub2NlciB5IGFjZXB0YXI6CgphKQlFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWEgZW4gZWwgUklVRCB5IGhhc3RhIHBvciB1biBwbGF6byBkZSBkaWV6ICgxMCkgQcOxb3MsIHByb3Jyb2dhYmxlIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyBsYSBjdWFsIHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHByZXZpYSBzb2xpY2l0dWQgYSBMQSBVTklWRVJTSURBRCBwb3IgZXNjcml0byBjb24gdW5hIGFudGVsYWNpw7NuIGRlIGRvcyAoMikgbWVzZXMgYW50ZXMgZGVsIHZlbmNpbWllbnRvIGRlbCBwbGF6byBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLgoKYikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyBwb3IgZWwgUklVRCAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBMQSBVTklWRVJTSURBRCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsIGRvY3VtZW50byBhcGFyZXpjYSByZWZlcmVuY2lhZG8gZW4gbW90b3JlcyBkZSBiw7pzcXVlZGEgbyByZXBvc2l0b3Jpb3MgZGlmZXJlbnRlcyBhbCBSSVVELCB1bmEgdmV6IGVsKG9zKSBhdXRvcihlcykgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUklVRCwgZGFkbyBxdWUgbGEgbWlzbWEgc2Vyw6EgcHVibGljYWRhIGVuIEludGVybmV0LgoKYykJTGEgYXV0b3JpemFjacOzbiBzZSBoYWNlIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCBsb3MgYXV0b3JlcyByZW51bmNpYW4gYSByZWNpYmlyIGJlbmVmaWNpbyBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKQlMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQgc29uIG9icmEocykgb3JpZ2luYWwoZXMpIHNvYnJlIGxhIGN1YWwoZXMpIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBhc3VtZW4gdG90YWwgcmVzcG9uc2FiaWxpZGFkIHBvciBlbCBjb250ZW5pZG8gZGUgc3Ugb2JyYSBhbnRlIExBIFVOSVZFUlNJREFEIHkgYW50ZSB0ZXJjZXJvcy4gRW4gdG9kbyBjYXNvIExBIFVOSVZFUlNJREFEIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3Mgw61uZGljZXMgeSBidXNjYWRvcmVzIHF1ZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBtYXhpbWl6YXIgbGEgdmlzaWJpbGlkYWQgZWwgdXNvIHkgZWwgaW1wYWN0byBkZSBsYSBwcm9kdWNjacOzbiBjaWVudMOtZmljYSwgYXJ0w61zdGljYSB5IGFjYWTDqW1pY2EgZW4gbGEgY29tdW5pZGFkIGxvY2FsLCBuYWNpb25hbCBvIGludGVybmFjaW9uYWwuCgoKZikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGNvbnZlcnRpciBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluIGRlIHN1IHByZXNlcnZhY2nDs24gZW4gZWwgdGllbXBvIHF1ZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGxhIGRlIHN1cyBwcsOzcnJvZ2FzLgoKCkNvbiBiYXNlIGVuIGxvIGFudGVyaW9yIGF1dG9yaXpvKGFtb3MpLCBhIGZhdm9yIGRlbCBSSVVEIHkgZGUgc3VzIHVzdWFyaW9zLCBsYSBwdWJsaWNhY2nDs24geSBjb25zdWx0YSBkZSBsYSBzaWd1aWVudGUgb2JyYToKClRpdHVsbwoKQXV0b3IgICAgICAgQXBlbGxpZG9zICAgICAgICAgTm9tYnJlcwoKMQoKMgoKMwoKCmcpCUF1dG9yaXpvKGFtb3MpLCBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsb3MgbGl0ZXJhbGVzIGFudGVyaW9yZXMsIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgTEEgVU5JVkVSU0lEQUQsIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQsIGN1eW8gdGV4dG8gY29tcGxldG8gc2UgcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9yZXBvc2l0b3J5LnVkaXN0cml0YWwuZWR1LmNvLwoKaCkJQ29ub3pjbyhjZW1vcykgeSBhY2VwdG8oYW1vcykgcXVlIG90b3JnbyhhbW9zKSB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIChoZW1vcykgb2J0ZW5pZG8gdW5hIGNvcGlhLgoKaSkJTWFuaWZpZXN0byhhbW9zKSBtaSAobnVlc3RybykgdG90YWwgYWN1ZXJkbyBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIHVzbyB5IHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHF1ZSBzZSBkZXNjcmliZW4geSBleHBsaWNhbiBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8uCgpqKQlDb25vemNvKGNlbW9zKSBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSAgTEEgVU5JVkVSU0lEQUQ7IGVuIGNvbmNyZXRvLCBlbCBBY3VlcmRvIDAwNCBkZSAyMDEyIGRlbCBDU1UsIEFjdWVyZG8gMDIzIGRlIDIwMTIgZGVsIENTVSBzb2JyZSBQb2zDrXRpY2EgRWRpdG9yaWFsLCBBY3VlcmRvIDAyNiAgZGVsIDMxIGRlIGp1bGlvIGRlIDIwMTIgc29icmUgZWwgcHJvY2VkaW1pZW50byBwYXJhIGxhIHB1YmxpY2FjacOzbiBkZSB0ZXNpcyBkZSBwb3N0Z3JhZG8gZGUgbG9zIGVzdHVkaWFudGVzIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzLCAgQWN1ZXJkbyAwMzAgZGVsIDAzIGRlIGRpY2llbWJyZSBkZSAyMDEzIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBjcmVhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsIEFjdWVyZG8gMDM4IGRlIDIwMTUgMjAxNSDigJxwb3IgZWwgY3VhbCBzZSBtb2RpZmljYSBlbCBBY3VlcmRvIDAzMSBkZSAyMDE0IGRlIDIwMTQgcXVlIHJlZ2xhbWVudGEgZWwgdHJhYmFqbyBkZSBncmFkbyBwYXJhIGxvcyBlc3R1ZGlhbnRlcyBkZSBwcmVncmFkbyBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IHNlIGRpY3RhbiBvdHJhcyBkaXJlY3RyaWNlc+KAnSB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0bywgZXNwZWNpYWxtZW50ZSBsYSBsZXkgMjMgZGUgMTk4MiwgbGEgbGV5IDQ0IGRlIDE5OTMgeSBsYSBkZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLiBFc3RvcyBkb2N1bWVudG9zIHBvZHLDoW4gc2VyIGNvbnN1bHRhZG9zIHkgZGVzY2FyZ2Fkb3MgZW4gZWwgcG9ydGFsIHdlYiBkZSBsYSBiaWJsaW90ZWNhIGh0dHA6Ly9zaXN0ZW1hZGViaWJsaW90ZWNhcy51ZGlzdHJpdGFsLmVkdS5jby8KCmspCUFjZXB0byhhbW9zKSBxdWUgTEEgVU5JVkVSU0lEQUQgbm8gc2UgcmVzcG9uc2FiaWxpemEgcG9yIGxhcyBpbmZyYWNjaW9uZXMgYSBsYSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBEZXJlY2hvcyBkZSBBdXRvciBjYXVzYWRhcyBwb3IgbG9zIHRpdHVsYXJlcyBkZSBsYSBwcmVzZW50ZSBMaWNlbmNpYSB5IGRlY2xhcmFtb3MgcXVlIG1hbnRlbmRyw6kgKGVtb3MpIGluZGVtbmUgYSBMQSBVTklWRVJTSURBRCBwb3IgbGFzIHJlY2xhbWFjaW9uZXMgbGVnYWxlcyBkZSBjdWFscXVpZXIgdGlwbyBxdWUgbGxlZ2FyZW4gYSBwcmVzZW50YXJzZSBwb3IgdmlvbGFjacOzbiBkZSBkZXJlY2hvcyBhIGxhIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBvIGRlIEF1dG9yIHJlbGFjaW9uYWRvcyBjb24gbG9zIGRvY3VtZW50b3MgcmVnaXN0cmFkb3MgZW4gZWwgUklVRC4KCmwpCUVsIChsb3MpIGF1dG9yKGVzKSBtYW5pZmllc3RhKG1vcykgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwsIGRlIGV4Y2x1c2l2YSBhdXRvcsOtYSwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvczsgZGUgdGFsIHN1ZXJ0ZSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgZWwgKGxvcykgZXN0dWRpYW50ZShzKSDigJMgYXV0b3IoZXMpIGFzdW1pcsOhKG4pIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHkgc2FsZHLDoShuKSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcy4gUGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgTEEgVU5JVkVSU0lEQUQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCgptKQlFbCAobG9zKSBhdXRvcihlcykgbWFuaWZpZXN0YShtb3MpIHF1ZSBjb25vemNvKGNlbW9zKSBsYSBhdXRvbm9tw61hIHkgbG9zIGRlcmVjaG9zLCBxdWUgcG9zZWUobW9zKSBzb2JyZSBsYSBvYnJhIHksIGNvbW8gdGFsLCBlcyAoc29tb3MpIHJlc3BvbnNhYmxlKHMpIGRlbCBhbGNhbmNlIGp1csOtZGljbyB5IGxlZ2FsLCBkZSBlc2NvZ2VyIGxhIG9wY2nDs24gZGUgbGEgcHVibGljYWNpw7NuIG8gZGUgcmVzdHJpY2Npw7NuIGRlIGxhIHB1YmxpY2FjacOzbiBkZWwgZG9jdW1lbnRvIHJlZ2lzdHJhZG8gZW4gZWwgUklVRC4KCgoKCgoKU0kgRUwgRE9DVU1FTlRPIFNFIEJBU0EgRU4gVU4gVFJBQkFKTyBRVUUgSEEgU0lETyBQQVRST0NJTkFETyBPIEFQT1lBRE8gUE9SIFVOQSBBR0VOQ0lBIE8gVU5BIE9SR0FOSVpBQ0nDk04sIENPTiBFWENFUENJw5NOIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTCBGUkFOQ0lTQ08gSk9TRSBERSBDQUxEQVMsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MKREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uCgoKCgoKCgoKCgoKCgoKCgoKCgoKCkVuIGNvbnN0YW5jaWEgZGUgbG8gYW50ZXJpb3IsIGZpcm1vKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50bywgZW4gbGEgY2l1ZGFkIGRlIEJvZ290w6EsIEQuQy4sIGEgbG9zCgoKRklSTUEgREUgTE9TIFRJVFVMQVJFUyBERSBERVJFQ0hPUyBERSBBVVRPUgoKX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwoKCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIChkZSBsb3MpIEF1dG9yKGVzKToKCkF1dG9yCSAgICAgIENvcnJlbyBFbGVjdHLDs25pY28KCjEKCjIKCjMKCk5vbWJyZSBkZSBEaXJlY3RvcihlcykgZGUgR3JhZG86CgoxCgoyCgozCgpOb21icmUgRmFjdWx0YWQgeSBQcm95ZWN0byBDdXJyaWN1bGFyOgoKRmFjdWx0YWQJUHJveWVjdG8gQ3VycmljdWxhcgoKCgoKCgoKCk5vdGE6IEVuIGNhc28gcXVlIG5vIGVzdMOpIGRlIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgeSBtYW5pZmllc3RlIGFsZ3VuYSByZXN0cmljY2nDs24gc29icmUgbGEgb2JyYSwganVzdGlmaXF1ZSBsb3MgbW90aXZvcyBwb3IgbG9zIGN1YWxlcyBlbCBkb2N1bWVudG8geSBzdXMgYW5leG9zIG5vIHB1ZWRlbiBzZXIgcHVibGljYWRvcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIFJJVUQuCgoKU2kgcmVxdWllcmUgbcOhcyBlc3BhY2lvLCBwdWVkZSBhbmV4YXIgdW5hIGNvcGlhIHNpbWlsYXIgYSBlc3RhIGhvamEK