Estado del conocimiento sobre mezclas asfálticas tibias. Caso de estudio periodo 2014-2023

La preocupación actual sobre el estado del medio ambiente y el aumento de las emisiones de gases de efecto invernadero ha llevado al ser humano a buscar soluciones frente a estas problemáticas. A finales de los 90´s, en Alemania, surgió una nueva alternativa frente a las mezclas de concreto asfáltic...

Full description

Autores:
Sánchez Parra , Hector Andrés
Beltrán López , Nataly
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad Distrital Francisco José de Caldas
Repositorio:
RIUD: repositorio U. Distrital
Idioma:
spa
OAI Identifier:
oai:repository.udistrital.edu.co:11349/41893
Acceso en línea:
http://hdl.handle.net/11349/41893
Palabra clave:
Mezclas
Mezclas asfalticas tibias
MAT
Ingeniería Topográfica -- Tesis y disertaciones académicas
Emisiones de gases de efecto invernadero
Tecnología de pavimentos
Agregado de concreto reciclado (ACR)
Calidad y durabilidad del asfalto
Warm Mix Asphalt
Mixtures
WMA
Rights
License
Abierto (Texto Completo)
id UDISTRITA2_e76c8bdf2e86b94a6b95e1bfb05657d4
oai_identifier_str oai:repository.udistrital.edu.co:11349/41893
network_acronym_str UDISTRITA2
network_name_str RIUD: repositorio U. Distrital
repository_id_str
dc.title.none.fl_str_mv Estado del conocimiento sobre mezclas asfálticas tibias. Caso de estudio periodo 2014-2023
dc.title.titleenglish.none.fl_str_mv State of knowledge about warm asphalt mixtures. Case study period 2014-2023
title Estado del conocimiento sobre mezclas asfálticas tibias. Caso de estudio periodo 2014-2023
spellingShingle Estado del conocimiento sobre mezclas asfálticas tibias. Caso de estudio periodo 2014-2023
Mezclas
Mezclas asfalticas tibias
MAT
Ingeniería Topográfica -- Tesis y disertaciones académicas
Emisiones de gases de efecto invernadero
Tecnología de pavimentos
Agregado de concreto reciclado (ACR)
Calidad y durabilidad del asfalto
Warm Mix Asphalt
Mixtures
WMA
title_short Estado del conocimiento sobre mezclas asfálticas tibias. Caso de estudio periodo 2014-2023
title_full Estado del conocimiento sobre mezclas asfálticas tibias. Caso de estudio periodo 2014-2023
title_fullStr Estado del conocimiento sobre mezclas asfálticas tibias. Caso de estudio periodo 2014-2023
title_full_unstemmed Estado del conocimiento sobre mezclas asfálticas tibias. Caso de estudio periodo 2014-2023
title_sort Estado del conocimiento sobre mezclas asfálticas tibias. Caso de estudio periodo 2014-2023
dc.creator.fl_str_mv Sánchez Parra , Hector Andrés
Beltrán López , Nataly
dc.contributor.advisor.none.fl_str_mv Rondón Quintana, Hugo Alexander
dc.contributor.author.none.fl_str_mv Sánchez Parra , Hector Andrés
Beltrán López , Nataly
dc.contributor.orcid.none.fl_str_mv Rondón Quintana, Hugo Alexander [0000-0003-2946-9411]
dc.subject.none.fl_str_mv Mezclas
Mezclas asfalticas tibias
MAT
topic Mezclas
Mezclas asfalticas tibias
MAT
Ingeniería Topográfica -- Tesis y disertaciones académicas
Emisiones de gases de efecto invernadero
Tecnología de pavimentos
Agregado de concreto reciclado (ACR)
Calidad y durabilidad del asfalto
Warm Mix Asphalt
Mixtures
WMA
dc.subject.lemb.none.fl_str_mv Ingeniería Topográfica -- Tesis y disertaciones académicas
Emisiones de gases de efecto invernadero
Tecnología de pavimentos
Agregado de concreto reciclado (ACR)
Calidad y durabilidad del asfalto
dc.subject.keyword.none.fl_str_mv Warm Mix Asphalt
Mixtures
WMA
description La preocupación actual sobre el estado del medio ambiente y el aumento de las emisiones de gases de efecto invernadero ha llevado al ser humano a buscar soluciones frente a estas problemáticas. A finales de los 90´s, en Alemania, surgió una nueva alternativa frente a las mezclas de concreto asfálticos, que busca combinar las ventajas técnicas ofrecidas por las mezclas asfálticas en caliente y las características ambientales de las mezclas en frío. Esta tecnología es conocida internacionalmente como mezcla asfáltica tibia (MAT) (conocida ampliamente en el mundo por sus siglas en inglés como WMA-Warm Mix Asphalt). El objetivo principal de las MAT es lograr disminuir las temperaturas de fabricación y compactación respecto a una mezcla asfáltica en caliente sin comprometer la calidad, el desempeño y la durabilidad del producto asfáltico resultante. Los grupos TOPOVIAL y GIIAUD Centro de Estudios en Pavimentos y Materiales Sostenibles de la Universidad Distrital Francisco José de Caldas, realizaron un proyecto de investigación denominado “Desarrollo de una Mezcla Asfáltica Tibia bajo Criterios Técnicos y Medioambientales” (Convocatoria CIDC 014 de 2013) del cual se obtuvo un estado del conocimiento sobre MAT hasta el año 2013 (Rondón et al. 2013). Actualmente, los grupos de investigación TOPOVIAL y Centro de Estudios en Pavimentos y Materiales Sostenibles (adscritos al Proyecto Curricular de Ingeniería Topográfica) están realizando un proyecto similar en el que el agregado pétreo de origen natural se reemplazará por agregado de concreto reciclado (ACR) para desarrollar una MAT más amigable con el medio ambiente. Este proyecto de investigación se titula “Desarrollo de una Mezcla Asfáltica Tibia (MAT) con Agregado de Concreto Reciclado (ACR)” y es financiado por la Universidad Distrital mediante Convocatoria pública CIDC 01 de 2023. Dentro de las actividades de formación de la convocatoria mencionada se vincularán dos estudiantes de pregrado como auxiliares de investigación que apoyen el desarrollo del proyecto, específicamente en temas asociados a la revisión bibliográfica sobre MAT. El presente estudio tiene como objetivo principal actualizar el estado del conocimiento referente a las MAT desde el año 2014 hasta el 2023. La información que se revisará y analizará provendrá de los sitios web académicos y científicos más importantes a nivel mundial (ScienceDirect, PubMed, ASCE, IEEE Xplore, entre otros). Con los documentos mencionados se construirá una base de datos, la cual se utilizará para crear el estado del conocimiento actualizado a la fecha del proyecto de investigación en desarrollo. Los resultados obtenidos del presente trabajo de investigación serán fuente de consulta para académicos, estudiantes e investigadores del área de los pavimentos.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-22T17:53:07Z
dc.date.available.none.fl_str_mv 2024-10-22T17:53:07Z
dc.date.created.none.fl_str_mv 2024-09-18
dc.type.none.fl_str_mv bachelorThesis
dc.type.degree.none.fl_str_mv Investigación-Innovación
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11349/41893
url http://hdl.handle.net/11349/41893
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Abed, A., Thom, N., & Grenfell, J. (2019). A novel approach for rational determination of warm mix asphalt production temperatures. Construction and Building Materials, 200, 80-93. https://doi.org/10.1016/j.conbuildmat.2018.12.082
Ahmed, T. A., Lee, H. D., & Williams, R. C. (2018). Using a modified asphalt bond strength test to investigate the properties of asphalt binders with polyethylene wax-based warm mix asphalt additive. International Journal of Pavement Research and Technology, 11(1), 28-37. https://doi.org/10.1016/j.ijprt.2017.08.004
Ai, C., Li, Q. J., & Qiu, Y. (2015). Testing and assessing the performance of a new warm mix asphalt with SMC. Journal of Traffic and Transportation Engineering (English Edition), 2(6), 399-405. https://doi.org/10.1016/j.jtte.2015.10.002
Almeida, A., Capitão, S., Estanqueiro, C., & Picado-Santos, L. (2021). Possibility of incorporating waste plastic film flakes into warm-mix asphalt as a bitumen extender. Construction and Building Materials, 291. https://doi.org/10.1016/j.conbuildmat.2021.123384
Ali, N., Chan, T., & Saleem, M. (2013). "Effect of Recycled Asphalt Shingles on the Performance Characteristics of Asphalt Binders." Construction and Building Materials, 40, 217-224. DOI: 10.1016/j.conbuildmat.2013.07.038.
Amirkhani, M. J., Fakhri, M., & Amirkhani, A. (2023). Evaluating the use of different fillers and Kaowax additive in warm mix asphalt mixtures. Case Studies in Construction Materials, 19. https://doi.org/10.1016/j.cscm.2023.e02489
APAO, 2003: APAO (2003). "Warm Mix Asphalt: The European Practice". Asphalt Paving Association of Oregon
Attahiru, Y. B., Mohamed, A., Eltwati, A., Burga, A. A., Ibrahim, A., & Nabade, A. M. (2023). Effect of waste cooking oil on warm mix asphalt block pavement – A comprehensive review. Physics and Chemistry of the Earth, 129. https://doi.org/10.1016/j.pce.2022.103310
Arega, Z., Bhasin, A., Motamed, A., & Turner, F. (2011). "Influence of Warm-Mix Additives and Reduced Aging on the Rheology of Asphalt Binders with High RAP Contents." Construction and Building Materials, 25(10), 4061-4070. DOI: 10.1016/j.conbuildmat.2011.06.009.
Bairgi, B. K., Tarefder, R. A., & Ahmed, M. U. (2018). Long-term rutting and stripping characteristics of foamed warm-mix asphalt (WMA) through laboratory and field investigation. Construction and Building Materials, 170, 790-800. https://doi.org/10.1016/j.conbuildmat.2018.03.055
Behera, H. K., Das, S. S., Giri, D., & Panigrahi, S. K. (2022). Application of ANN for evaluating WMA Marshall parameters. Materials Today: Proceedings, 62, https://doi.org/10.1016/j.matpr.2022.04.759
Behnood, A. (2020). A review of the warm mix asphalt (WMA) technologies: Effects on thermo-mechanical and rheological properties. Journal of Cleaner Production, 259, 120817. https://doi.org/10.1016/j.jclepro.2020.120817
Behnood, A., Karimi, M. M., & Cheraghian, G. (2020). Coupled effects of warm mix asphalt (WMA) additives and rheological modifiers on the properties of asphalt binders. Cleaner Engineering and Technology, 1, 100028. https://doi.org/10.1016/j.clet.2020.100028
Biro, S., Gandhi, T., & Amirkhanian, S. (2009). "Midrange Temperature Properties of Warm Mix Asphalt Binders". Journal of Materials in Civil Engineering, 21(7), 316-323.
Bonaquist, R. (2011). "Mix Design Practices for Warm Mix Asphalt". National Cooperative Highway Research Program Report 691.
Buss, A., Cascione, A., & Williams, R. C. (2014). Evaluation of warm mix asphalt containing recycled asphalt shingles. Construction and Building Materials, 61, 1-9. https://doi.org/10.1016/j.conbuildmat.2014.02.066
Buss, A., Williams, R. C., & Schram, S. (2015). The influence of warm mix asphalt on binders in mixes that contain recycled asphalt materials. Construction and Building Materials, 77, 50-58. https://doi.org/10.1016/j.conbuildmat.2014.12.023
Caputo, P., Aiello, I., Caligiuri, R., Giorno, E., Abe, A. A., Rossi, C. O., & Godbert, N. (2022). Polyalkylated gallic esters and acids, high performant warm mix asphalt and adhesion promoters for bitumen. International Journal of Adhesion and Adhesives, 118, 103228. https://doi.org/10.1016/j.ijadhadh.2022.103228
Cheraghian, G., Falchetto, A. C., You, Z., Chen, S., Kim, Y. S., Westerhoff, J., ... & Wistuba, M. P. (2020). Warm mix asphalt technology: An up-to-date review. Journal of Cleaner Production, 268, 122128. https://doi.org/10.1016/j.jclepro.2020.122128
Cheraghian, G., Falchetto, A. C., You, Z., Chen, S., Kim, Y. S., Westerhoff, J., ... & Wistuba, M. P. (2020). Warm mix asphalt technology: An up-to-date review. Journal of Cleaner Production, 268, 122128. https://doi.org/10.1016/j.jclepro.2020.122128
Chowdhury, A., & Button, J. (2008). "A Review of Warm Mix Asphalt". Texas Transportation Institute, Report No. 0-5597-1.
Cuadri, A. A., Carrera, V., Izquierdo, M. A., García-Morales, M., & Navarro, F. J. (2014). Bitumen modifiers for reduced temperature asphalts: A comparative analysis between three polymeric and non-polymeric additives. Construction and Building Materials, 51, 82-88. https://doi.org/10.1016/j.conbuildmat.2013.11.009
D’Angelo, S., Ferrotti, G., Oliviero Rossi, C., Caputo, P., & Canestrari, F. (2023). Characterization of aged bitumen recovered from in-situ polymer-modified HMA and WMA using advanced technologies. Construction and Building Materials, 409. https://doi.org/10.1016/j.conbuildmat.2023.133951
Delgado, M., Sánchez, J., Rondón, H., Fernández, W., & Reyes, F. (2018). Influence of four non-conventional additives on the physical, rheological, and thermal properties of an asphalt. Revista Ingenieria e investigación. VOL 38(2), 18-26. doi:10.15446/ing.investig.v38n2.68638
Estakhri, C., Button, J.W., & Alvarez, A.E. (2009). "Field and laboratory investigation of warm mix asphalt in Texas". Texas A&M Transportation Institute. http://tti.tamu.edu/documents/0-5597-1.pdf
Fabrice, P. K. R., Abejide, S. O., Adedeji, J. A., & Mostafa, M. M. H. (2020). Evaluating the Performance of Warm Mix Asphalt Incorporating Recycled Asphalt Pavement Treated Bases. Transportation Research Procedia, 45, 716-723. https://doi.org/10.1016/j.trpro.2020.02.106
Fakhri, M., & Rahimzadeh Mottahed, A. (2021). Improving moisture and fracture resistance of warm mix asphalt containing RAP and nanoclay additive. Construction and Building Materials, 272, 121900. https://doi.org/10.1016/j.conbuildmat.2020.121900
Fallah Tafti, M., Khabiri, M. M., & Khani Sanij, H. (2016). Experimental investigation of the effect of using different aggregate types on WMA mixtures. International Journal of Pavement Research and Technology, 9(5), 376-386. https://doi.org/10.1016/j.ijprt.2016.09.006
Gong, J., Han, X., Su, W., Xi, Z., Cai, J., Wang, Q., ... & Xie, H. (2020). Laboratory evaluation of warm - mix epoxy SBS modified asphalt binders containing Sasobit. Journal of Building Engineering, 32. https://doi.org/10.1016/j.jobe.2020.101550
Gong, J., Liu, Y., Wang, Q., Xi, Z., Cai, J., & Ding, G. (2019). Performance evaluation of warm mix asphalt additive modified epoxy asphalt rubbers. Construction and Building Materials, 204, 288-295. https://doi.org/10.1016/j.conbuildmat.2019.01.197
Gungat, L., Md. Yusoff, N. I., & Hamzah, M. O. (2016). Effects of RH-WMA additive on rheological properties of high amount reclaimed asphalt binders. Construction and Building Materials, 114. https://doi.org/10.1016/j.conbuildmat.2016.03.182
Hasan, M. R. M., You, Z., You, L., & Zhang, R. (2018). Performance of ethanol and ethanol-NaHCO3 based foamed WMA mixtures for low emission asphalt technology. Construction and Building Materials, 192, 9-19. https://doi.org/10.1016/j.conbuildmat.2018.10.107
Huang, W., He, P., Long, X., Tian, J., Zheng, Y., Ma, H., ... & Wu, X. (2020). Design of a skeleton-stabilized warm mix asphalt mixture and investigation of its fatigue and fracture performance. Construction and Building Materials, 248. https://doi.org/10.1016/j.conbuildmat.2020.118618
Jameel, M. S., Khan, A. H., Rehman, Z. u., Aziz, M., Tabassum, S., & Mohamed, A. (2024). Evaluation of asphalt mixes performance characteristic with mustard oil as a rejuvenator. Case Studies in Construction Materials, 20. https://doi.org/10.1016/j.cscm.2024.e02951
Kanitpong, K., Nam, K., & Bahia, H. U. (2012). "Laboratory Evaluation of Warm Mix Asphalt Performance." International Journal of Pavement Engineering, 13(6), 499-507. DOI: 10.1080/10298436.2012.662039
Kavussi, A., & Hashemian, L. (2012). "Investigating the Use of Warm Mix Asphalt Technology for Surface Course Mixtures Containing High Percentages of RAP." Construction and Building Materials, 26(1), 280-285. DOI: 10.1016/j.conbuildmat.2012.02.023.
Khani Sanij, H., Afkhamy Meybodi, P., Amiri Hormozaky, M., Hosseini, S. H., & Olazar, M. (2019). Evaluation of performance and moisture sensitivity of glass-containing warm mix asphalt modified with zycothermTM as an anti-stripping additive. Construction and Building Materials, 197, 185-194. https://doi.org/10.1016/j.conbuildmat.2018.11.190
Kim, D., Norouzi, A., Kass, S., Liske, T., & Kim, Y. R. (2017). Mechanistic performance evaluation of pavement sections containing RAP and WMA additives in Manitoba. Materiales de Construcción, 133. https://doi.org/10.1016/j.conbuildmat.2016.12.035
Kim, Y., Im, S., Lee, S., & Park, T. (2014). "Performance Evaluation of Warm-Mix Recycled Asphalt Mixtures Using Double Barrel® Drum Mixer." Construction and Building Materials, 68, 260-266. DOI: 10.1016/j.conbuildmat.2014.04.090.
Kolapkar, S., & Sathe, S. (2023). Efecto de Sasobit® como aditivo WMA en los parámetros de diseño de mezcla. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.03.253
Köse, H., Çelik, O. N., & Arslan, D. (2023). A novel approach to warm mix asphalt additive production from polypropylene waste plastic via pyrolysis. Construction and Building Materials, 411, 134151. https://doi.org/10.1016/j.conbuildmat.2023.134151
Król, J. B., Kowalski, K. J., Radziszewski, P., & Sarnowski, M. (2015). Rheological behaviour of n-alkane modified bitumen in aspect of Warm Mix Asphalt technology. Construction and Building Materials, 93, 703-710. https://doi.org/10.1016/j.conbuildmat.2015.06.033
Kumar, A., Choudhary, R., & Kumar, A. (2022). Performance evaluation of asphalt binders modified with pyrolytic chars and WMA additive. Materials Today: Proceedings, 65, https://doi.org/10.1016/j.matpr.2022.04.969
Kumar, A., Choudhary, R., Kumar, A., & Huang, J. (2022). Performance evaluation of asphalt binders modified with pyrolytic chars and WMA additive. Materials Today: Proceedings, 65, https://doi.org/10.1016/j.matpr.2022.04.969
Kumar, V., & Coleri, E. (2023). Effects of finer gradation, temperature, warm mix additives, and compaction methods on density and performance of asphalt mixtures. Construction and Building Materials, 394. https://doi.org/10.1016/j.conbuildmat.2023.132226
Kumar, V., & Coleri, E. (2023). High and intermediate temperature performance of warm asphalt rubber containing conventional warm mix additives and novel chemical surfactant. Construction and Building Materials, 394. https://doi.org/10.1016/j.conbuildmat.2023.132214
Kristjansdottir, O., Muench, S. T., Michael, L., & Burke, G. (2007). "Assessing Potential for Warm-Mix Asphalt Technology Adoption". Transportation Research Record: Journal of the Transportation Research Board, 2040(1), 91-99. DOI: 10.3141/2040-10
Li, D., Leng, Z., Zou, F., & Yu, H. (2021). Effects of rubber absorption on the aging resistance of hot and warm asphalt rubber binders prepared with waste tire rubber. Journal of Cleaner Production, 303, 127082. https://doi.org/10.1016/j.jclepro.2021.127082
Li, K., Yan, X., Pu, J., Wang, Y., Chen, Y., Fang, K., Hu, J., & Yang, Y. (2023). Quantitative evaluation on the energy saving and emission reduction characteristics of warm mix asphalt mixtures. Construction and Building Materials, 407. https://doi.org/10.1016/j.conbuildmat.2023.133465
Liang, X., Yu, X., Chen, C., Ding, G., & Huang, J. (2022). Towards the low-energy usage of high viscosity asphalt in porous asphalt pavements: A case study of warm-mix asphalt additives. Case Studies in Construction Materials, 16, e00914. https://doi.org/10.1016/j.cscm.2022.e00914
Limón Covarrubias, P., Galaviz-González, J. R., Ávalos Cueva, D., & Castillo Aguilar, S. (2019). Impact of addition of greasy diamide on the rheological-mechanical properties of warm-mix asphalt. Construction and Building Materials, 211, 308-316. https://doi.org/10.1016/j.conbuildmat.2019.03.149
Liu, J., Ran, Y., Zarei, M., Tabasi, E., Naseri, A., & Khordehbinan, M. W. (2023). Effect of nano molybdenum disulfide (Nano-MoS2) on fracture behavior of Warm mix asphalt (WMA). Materials Today: Proceedings. https://doi.org/10.1016/j.conbuildmat.2023.132820
Liu, X., Li, B., Jia, M., Li, C., & Zhang, Z. (2020). Effect of short-term aging on interface-cracking behaviors of warm mix asphalt under dry and wet conditions. Construction and Building Materials, 261, 119885. https://doi.org/10.1016/j.conbuildmat.2020.119885
Liu, X., Sha, A., Li, C., Zhang, Z., & Li, H. (2020). Influence of water on warm-modified asphalt: Views from adhesion, morphology, and chemical characteristics. Construction and Building Materials, 264, 120159. https://doi.org/10.1016/j.conbuildmat.2020.120159
Liu, Y., Yan, K., & Liu, J. (2018). Rheological properties of warm mix asphalt binders and warm mix asphalt binders containing polyphosphoric acid. International Journal of Pavement Research and Technology, 11(5), 481-487. https://doi.org/10.1016/j.ijprt.2018.03.005
López, C., Thenoux, G., Sandoval, G., Armijos, V., Ramírez, A., Guisado, F., & Moreno, E. (2017). Estudio de mezclas asfálticas templadas con emulsión super-estabilizada. Revista ingeniería de construcción, 32(1), 57-64. https://dx.doi.org/10.4067/S0718-50732017000100006
Lu, D. X., & Saleh, M. (2016). Laboratory evaluation of warm mix asphalt incorporating high RAP proportion by using evotherm and sylvaroad additives. Construction and Building Materials, 114, 580-587. https://doi.org/10.1016/j.conbuildmat.2016.03.200
Lu, D. X., Saleh, M., & Nguyen, N. H. T. (2019). Effect of rejuvenator and mixing methods on behaviour of warm mix asphalt containing high RAP content. Construction and Building Materials, 197, 792-802. https://doi.org/10.1016/j.conbuildmat.2018.11.205
Mahto, S. K., & Sinha, S. (2023). Influence of rice husk ash on moisture susceptibility of warm mix asphalt using chemical-based additive. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.06.118
Mazurek, G., & Nowakowski, K. (2015). The Evaluation of SMA Mixture Properties with the Surface-active Agent in WMA Technology. Procedia Engineering, 108, 22-29. https://doi.org/10.1016/j.proeng.2015.06.115
Meghasri, K., Mamatha, K. H., & Dinesh, S. V. (2023). Performance evaluation of WMA mixtures with RAP. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.09.003
Mokhtari, A., Bozorgzad, A., Hasa, E., Lee, H. D., & Guymon, C. A. (2020). Field implementation of WMA mixtures containing recycled asphalt shingles (RAS). Construction and Building Materials, 250, 118836. https://doi.org/10.1016/j.conbuildmat.2020.118836
Mokhtari, A., Bozorgzad, A., Hasa, E., Lee, H. D., & Guymon, C. A. (2020). Field implementation of WMA mixtures containing recycled asphalt shingles (RAS). Construction and Building Materials, 250. https://doi.org/10.1016/j.conbuildmat.2020.118836
Nanjegowda, V. H., Patel, R., Mahimaluru, J., & Biligiri, K. P. (2021). Synthesis and characterization of zeolite-like additive: An eco-efficient asphalt mix production strategy. Construction and Building Materials, 266(Part A), 120898. https://doi.org/10.1016/j.conbuildmat.2020.120898
Omari, I., Aggarwal, V., & Hesp, S. (2016). Investigation of two Warm Mix Asphalt additives. International Journal of Pavement Research and Technology, 9(2), 83-88. https://doi.org/10.1016/j.ijprt.2016.02.001
Perez-Martinez, M., Marsac, P., Gabet, T., Pouget, S., & Hammoum, F. (2017). Ageing evolution of foamed warm mix asphalt combined with reclaimed asphalt pavement. Materiales De Construcción, 67(327), e125. https://doi.org/10.3989/mc.2017.04716
Pérez-Martínez, M., Moreno-Navarro, F., Martín-Marín, J., Ríos-Losada, C., Rubio-Gámez, M. C. (2014). Analysis of cleaner technologies based on waxes and surfactant additives in road construction. Journal of Cleaner Production, 65, 374-379. https://doi.org/10.1016/j.jclepro.2013.09.012
Phan, T. M., Choi, Y.-S., Youn, S.-H., & Park, D.-W. (2024). Effect of synthesized warm mix additive and rejuvenator on performance of recycled warm asphalt mixtures. Construction and Building Materials, 241, 1357724. https://doi.org/10.1016/j.conbuildmat.2024.135772
Pirmohammad, S., & Hojjati Mengharpey, M. (2020). Influence of natural fibers on fracture strength of WMA (warm mix asphalt) concretes using a new fracture test specimen. Construction and Building Materials, 251, 118927. https://doi.org/10.1016/j.conbuildmat.2020.118927
Pirozzolo, L., Sol-Sánchez, M., Moreno-Navarro, F., Martínez-Montes, G., & Rubio-Gámez, M. C. (2017). Evaluation of bituminous sub-ballast manufactured at low temperatures as an alternative for the construction of more sustainable railway structures. Materiales De Construcción, 67(327), e128. https://doi.org/10.3989/mc.2017.04816
Podolsky, J. H., & Williams, R. C. (2014). Estimation and assessment of high temperature mix performance grade for select bio-based WMA additives. Construction and Building Materials, 69, 310-322. https://doi.org/10.1016/j.conbuildmat.2014.07.046
Podolsky, J. H., Williams, R. C., & Cochran, E. (2018). Effect of corn and soybean oil derived additives on polymer-modified HMA and WMA master curve construction and dynamic modulus performance. International Journal of Pavement Research and Technology, 11(6), 541-552. https://doi.org/10.1016/j.ijprt.2018.01.002
Polo-Mendoza, R., Penabaena-Niebles, R., Giustozzi, F., & Martinez-Arguelles, G. (2022). Eco-friendly design of Warm mix asphalt (WMA) with recycled concrete aggregate (RCA): A case study from a developing country. Construction and Building Materials, 326. https://doi.org/10.1016/j.conbuildmat.2022.126890
Pouokam Kamdema, R. F., Adedeji, J. A., & Hassan Mostafa, M. M. (2023). A Study on Indirect Tensile Strength for the Determination of Resilient Modulus of Warm Mix Asphalt. Transportation Research Procedia, 69. https://doi.org/10.1016/j.trpro.2023.02.236
Ragni, D., Ferrotti, G., Lu, X., & Canestrari, F. (2018). Effect of temperature and chemical additives on the short-term ageing of polymer modified bitumen for WMA. Materials & Design, 160, 514-526. https://doi.org/10.1016/j.matdes.2018.09.042
Rahmad, S., Rosyidi, S. A. P., Memon, N. A., Badri, K. H., Widyatmoko, I., Arshad, A. K., ... & Hainin, M. R. (2021). Physical, thermal, and micro-surface characteristics of PG76 binder incorporated with liquid chemical WMA additive. Construction and Building Materials, 272, 121626. https://doi.org/10.1016/j.conbuildmat.2020.121626
Rochishnu, E., Ramesh, A., & Venkat Ramayya, V. (2021). Sustainable pavement technologies - performance of high RAP in WMA surface mixture containing nano glass fibers. Materials Today: Proceedings, 43(2), 1009-1017. https://doi.org/10.1016/j.matpr.2020.07.643
Rodríguez-Alloza, A. M., & Gallego, J. (2017). Volumetric characteristics and compactability of asphalt rubber mixtures with organic warm mix asphalt additives. Materiales de Construcción, 67(327), e123. https://doi.org/10.3989/mc.2017.03616
Rodríguez-Allozaa, A. M., & Gallego, J. (2017). Volumetric characteristics and compactability of asphalt rubber mixtures with organic warm mix asphalt additives. Materiales de Construcción, 67(327). http://dx.doi.org/10.3989/mc.2017.03616
Romier, A., Audeon, M., David, J., Martineau, Y., & Porot, L. (2006). "Low-Energy Asphalt with Performance of Hot-Mix Asphalt". International Journal of Pavement Research and Technology, 1(4), 217-224.
Rondón Quintana, H. A., Vergara, O. I. L., & Fernández Gómez, W. (2017). Comportamiento de una mezcla asfáltica tibia fabricada en una planta de asfalto. Ingeniería y Desarrollo, 35(1), 152-173. http://dx.doi.org/10.14482/inde.35.1.8947
Rondón, H., & Reyes, F. (2022). Pavimentos. Materiales, construcción y diseño. Bogotá: ECOE Ediciones.
Rondón, H., & Wilmar, F. (2014). Mechanical resistance of a chemically modified warm mix asphalt. Revista Tecnura, 18 (Edición especial doctorado), 97-108. doi: 10.14483/udistrital.jour.tecnura.2014.DSE1.a09
Rondón, H., Hernández, J., & Reyes, L. (2015). A review of warm mix asphalt technology: Technical, economic, and environmental aspects. Ingeniería e investigación. VOL 35 (3), 5-18. doi:10.15446%2Fing.investig.v35n3.50463
Rondón, H., León, O., & Fernández, W. (2017). Behavior of a warm mix asphalt made in an asphalt plant. Revista Ingeniería y desarrollo. VOL 35 (1), 152-173. doi:10.14482/inde.35.1.8947
Rondón, H., Ocampo, M., Vacca, H., Reyes, F., Nieto, J., & Beltrán, D. (2016). The mechanical behavior of two warm-mix asphalts. Revista Ingeniería e Investigación. VOL 36(3), 29-38. doi:10.15446%2Fing.investig.v38n2.68638
Sadeq, M., Al-Khalid, H., Masad, E., & Sirin, O. (2016). Comparative evaluation of fatigue resistance of warm fine aggregate asphalt mixtures. Construction and Building Materials, 109, 8-16. https://doi.org/10.1016/j.conbuildmat.2016.01.045
Sangsefidi, M., Khabiri, M. M., & Fakhri, M. (2014). "Effect of Additives on Moisture Susceptibility of Warm Mix Asphalt." Journal of Materials in Civil Engineering, 26(6), 1072-1079. DOI: 10.1061/(ASCE)MT.1943-5533.0000916
Sedaghat, B., Taherrian, R., Hosseini, S. A., & Mousavi, S. M. (2020). Rheological properties of bitumen containing nanoclay and organic warm-mix asphalt additives. Construction and Building Materials, 243, 118092. DOI: 10.1016/j.conbuildmat.2020.118092.
Sargand, S. M., Kim, S., & Aschenbrener, T. (2012). "Performance of Warm Mix Asphalt in a Midwestern Field". Journal of Testing and Evaluation, 40(2), 204-212.
Singh, D., Ashish, P. K., & Chitragar, S. F. (2018). Laboratory performance of Recycled Asphalt Mixes containing wax and chemical based Warm Mix Additives using Semi Circular Bending and Tensile Strength Ratio tests. Construction and Building Materials, 158, 1003-1014. https://doi.org/10.1016/j.conbuildmat.2017.10.080
Silva, H. M. R. D., Oliveira, J. R. M., & Jesus, C. M. G. (2010). "Are Totally Recycled Hot Mix Asphalts a Sustainable Option for Road Pavements?". Resources, Conservation and Recycling, 54(11), 1507-1518.
Silva, H. M. R. D., Oliveira, J. R. M., & Peralta, J. (2010). "Evaluation of the Warm Mix Asphalt Performance with Reclaimed Asphalt Pavement". International Journal of Pavement Research and Technology, 3(4), 182-190.
Stimilli, A. R. A., Virgili, A. P., & Canestrari, F. F. (2017). Warm recycling of flexible pavements: Effectiveness of Warm Mix Asphalt additives on modified bitumen and mixture performance. Journal of Cleaner Production, 156. https://doi.org/10.1016/j.jclepro.2017.03.235
Sukhija, M., Wagh, V. P., & Saboo, N. (2021). Development of workability-based approach for assessment of production temperatures of warm mix asphalt mixtures. Construction and Building Materials, 305. https://doi.org/10.1016/j.conbuildmat.2021.124808
Tang, N., Deng, Z., Dai, J.-G., Yang, K., Chen, C., & Wang, Q. (2018). Geopolymer as an additive of warm mix asphalt: Preparation and properties. Journal of Cleaner Production, 192, 906-915. https://doi.org/10.1016/j.jclepro.2018.04.276
Tao, M., & Mallick, R. B. (2009). "Effects of Warm-Mix Asphalt Additives on Workability and Mechanical Properties of Reclaimed Asphalt Pavement Material". Transportation Research Record: Journal of the Transportation Research Board, 2126(1), 151-160.
Tao, M., Mallick, R. B., & Buchanan, M. S. (2009). "Evaluation of Workability and Mechanical Properties of Warm-Mix Asphalt Using a Mechanistic Approach". Journal of Materials in Civil Engineering, 21(8), 299-305.
Topal, A., Sengoz, B., Kok, B. V., Yilmaz, M., Dokandari, P. A., Oner, J., & Kaya, D. (2014). Evaluation of mixture characteristics of warm mix asphalt involving natural and synthetic zeolite additives. Construction and Building Materials, 57, 38-44. https://doi.org/10.1016/j.conbuildmat.2014.01.093
Valdés-Vidal, G., Calabi-Floody, A., Sanchez-Alonso, E., Díaz, C., & Fonseca, C. (2020). Highway trial sections: Performance evaluation of warm mix asphalt and recycled warm mix asphalt. Construction and Building Materials, 262, 120069. https://doi.org/10.1016/j.conbuildmat.2020.120069
Vatanparast, M., Sarkar, A., & Sahaf, S. A. (2023). Optimization of asphalt mixture design using response surface method for stone matrix warm mix asphalt incorporating crumb rubber modified binder. Construction and Building Materials, 369. https://doi.org/10.1016/j.conbuildmat.2023.130401
Vega-Zamanillo, Á., Calzada-Pérez, M. A., Sánchez-Alonso, E., & Gonzalo-Orden, H. (2014). Density, Adhesion and Stiffness of Warm Mix Asphalts. Procedia - Social and Behavioral Sciences, 160, 323-331. https://doi.org/10.1016/j.sbspro.2014.12.144
Wang, D., Riccardi, C., Jafari, B., Falchetto, A. C., & Wistuba, M. P. (2021). Investigation on the effect of high amount of Re-recycled RAP with Warm mix asphalt (WMA) technology. Construction and Building Materials, 312. https://doi.org/10.1016/j.conbuildmat.2021.125395
Wasiuddin, N. M., Selvamohan, S., Zaman, M., & Guegan, M. (2007). "Comparative Laboratory Study of Sasobit and Aspha-min Additives in Warm-Mix Asphalt". Transportation Research Record: Journal of the Transportation Research Board, 1998(1), 82-88.
Wang, W., Cheng, H., Sun, L., Sun, Y., & Liu, N. (2022). Multi-performance evaluation of recycled warm-mix asphalt mixtures with high reclaimed asphalt pavement contents. Journal of Cleaner Production, 377, 134209. https://doi.org/10.1016/j.jclepro.2022.134209
Wang, W., Huang, S., Qin, Y., Sun, Y., & Chen, J. (2020). Multi-scale study on the high percentage warm-mix recycled asphalt binder based on chemical experiments. Construction and Building Materials, 252. https://doi.org/10.1016/j.conbuildmat.2020.119124
Woszuk, A., & Franus, W. (2016). Properties of the Warm Mix Asphalt involving clinoptilolite and Na-P1 zeolite additives. Construction and Building Materials, 114, 556-563. https://doi.org/10.1016/j.conbuildmat.2016.03.188
Wu, S., Zhang, W., Shen, S., Li, X., Muhunthan, B., & Mohammad, L. N. (2017). Field-aged asphalt binder performance evaluation for Evotherm warm mix asphalt: Comparisons with hot mix asphalt. Construction and Building Materials, 156, 574-583. https://doi.org/10.1016/j.conbuildmat.2017.09.016
Xia, W., Dong, M., & Xu, T. (2024). Synergistic suppressions of porous warm mix agent and composite flame retardant on combustion and fume release of asphalt pavement. Journal of Cleaner Production, 443, 141003. https://doi.org/10.1016/j.jclepro.2024.141003
Xiong, F., Zarei, M., Tabasi, E., Naseri, A., Khordehbinan, M. W., & Kh, T. I. (2023). Effect of nano-reduced graphene oxide (NRGO) on long-term fracture behavior of Warm Mix Asphalt (WMA). Construction and Building Materials, 392. https://doi.org/10.1016/j.conbuildmat.2023.131934
Xiu, M., Wang, X., Morawska, L., Pass, D., Beecroft, A., Mueller, J. F., & Thai, P. (2020). Emissions of particulate matters, volatile organic compounds, and polycyclic aromatic hydrocarbons from warm and hot asphalt mixes. Journal of Cleaner Production, 275. https://doi.org/10.1016/j.jclepro.2020.123094
Yazdipanah, F., Ameri, M., Shahri, M., Hasheminejad, N., & Haghshenas, H. F. (2021). Laboratory investigation and statistical analysis of the rutting and fatigue resistance of asphalt mixtures containing crumb-rubber and wax-based warm mix asphalt additive. Construction and Building Materials, 309. https://doi.org/10.1016/j.conbuildmat.2021.125165
Yousefi, A., Behnood, A., Nowruzi, A., & Haghshenas, H. (2021). Performance evaluation of asphalt mixtures containing warm mix asphalt (WMA) additives and reclaimed asphalt pavement (RAP). Construction and Building Materials, 268. https://doi.org/10.1016/j.conbuildmat.2020.121200
You, Z., & Goh, S. W. (2008). "Laboratory Evaluation of Warm Mix Asphalt: A Preliminary Study". International Journal of Pavement Research and Technology, 1(1), 34-39. Yu, H., Chen, Y., Wu, Q., Zhang, L., Zhang, Z., Zhang, J., ... & Oeser, M. (2020). Decision support for selecting optimal method of recycling waste tire rubber into wax-based warm mix asphalt based on fuzzy comprehensive evaluation. Journal of Cleaner Production, 265. https://doi.org/10.1016/j.jclepro.2020.121781
Yu, S., Shen, S., Steger, R., & Wang, X. (2022). Effect of warm mix asphalt additive on the workability of asphalt mixture: From particle perspective. Construction and Building Materials, 360, 129548. https://doi.org/10.1016/j.conbuildmat.2022.129548
Zarei, M., Abdi Kordani, A., & Zahedi, M. (2021). Evaluation of fracture behavior of modified Warm Mix Asphalt (WMA) under modes I and II at low and intermediate temperatures. Theoretical and Applied Fracture Mechanics, 114. https://doi.org/10.1016/j.tafmec.2021.103015
Zarei, M., Tabasi, E., Ghandehari, M., Rezaie, M., Khordehbinan, M. W., & Al-Bahrani, M. (2022). Effect of hospital waste pyrolysis hydrocarbon (HWPHC) on fracture behavior of Warm Mix asphalt (WMA) under freeze–thaw damage (FTD). Construction and Building Materials, 359. https://doi.org/10.1016/j.conbuildmat.2022.129473
Zarei, M., Taghizadeh, M. R., Moayedi, S. S., Naseri, A., Al-Bahrani, M., & Khordehbinan, M. W. (2022). Evaluation of fracture behavior of Warm mix asphalt (WMA) modified with hospital waste pyrolysis carbon black (HWPCB) under freeze–thaw damage (FTD) at low and intermediate temperatures. Construction and Building Materials, 356. https://doi.org/10.1016/j.conbuildmat.2022.129184
Zawawi, M. A., Abdul Hassan, N., Mahmud, M. Z. H., Jaya, R. P., & Mohamed, A. (2023). Effect of Evotherm 3G on the performance of asphalt mixture. Physics and Chemistry of the Earth, 130. https://doi.org/10.1016/j.pce.2023.103392
Zhang, B., Yin, X., Zhong, Y., Zang, Q., Wang, Z., Kong, L., Zeng, Z., Fu, S., & Fu, Y. (2024). Performance analysis and viscosity modeling of emulsified cutback composite cold-mixed epoxy asphalt binder. Construction and Building Materials, 416. https://doi.org/10.1016/j.conbuildmat.2024.135171
Zhang, B., Yin, X., Zhong, Y., Zang, Q., Yu, J., Lin, Z., Zou, G., Yu, H., Leng, Z., & Zhang, Y. (2024). Long-term performance of recycled asphalt mixtures containing high RAP and RAS. Journal of Road Engineering. https://doi.org/10.1016/j.jreng.2024.01.003
Zhang, J., Yang, F., Pei, J., Xu, S., & An, F. (2015). Viscosity-temperature characteristics of warm mix asphalt binder with Sasobit®. Construction and Building Materials, 78, 34-39. https://doi.org/10.1016/j.conbuildmat.2014.12.123
Zhang, S., Wang, D., Guo, F., Deng, Y., Feng, F., Wu, Q., ... & Li, Y. (2021). Properties investigation of the SBS modified asphalt with a compound warm mix asphalt (WMA) fashion using the chemical additive and foaming procedure. Journal of Cleaner Production, 319. https://doi.org/10.1016/j.jclepro.2021.128789
Zhao, P., Ren, R., Zhou, H., Ouyang, J., Li, Z., & Sun, D. (2021). Preparation and properties of imidazoline surfactant as additive for warm mix asphalt. Construction and Building Materials, 273, 121692. https://doi.org/10.1016/j.conbuildmat.2020.121692
Zou, F., Leng, Z., Cao, R., Li, G., Zhang, Y., & Sreeram, A. (2022). Performance of zeolite synthesized from sewage sludge ash as a warm mix asphalt additive. Resources, Conservation & Recycling, 181, 106254. https://doi.org/10.1016/j.resconrec.2022.106254
Zou, F., Xu, X., Chen, R., Lan, J., Li, G., Tan, Z., Xu, J., Jiang, X., & Leng, Z. (2024). A novel foaming additive derived from waste polyethylene terephthalate (PET) for low-carbon warm mix asphalt. Resources, Conservation & Recycling, 202, 107377. https://doi.org/10.1016/j.resconrec.2023.107377
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.none.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv pdf
dc.publisher.none.fl_str_mv Universidad Distrital Francisco José de Caldas
publisher.none.fl_str_mv Universidad Distrital Francisco José de Caldas
institution Universidad Distrital Francisco José de Caldas
bitstream.url.fl_str_mv https://repository.udistrital.edu.co/bitstreams/33865f13-990f-4d77-90e9-dcb093c0820a/download
https://repository.udistrital.edu.co/bitstreams/2ef340ec-fc23-4ac1-a09d-6f5d7eeca1d6/download
https://repository.udistrital.edu.co/bitstreams/7e60c120-321c-4e19-aa71-49d35215a1f0/download
https://repository.udistrital.edu.co/bitstreams/f18246eb-c12b-4906-8b53-5f8328bfc77b/download
https://repository.udistrital.edu.co/bitstreams/f636f2d3-1a82-4624-be33-66002656b878/download
https://repository.udistrital.edu.co/bitstreams/e9bc5dad-670a-4e7d-8d7f-2ded8684e86e/download
bitstream.checksum.fl_str_mv 997daf6c648c962d566d7b082dac908d
e340e1e77c161c59fda1aca368de1ff0
eb82792205e0e611fa0fe1ca699b4499
854266acdb4cef520cabd82c7cdb6d18
cc7a7fe8589922ac7df3164bd4e7344c
e6f211645f855640f846b58c23b0ec95
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Distrital
repository.mail.fl_str_mv repositorio@udistrital.edu.co
_version_ 1828165306927808512
spelling Rondón Quintana, Hugo AlexanderSánchez Parra , Hector AndrésBeltrán López , NatalyRondón Quintana, Hugo Alexander [0000-0003-2946-9411]2024-10-22T17:53:07Z2024-10-22T17:53:07Z2024-09-18http://hdl.handle.net/11349/41893La preocupación actual sobre el estado del medio ambiente y el aumento de las emisiones de gases de efecto invernadero ha llevado al ser humano a buscar soluciones frente a estas problemáticas. A finales de los 90´s, en Alemania, surgió una nueva alternativa frente a las mezclas de concreto asfálticos, que busca combinar las ventajas técnicas ofrecidas por las mezclas asfálticas en caliente y las características ambientales de las mezclas en frío. Esta tecnología es conocida internacionalmente como mezcla asfáltica tibia (MAT) (conocida ampliamente en el mundo por sus siglas en inglés como WMA-Warm Mix Asphalt). El objetivo principal de las MAT es lograr disminuir las temperaturas de fabricación y compactación respecto a una mezcla asfáltica en caliente sin comprometer la calidad, el desempeño y la durabilidad del producto asfáltico resultante. Los grupos TOPOVIAL y GIIAUD Centro de Estudios en Pavimentos y Materiales Sostenibles de la Universidad Distrital Francisco José de Caldas, realizaron un proyecto de investigación denominado “Desarrollo de una Mezcla Asfáltica Tibia bajo Criterios Técnicos y Medioambientales” (Convocatoria CIDC 014 de 2013) del cual se obtuvo un estado del conocimiento sobre MAT hasta el año 2013 (Rondón et al. 2013). Actualmente, los grupos de investigación TOPOVIAL y Centro de Estudios en Pavimentos y Materiales Sostenibles (adscritos al Proyecto Curricular de Ingeniería Topográfica) están realizando un proyecto similar en el que el agregado pétreo de origen natural se reemplazará por agregado de concreto reciclado (ACR) para desarrollar una MAT más amigable con el medio ambiente. Este proyecto de investigación se titula “Desarrollo de una Mezcla Asfáltica Tibia (MAT) con Agregado de Concreto Reciclado (ACR)” y es financiado por la Universidad Distrital mediante Convocatoria pública CIDC 01 de 2023. Dentro de las actividades de formación de la convocatoria mencionada se vincularán dos estudiantes de pregrado como auxiliares de investigación que apoyen el desarrollo del proyecto, específicamente en temas asociados a la revisión bibliográfica sobre MAT. El presente estudio tiene como objetivo principal actualizar el estado del conocimiento referente a las MAT desde el año 2014 hasta el 2023. La información que se revisará y analizará provendrá de los sitios web académicos y científicos más importantes a nivel mundial (ScienceDirect, PubMed, ASCE, IEEE Xplore, entre otros). Con los documentos mencionados se construirá una base de datos, la cual se utilizará para crear el estado del conocimiento actualizado a la fecha del proyecto de investigación en desarrollo. Los resultados obtenidos del presente trabajo de investigación serán fuente de consulta para académicos, estudiantes e investigadores del área de los pavimentos.The current concern about the state of the environment and the increase in greenhouse gas emissions in winter has led humans to seek solutions to these problems. In the late 1990s, a new alternative to asphalt concrete mixes emerged in Germany, which seeks to combine the technical advantages offered by hot mix asphalt and the environmental characteristics of cold mix asphalt. This technology is known internationally as warm mix asphalt (WMA) (widely known worldwide by its acronym in English as WMA - Warm Mix Asphalt). The main objective of WMA is to reduce the manufacturing and compaction temperatures of a hot mix asphalt without compromising the quality, performance and durability of the resulting asphalt product. The TOPOVIAL and GIIAUD groups, Center for Studies in Sustainable Pavements and Materials of the Francisco José de Caldas District University, carried out a research project called development of a Warm Asphalt Mix under Technical and Environmental Criteria" (Call CIDC 014 of 2013), from which a state of knowledge on MAT was obtained up to 2013 (Rondón et al. 2013). Currently, the TOPOVIAL and Center for Studies in Sustainable Pavements and Materials research groups (attached to the Topographic Engineering Curricular Project) are carrying out a similar project in which natural stone aggregate will be replaced by recycled concrete aggregate (ACR) to develop a more environmentally friendly MAT. This research project is entitled “Development of a Warm Asphalt Mix (MAT) with Recycled Concrete Aggregate (ACR)” and is funded by the Universidad Distrital through the public call CIDC 01 of 2023. Within the training activities of the aforementioned call, graduate students will be linked as research assistants to support the development of the project, specifically on topics associated with the bibliographic review on MAT. The main objective of this study is to update the state of knowledge regarding MAT from 2014 to 2023. The information that will be reviewed and analyzed will come from the most important academic and scientific websites worldwide (ScienceDirect, PubMed, ASCE, IEEE Xplore, among others). With the aforementioned documents, a database will be built, which will be used to create the updated state of knowledge at the end of the ongoing research project. The results obtained from this research work will be a source of reference for academics, students and researchers in the area of ​​pavements.pdfspaUniversidad Distrital Francisco José de CaldasMezclasMezclas asfalticas tibiasMATIngeniería Topográfica -- Tesis y disertaciones académicasEmisiones de gases de efecto invernaderoTecnología de pavimentosAgregado de concreto reciclado (ACR)Calidad y durabilidad del asfaltoWarm Mix AsphaltMixturesWMAEstado del conocimiento sobre mezclas asfálticas tibias. Caso de estudio periodo 2014-2023State of knowledge about warm asphalt mixtures. Case study period 2014-2023bachelorThesisInvestigación-Innovacióninfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Abed, A., Thom, N., & Grenfell, J. (2019). A novel approach for rational determination of warm mix asphalt production temperatures. Construction and Building Materials, 200, 80-93. https://doi.org/10.1016/j.conbuildmat.2018.12.082Ahmed, T. A., Lee, H. D., & Williams, R. C. (2018). Using a modified asphalt bond strength test to investigate the properties of asphalt binders with polyethylene wax-based warm mix asphalt additive. International Journal of Pavement Research and Technology, 11(1), 28-37. https://doi.org/10.1016/j.ijprt.2017.08.004Ai, C., Li, Q. J., & Qiu, Y. (2015). Testing and assessing the performance of a new warm mix asphalt with SMC. Journal of Traffic and Transportation Engineering (English Edition), 2(6), 399-405. https://doi.org/10.1016/j.jtte.2015.10.002Almeida, A., Capitão, S., Estanqueiro, C., & Picado-Santos, L. (2021). Possibility of incorporating waste plastic film flakes into warm-mix asphalt as a bitumen extender. Construction and Building Materials, 291. https://doi.org/10.1016/j.conbuildmat.2021.123384Ali, N., Chan, T., & Saleem, M. (2013). "Effect of Recycled Asphalt Shingles on the Performance Characteristics of Asphalt Binders." Construction and Building Materials, 40, 217-224. DOI: 10.1016/j.conbuildmat.2013.07.038.Amirkhani, M. J., Fakhri, M., & Amirkhani, A. (2023). Evaluating the use of different fillers and Kaowax additive in warm mix asphalt mixtures. Case Studies in Construction Materials, 19. https://doi.org/10.1016/j.cscm.2023.e02489APAO, 2003: APAO (2003). "Warm Mix Asphalt: The European Practice". Asphalt Paving Association of OregonAttahiru, Y. B., Mohamed, A., Eltwati, A., Burga, A. A., Ibrahim, A., & Nabade, A. M. (2023). Effect of waste cooking oil on warm mix asphalt block pavement – A comprehensive review. Physics and Chemistry of the Earth, 129. https://doi.org/10.1016/j.pce.2022.103310Arega, Z., Bhasin, A., Motamed, A., & Turner, F. (2011). "Influence of Warm-Mix Additives and Reduced Aging on the Rheology of Asphalt Binders with High RAP Contents." Construction and Building Materials, 25(10), 4061-4070. DOI: 10.1016/j.conbuildmat.2011.06.009.Bairgi, B. K., Tarefder, R. A., & Ahmed, M. U. (2018). Long-term rutting and stripping characteristics of foamed warm-mix asphalt (WMA) through laboratory and field investigation. Construction and Building Materials, 170, 790-800. https://doi.org/10.1016/j.conbuildmat.2018.03.055Behera, H. K., Das, S. S., Giri, D., & Panigrahi, S. K. (2022). Application of ANN for evaluating WMA Marshall parameters. Materials Today: Proceedings, 62, https://doi.org/10.1016/j.matpr.2022.04.759Behnood, A. (2020). A review of the warm mix asphalt (WMA) technologies: Effects on thermo-mechanical and rheological properties. Journal of Cleaner Production, 259, 120817. https://doi.org/10.1016/j.jclepro.2020.120817Behnood, A., Karimi, M. M., & Cheraghian, G. (2020). Coupled effects of warm mix asphalt (WMA) additives and rheological modifiers on the properties of asphalt binders. Cleaner Engineering and Technology, 1, 100028. https://doi.org/10.1016/j.clet.2020.100028Biro, S., Gandhi, T., & Amirkhanian, S. (2009). "Midrange Temperature Properties of Warm Mix Asphalt Binders". Journal of Materials in Civil Engineering, 21(7), 316-323.Bonaquist, R. (2011). "Mix Design Practices for Warm Mix Asphalt". National Cooperative Highway Research Program Report 691.Buss, A., Cascione, A., & Williams, R. C. (2014). Evaluation of warm mix asphalt containing recycled asphalt shingles. Construction and Building Materials, 61, 1-9. https://doi.org/10.1016/j.conbuildmat.2014.02.066Buss, A., Williams, R. C., & Schram, S. (2015). The influence of warm mix asphalt on binders in mixes that contain recycled asphalt materials. Construction and Building Materials, 77, 50-58. https://doi.org/10.1016/j.conbuildmat.2014.12.023Caputo, P., Aiello, I., Caligiuri, R., Giorno, E., Abe, A. A., Rossi, C. O., & Godbert, N. (2022). Polyalkylated gallic esters and acids, high performant warm mix asphalt and adhesion promoters for bitumen. International Journal of Adhesion and Adhesives, 118, 103228. https://doi.org/10.1016/j.ijadhadh.2022.103228Cheraghian, G., Falchetto, A. C., You, Z., Chen, S., Kim, Y. S., Westerhoff, J., ... & Wistuba, M. P. (2020). Warm mix asphalt technology: An up-to-date review. Journal of Cleaner Production, 268, 122128. https://doi.org/10.1016/j.jclepro.2020.122128Cheraghian, G., Falchetto, A. C., You, Z., Chen, S., Kim, Y. S., Westerhoff, J., ... & Wistuba, M. P. (2020). Warm mix asphalt technology: An up-to-date review. Journal of Cleaner Production, 268, 122128. https://doi.org/10.1016/j.jclepro.2020.122128Chowdhury, A., & Button, J. (2008). "A Review of Warm Mix Asphalt". Texas Transportation Institute, Report No. 0-5597-1.Cuadri, A. A., Carrera, V., Izquierdo, M. A., García-Morales, M., & Navarro, F. J. (2014). Bitumen modifiers for reduced temperature asphalts: A comparative analysis between three polymeric and non-polymeric additives. Construction and Building Materials, 51, 82-88. https://doi.org/10.1016/j.conbuildmat.2013.11.009D’Angelo, S., Ferrotti, G., Oliviero Rossi, C., Caputo, P., & Canestrari, F. (2023). Characterization of aged bitumen recovered from in-situ polymer-modified HMA and WMA using advanced technologies. Construction and Building Materials, 409. https://doi.org/10.1016/j.conbuildmat.2023.133951Delgado, M., Sánchez, J., Rondón, H., Fernández, W., & Reyes, F. (2018). Influence of four non-conventional additives on the physical, rheological, and thermal properties of an asphalt. Revista Ingenieria e investigación. VOL 38(2), 18-26. doi:10.15446/ing.investig.v38n2.68638Estakhri, C., Button, J.W., & Alvarez, A.E. (2009). "Field and laboratory investigation of warm mix asphalt in Texas". Texas A&M Transportation Institute. http://tti.tamu.edu/documents/0-5597-1.pdfFabrice, P. K. R., Abejide, S. O., Adedeji, J. A., & Mostafa, M. M. H. (2020). Evaluating the Performance of Warm Mix Asphalt Incorporating Recycled Asphalt Pavement Treated Bases. Transportation Research Procedia, 45, 716-723. https://doi.org/10.1016/j.trpro.2020.02.106Fakhri, M., & Rahimzadeh Mottahed, A. (2021). Improving moisture and fracture resistance of warm mix asphalt containing RAP and nanoclay additive. Construction and Building Materials, 272, 121900. https://doi.org/10.1016/j.conbuildmat.2020.121900Fallah Tafti, M., Khabiri, M. M., & Khani Sanij, H. (2016). Experimental investigation of the effect of using different aggregate types on WMA mixtures. International Journal of Pavement Research and Technology, 9(5), 376-386. https://doi.org/10.1016/j.ijprt.2016.09.006Gong, J., Han, X., Su, W., Xi, Z., Cai, J., Wang, Q., ... & Xie, H. (2020). Laboratory evaluation of warm - mix epoxy SBS modified asphalt binders containing Sasobit. Journal of Building Engineering, 32. https://doi.org/10.1016/j.jobe.2020.101550Gong, J., Liu, Y., Wang, Q., Xi, Z., Cai, J., & Ding, G. (2019). Performance evaluation of warm mix asphalt additive modified epoxy asphalt rubbers. Construction and Building Materials, 204, 288-295. https://doi.org/10.1016/j.conbuildmat.2019.01.197Gungat, L., Md. Yusoff, N. I., & Hamzah, M. O. (2016). Effects of RH-WMA additive on rheological properties of high amount reclaimed asphalt binders. Construction and Building Materials, 114. https://doi.org/10.1016/j.conbuildmat.2016.03.182Hasan, M. R. M., You, Z., You, L., & Zhang, R. (2018). Performance of ethanol and ethanol-NaHCO3 based foamed WMA mixtures for low emission asphalt technology. Construction and Building Materials, 192, 9-19. https://doi.org/10.1016/j.conbuildmat.2018.10.107Huang, W., He, P., Long, X., Tian, J., Zheng, Y., Ma, H., ... & Wu, X. (2020). Design of a skeleton-stabilized warm mix asphalt mixture and investigation of its fatigue and fracture performance. Construction and Building Materials, 248. https://doi.org/10.1016/j.conbuildmat.2020.118618Jameel, M. S., Khan, A. H., Rehman, Z. u., Aziz, M., Tabassum, S., & Mohamed, A. (2024). Evaluation of asphalt mixes performance characteristic with mustard oil as a rejuvenator. Case Studies in Construction Materials, 20. https://doi.org/10.1016/j.cscm.2024.e02951Kanitpong, K., Nam, K., & Bahia, H. U. (2012). "Laboratory Evaluation of Warm Mix Asphalt Performance." International Journal of Pavement Engineering, 13(6), 499-507. DOI: 10.1080/10298436.2012.662039Kavussi, A., & Hashemian, L. (2012). "Investigating the Use of Warm Mix Asphalt Technology for Surface Course Mixtures Containing High Percentages of RAP." Construction and Building Materials, 26(1), 280-285. DOI: 10.1016/j.conbuildmat.2012.02.023.Khani Sanij, H., Afkhamy Meybodi, P., Amiri Hormozaky, M., Hosseini, S. H., & Olazar, M. (2019). Evaluation of performance and moisture sensitivity of glass-containing warm mix asphalt modified with zycothermTM as an anti-stripping additive. Construction and Building Materials, 197, 185-194. https://doi.org/10.1016/j.conbuildmat.2018.11.190Kim, D., Norouzi, A., Kass, S., Liske, T., & Kim, Y. R. (2017). Mechanistic performance evaluation of pavement sections containing RAP and WMA additives in Manitoba. Materiales de Construcción, 133. https://doi.org/10.1016/j.conbuildmat.2016.12.035Kim, Y., Im, S., Lee, S., & Park, T. (2014). "Performance Evaluation of Warm-Mix Recycled Asphalt Mixtures Using Double Barrel® Drum Mixer." Construction and Building Materials, 68, 260-266. DOI: 10.1016/j.conbuildmat.2014.04.090.Kolapkar, S., & Sathe, S. (2023). Efecto de Sasobit® como aditivo WMA en los parámetros de diseño de mezcla. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.03.253Köse, H., Çelik, O. N., & Arslan, D. (2023). A novel approach to warm mix asphalt additive production from polypropylene waste plastic via pyrolysis. Construction and Building Materials, 411, 134151. https://doi.org/10.1016/j.conbuildmat.2023.134151Król, J. B., Kowalski, K. J., Radziszewski, P., & Sarnowski, M. (2015). Rheological behaviour of n-alkane modified bitumen in aspect of Warm Mix Asphalt technology. Construction and Building Materials, 93, 703-710. https://doi.org/10.1016/j.conbuildmat.2015.06.033Kumar, A., Choudhary, R., & Kumar, A. (2022). Performance evaluation of asphalt binders modified with pyrolytic chars and WMA additive. Materials Today: Proceedings, 65, https://doi.org/10.1016/j.matpr.2022.04.969Kumar, A., Choudhary, R., Kumar, A., & Huang, J. (2022). Performance evaluation of asphalt binders modified with pyrolytic chars and WMA additive. Materials Today: Proceedings, 65, https://doi.org/10.1016/j.matpr.2022.04.969Kumar, V., & Coleri, E. (2023). Effects of finer gradation, temperature, warm mix additives, and compaction methods on density and performance of asphalt mixtures. Construction and Building Materials, 394. https://doi.org/10.1016/j.conbuildmat.2023.132226Kumar, V., & Coleri, E. (2023). High and intermediate temperature performance of warm asphalt rubber containing conventional warm mix additives and novel chemical surfactant. Construction and Building Materials, 394. https://doi.org/10.1016/j.conbuildmat.2023.132214Kristjansdottir, O., Muench, S. T., Michael, L., & Burke, G. (2007). "Assessing Potential for Warm-Mix Asphalt Technology Adoption". Transportation Research Record: Journal of the Transportation Research Board, 2040(1), 91-99. DOI: 10.3141/2040-10Li, D., Leng, Z., Zou, F., & Yu, H. (2021). Effects of rubber absorption on the aging resistance of hot and warm asphalt rubber binders prepared with waste tire rubber. Journal of Cleaner Production, 303, 127082. https://doi.org/10.1016/j.jclepro.2021.127082Li, K., Yan, X., Pu, J., Wang, Y., Chen, Y., Fang, K., Hu, J., & Yang, Y. (2023). Quantitative evaluation on the energy saving and emission reduction characteristics of warm mix asphalt mixtures. Construction and Building Materials, 407. https://doi.org/10.1016/j.conbuildmat.2023.133465Liang, X., Yu, X., Chen, C., Ding, G., & Huang, J. (2022). Towards the low-energy usage of high viscosity asphalt in porous asphalt pavements: A case study of warm-mix asphalt additives. Case Studies in Construction Materials, 16, e00914. https://doi.org/10.1016/j.cscm.2022.e00914Limón Covarrubias, P., Galaviz-González, J. R., Ávalos Cueva, D., & Castillo Aguilar, S. (2019). Impact of addition of greasy diamide on the rheological-mechanical properties of warm-mix asphalt. Construction and Building Materials, 211, 308-316. https://doi.org/10.1016/j.conbuildmat.2019.03.149Liu, J., Ran, Y., Zarei, M., Tabasi, E., Naseri, A., & Khordehbinan, M. W. (2023). Effect of nano molybdenum disulfide (Nano-MoS2) on fracture behavior of Warm mix asphalt (WMA). Materials Today: Proceedings. https://doi.org/10.1016/j.conbuildmat.2023.132820Liu, X., Li, B., Jia, M., Li, C., & Zhang, Z. (2020). Effect of short-term aging on interface-cracking behaviors of warm mix asphalt under dry and wet conditions. Construction and Building Materials, 261, 119885. https://doi.org/10.1016/j.conbuildmat.2020.119885Liu, X., Sha, A., Li, C., Zhang, Z., & Li, H. (2020). Influence of water on warm-modified asphalt: Views from adhesion, morphology, and chemical characteristics. Construction and Building Materials, 264, 120159. https://doi.org/10.1016/j.conbuildmat.2020.120159Liu, Y., Yan, K., & Liu, J. (2018). Rheological properties of warm mix asphalt binders and warm mix asphalt binders containing polyphosphoric acid. International Journal of Pavement Research and Technology, 11(5), 481-487. https://doi.org/10.1016/j.ijprt.2018.03.005López, C., Thenoux, G., Sandoval, G., Armijos, V., Ramírez, A., Guisado, F., & Moreno, E. (2017). Estudio de mezclas asfálticas templadas con emulsión super-estabilizada. Revista ingeniería de construcción, 32(1), 57-64. https://dx.doi.org/10.4067/S0718-50732017000100006Lu, D. X., & Saleh, M. (2016). Laboratory evaluation of warm mix asphalt incorporating high RAP proportion by using evotherm and sylvaroad additives. Construction and Building Materials, 114, 580-587. https://doi.org/10.1016/j.conbuildmat.2016.03.200Lu, D. X., Saleh, M., & Nguyen, N. H. T. (2019). Effect of rejuvenator and mixing methods on behaviour of warm mix asphalt containing high RAP content. Construction and Building Materials, 197, 792-802. https://doi.org/10.1016/j.conbuildmat.2018.11.205Mahto, S. K., & Sinha, S. (2023). Influence of rice husk ash on moisture susceptibility of warm mix asphalt using chemical-based additive. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.06.118Mazurek, G., & Nowakowski, K. (2015). The Evaluation of SMA Mixture Properties with the Surface-active Agent in WMA Technology. Procedia Engineering, 108, 22-29. https://doi.org/10.1016/j.proeng.2015.06.115Meghasri, K., Mamatha, K. H., & Dinesh, S. V. (2023). Performance evaluation of WMA mixtures with RAP. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2023.09.003Mokhtari, A., Bozorgzad, A., Hasa, E., Lee, H. D., & Guymon, C. A. (2020). Field implementation of WMA mixtures containing recycled asphalt shingles (RAS). Construction and Building Materials, 250, 118836. https://doi.org/10.1016/j.conbuildmat.2020.118836Mokhtari, A., Bozorgzad, A., Hasa, E., Lee, H. D., & Guymon, C. A. (2020). Field implementation of WMA mixtures containing recycled asphalt shingles (RAS). Construction and Building Materials, 250. https://doi.org/10.1016/j.conbuildmat.2020.118836Nanjegowda, V. H., Patel, R., Mahimaluru, J., & Biligiri, K. P. (2021). Synthesis and characterization of zeolite-like additive: An eco-efficient asphalt mix production strategy. Construction and Building Materials, 266(Part A), 120898. https://doi.org/10.1016/j.conbuildmat.2020.120898Omari, I., Aggarwal, V., & Hesp, S. (2016). Investigation of two Warm Mix Asphalt additives. International Journal of Pavement Research and Technology, 9(2), 83-88. https://doi.org/10.1016/j.ijprt.2016.02.001Perez-Martinez, M., Marsac, P., Gabet, T., Pouget, S., & Hammoum, F. (2017). Ageing evolution of foamed warm mix asphalt combined with reclaimed asphalt pavement. Materiales De Construcción, 67(327), e125. https://doi.org/10.3989/mc.2017.04716Pérez-Martínez, M., Moreno-Navarro, F., Martín-Marín, J., Ríos-Losada, C., Rubio-Gámez, M. C. (2014). Analysis of cleaner technologies based on waxes and surfactant additives in road construction. Journal of Cleaner Production, 65, 374-379. https://doi.org/10.1016/j.jclepro.2013.09.012Phan, T. M., Choi, Y.-S., Youn, S.-H., & Park, D.-W. (2024). Effect of synthesized warm mix additive and rejuvenator on performance of recycled warm asphalt mixtures. Construction and Building Materials, 241, 1357724. https://doi.org/10.1016/j.conbuildmat.2024.135772Pirmohammad, S., & Hojjati Mengharpey, M. (2020). Influence of natural fibers on fracture strength of WMA (warm mix asphalt) concretes using a new fracture test specimen. Construction and Building Materials, 251, 118927. https://doi.org/10.1016/j.conbuildmat.2020.118927Pirozzolo, L., Sol-Sánchez, M., Moreno-Navarro, F., Martínez-Montes, G., & Rubio-Gámez, M. C. (2017). Evaluation of bituminous sub-ballast manufactured at low temperatures as an alternative for the construction of more sustainable railway structures. Materiales De Construcción, 67(327), e128. https://doi.org/10.3989/mc.2017.04816Podolsky, J. H., & Williams, R. C. (2014). Estimation and assessment of high temperature mix performance grade for select bio-based WMA additives. Construction and Building Materials, 69, 310-322. https://doi.org/10.1016/j.conbuildmat.2014.07.046Podolsky, J. H., Williams, R. C., & Cochran, E. (2018). Effect of corn and soybean oil derived additives on polymer-modified HMA and WMA master curve construction and dynamic modulus performance. International Journal of Pavement Research and Technology, 11(6), 541-552. https://doi.org/10.1016/j.ijprt.2018.01.002Polo-Mendoza, R., Penabaena-Niebles, R., Giustozzi, F., & Martinez-Arguelles, G. (2022). Eco-friendly design of Warm mix asphalt (WMA) with recycled concrete aggregate (RCA): A case study from a developing country. Construction and Building Materials, 326. https://doi.org/10.1016/j.conbuildmat.2022.126890Pouokam Kamdema, R. F., Adedeji, J. A., & Hassan Mostafa, M. M. (2023). A Study on Indirect Tensile Strength for the Determination of Resilient Modulus of Warm Mix Asphalt. Transportation Research Procedia, 69. https://doi.org/10.1016/j.trpro.2023.02.236Ragni, D., Ferrotti, G., Lu, X., & Canestrari, F. (2018). Effect of temperature and chemical additives on the short-term ageing of polymer modified bitumen for WMA. Materials & Design, 160, 514-526. https://doi.org/10.1016/j.matdes.2018.09.042Rahmad, S., Rosyidi, S. A. P., Memon, N. A., Badri, K. H., Widyatmoko, I., Arshad, A. K., ... & Hainin, M. R. (2021). Physical, thermal, and micro-surface characteristics of PG76 binder incorporated with liquid chemical WMA additive. Construction and Building Materials, 272, 121626. https://doi.org/10.1016/j.conbuildmat.2020.121626Rochishnu, E., Ramesh, A., & Venkat Ramayya, V. (2021). Sustainable pavement technologies - performance of high RAP in WMA surface mixture containing nano glass fibers. Materials Today: Proceedings, 43(2), 1009-1017. https://doi.org/10.1016/j.matpr.2020.07.643Rodríguez-Alloza, A. M., & Gallego, J. (2017). Volumetric characteristics and compactability of asphalt rubber mixtures with organic warm mix asphalt additives. Materiales de Construcción, 67(327), e123. https://doi.org/10.3989/mc.2017.03616Rodríguez-Allozaa, A. M., & Gallego, J. (2017). Volumetric characteristics and compactability of asphalt rubber mixtures with organic warm mix asphalt additives. Materiales de Construcción, 67(327). http://dx.doi.org/10.3989/mc.2017.03616Romier, A., Audeon, M., David, J., Martineau, Y., & Porot, L. (2006). "Low-Energy Asphalt with Performance of Hot-Mix Asphalt". International Journal of Pavement Research and Technology, 1(4), 217-224.Rondón Quintana, H. A., Vergara, O. I. L., & Fernández Gómez, W. (2017). Comportamiento de una mezcla asfáltica tibia fabricada en una planta de asfalto. Ingeniería y Desarrollo, 35(1), 152-173. http://dx.doi.org/10.14482/inde.35.1.8947Rondón, H., & Reyes, F. (2022). Pavimentos. Materiales, construcción y diseño. Bogotá: ECOE Ediciones.Rondón, H., & Wilmar, F. (2014). Mechanical resistance of a chemically modified warm mix asphalt. Revista Tecnura, 18 (Edición especial doctorado), 97-108. doi: 10.14483/udistrital.jour.tecnura.2014.DSE1.a09Rondón, H., Hernández, J., & Reyes, L. (2015). A review of warm mix asphalt technology: Technical, economic, and environmental aspects. Ingeniería e investigación. VOL 35 (3), 5-18. doi:10.15446%2Fing.investig.v35n3.50463Rondón, H., León, O., & Fernández, W. (2017). Behavior of a warm mix asphalt made in an asphalt plant. Revista Ingeniería y desarrollo. VOL 35 (1), 152-173. doi:10.14482/inde.35.1.8947Rondón, H., Ocampo, M., Vacca, H., Reyes, F., Nieto, J., & Beltrán, D. (2016). The mechanical behavior of two warm-mix asphalts. Revista Ingeniería e Investigación. VOL 36(3), 29-38. doi:10.15446%2Fing.investig.v38n2.68638Sadeq, M., Al-Khalid, H., Masad, E., & Sirin, O. (2016). Comparative evaluation of fatigue resistance of warm fine aggregate asphalt mixtures. Construction and Building Materials, 109, 8-16. https://doi.org/10.1016/j.conbuildmat.2016.01.045Sangsefidi, M., Khabiri, M. M., & Fakhri, M. (2014). "Effect of Additives on Moisture Susceptibility of Warm Mix Asphalt." Journal of Materials in Civil Engineering, 26(6), 1072-1079. DOI: 10.1061/(ASCE)MT.1943-5533.0000916Sedaghat, B., Taherrian, R., Hosseini, S. A., & Mousavi, S. M. (2020). Rheological properties of bitumen containing nanoclay and organic warm-mix asphalt additives. Construction and Building Materials, 243, 118092. DOI: 10.1016/j.conbuildmat.2020.118092.Sargand, S. M., Kim, S., & Aschenbrener, T. (2012). "Performance of Warm Mix Asphalt in a Midwestern Field". Journal of Testing and Evaluation, 40(2), 204-212.Singh, D., Ashish, P. K., & Chitragar, S. F. (2018). Laboratory performance of Recycled Asphalt Mixes containing wax and chemical based Warm Mix Additives using Semi Circular Bending and Tensile Strength Ratio tests. Construction and Building Materials, 158, 1003-1014. https://doi.org/10.1016/j.conbuildmat.2017.10.080Silva, H. M. R. D., Oliveira, J. R. M., & Jesus, C. M. G. (2010). "Are Totally Recycled Hot Mix Asphalts a Sustainable Option for Road Pavements?". Resources, Conservation and Recycling, 54(11), 1507-1518.Silva, H. M. R. D., Oliveira, J. R. M., & Peralta, J. (2010). "Evaluation of the Warm Mix Asphalt Performance with Reclaimed Asphalt Pavement". International Journal of Pavement Research and Technology, 3(4), 182-190.Stimilli, A. R. A., Virgili, A. P., & Canestrari, F. F. (2017). Warm recycling of flexible pavements: Effectiveness of Warm Mix Asphalt additives on modified bitumen and mixture performance. Journal of Cleaner Production, 156. https://doi.org/10.1016/j.jclepro.2017.03.235Sukhija, M., Wagh, V. P., & Saboo, N. (2021). Development of workability-based approach for assessment of production temperatures of warm mix asphalt mixtures. Construction and Building Materials, 305. https://doi.org/10.1016/j.conbuildmat.2021.124808Tang, N., Deng, Z., Dai, J.-G., Yang, K., Chen, C., & Wang, Q. (2018). Geopolymer as an additive of warm mix asphalt: Preparation and properties. Journal of Cleaner Production, 192, 906-915. https://doi.org/10.1016/j.jclepro.2018.04.276Tao, M., & Mallick, R. B. (2009). "Effects of Warm-Mix Asphalt Additives on Workability and Mechanical Properties of Reclaimed Asphalt Pavement Material". Transportation Research Record: Journal of the Transportation Research Board, 2126(1), 151-160.Tao, M., Mallick, R. B., & Buchanan, M. S. (2009). "Evaluation of Workability and Mechanical Properties of Warm-Mix Asphalt Using a Mechanistic Approach". Journal of Materials in Civil Engineering, 21(8), 299-305.Topal, A., Sengoz, B., Kok, B. V., Yilmaz, M., Dokandari, P. A., Oner, J., & Kaya, D. (2014). Evaluation of mixture characteristics of warm mix asphalt involving natural and synthetic zeolite additives. Construction and Building Materials, 57, 38-44. https://doi.org/10.1016/j.conbuildmat.2014.01.093Valdés-Vidal, G., Calabi-Floody, A., Sanchez-Alonso, E., Díaz, C., & Fonseca, C. (2020). Highway trial sections: Performance evaluation of warm mix asphalt and recycled warm mix asphalt. Construction and Building Materials, 262, 120069. https://doi.org/10.1016/j.conbuildmat.2020.120069Vatanparast, M., Sarkar, A., & Sahaf, S. A. (2023). Optimization of asphalt mixture design using response surface method for stone matrix warm mix asphalt incorporating crumb rubber modified binder. Construction and Building Materials, 369. https://doi.org/10.1016/j.conbuildmat.2023.130401Vega-Zamanillo, Á., Calzada-Pérez, M. A., Sánchez-Alonso, E., & Gonzalo-Orden, H. (2014). Density, Adhesion and Stiffness of Warm Mix Asphalts. Procedia - Social and Behavioral Sciences, 160, 323-331. https://doi.org/10.1016/j.sbspro.2014.12.144Wang, D., Riccardi, C., Jafari, B., Falchetto, A. C., & Wistuba, M. P. (2021). Investigation on the effect of high amount of Re-recycled RAP with Warm mix asphalt (WMA) technology. Construction and Building Materials, 312. https://doi.org/10.1016/j.conbuildmat.2021.125395Wasiuddin, N. M., Selvamohan, S., Zaman, M., & Guegan, M. (2007). "Comparative Laboratory Study of Sasobit and Aspha-min Additives in Warm-Mix Asphalt". Transportation Research Record: Journal of the Transportation Research Board, 1998(1), 82-88.Wang, W., Cheng, H., Sun, L., Sun, Y., & Liu, N. (2022). Multi-performance evaluation of recycled warm-mix asphalt mixtures with high reclaimed asphalt pavement contents. Journal of Cleaner Production, 377, 134209. https://doi.org/10.1016/j.jclepro.2022.134209Wang, W., Huang, S., Qin, Y., Sun, Y., & Chen, J. (2020). Multi-scale study on the high percentage warm-mix recycled asphalt binder based on chemical experiments. Construction and Building Materials, 252. https://doi.org/10.1016/j.conbuildmat.2020.119124Woszuk, A., & Franus, W. (2016). Properties of the Warm Mix Asphalt involving clinoptilolite and Na-P1 zeolite additives. Construction and Building Materials, 114, 556-563. https://doi.org/10.1016/j.conbuildmat.2016.03.188Wu, S., Zhang, W., Shen, S., Li, X., Muhunthan, B., & Mohammad, L. N. (2017). Field-aged asphalt binder performance evaluation for Evotherm warm mix asphalt: Comparisons with hot mix asphalt. Construction and Building Materials, 156, 574-583. https://doi.org/10.1016/j.conbuildmat.2017.09.016Xia, W., Dong, M., & Xu, T. (2024). Synergistic suppressions of porous warm mix agent and composite flame retardant on combustion and fume release of asphalt pavement. Journal of Cleaner Production, 443, 141003. https://doi.org/10.1016/j.jclepro.2024.141003Xiong, F., Zarei, M., Tabasi, E., Naseri, A., Khordehbinan, M. W., & Kh, T. I. (2023). Effect of nano-reduced graphene oxide (NRGO) on long-term fracture behavior of Warm Mix Asphalt (WMA). Construction and Building Materials, 392. https://doi.org/10.1016/j.conbuildmat.2023.131934Xiu, M., Wang, X., Morawska, L., Pass, D., Beecroft, A., Mueller, J. F., & Thai, P. (2020). Emissions of particulate matters, volatile organic compounds, and polycyclic aromatic hydrocarbons from warm and hot asphalt mixes. Journal of Cleaner Production, 275. https://doi.org/10.1016/j.jclepro.2020.123094Yazdipanah, F., Ameri, M., Shahri, M., Hasheminejad, N., & Haghshenas, H. F. (2021). Laboratory investigation and statistical analysis of the rutting and fatigue resistance of asphalt mixtures containing crumb-rubber and wax-based warm mix asphalt additive. Construction and Building Materials, 309. https://doi.org/10.1016/j.conbuildmat.2021.125165Yousefi, A., Behnood, A., Nowruzi, A., & Haghshenas, H. (2021). Performance evaluation of asphalt mixtures containing warm mix asphalt (WMA) additives and reclaimed asphalt pavement (RAP). Construction and Building Materials, 268. https://doi.org/10.1016/j.conbuildmat.2020.121200You, Z., & Goh, S. W. (2008). "Laboratory Evaluation of Warm Mix Asphalt: A Preliminary Study". International Journal of Pavement Research and Technology, 1(1), 34-39. Yu, H., Chen, Y., Wu, Q., Zhang, L., Zhang, Z., Zhang, J., ... & Oeser, M. (2020). Decision support for selecting optimal method of recycling waste tire rubber into wax-based warm mix asphalt based on fuzzy comprehensive evaluation. Journal of Cleaner Production, 265. https://doi.org/10.1016/j.jclepro.2020.121781Yu, S., Shen, S., Steger, R., & Wang, X. (2022). Effect of warm mix asphalt additive on the workability of asphalt mixture: From particle perspective. Construction and Building Materials, 360, 129548. https://doi.org/10.1016/j.conbuildmat.2022.129548Zarei, M., Abdi Kordani, A., & Zahedi, M. (2021). Evaluation of fracture behavior of modified Warm Mix Asphalt (WMA) under modes I and II at low and intermediate temperatures. Theoretical and Applied Fracture Mechanics, 114. https://doi.org/10.1016/j.tafmec.2021.103015Zarei, M., Tabasi, E., Ghandehari, M., Rezaie, M., Khordehbinan, M. W., & Al-Bahrani, M. (2022). Effect of hospital waste pyrolysis hydrocarbon (HWPHC) on fracture behavior of Warm Mix asphalt (WMA) under freeze–thaw damage (FTD). Construction and Building Materials, 359. https://doi.org/10.1016/j.conbuildmat.2022.129473Zarei, M., Taghizadeh, M. R., Moayedi, S. S., Naseri, A., Al-Bahrani, M., & Khordehbinan, M. W. (2022). Evaluation of fracture behavior of Warm mix asphalt (WMA) modified with hospital waste pyrolysis carbon black (HWPCB) under freeze–thaw damage (FTD) at low and intermediate temperatures. Construction and Building Materials, 356. https://doi.org/10.1016/j.conbuildmat.2022.129184Zawawi, M. A., Abdul Hassan, N., Mahmud, M. Z. H., Jaya, R. P., & Mohamed, A. (2023). Effect of Evotherm 3G on the performance of asphalt mixture. Physics and Chemistry of the Earth, 130. https://doi.org/10.1016/j.pce.2023.103392Zhang, B., Yin, X., Zhong, Y., Zang, Q., Wang, Z., Kong, L., Zeng, Z., Fu, S., & Fu, Y. (2024). Performance analysis and viscosity modeling of emulsified cutback composite cold-mixed epoxy asphalt binder. Construction and Building Materials, 416. https://doi.org/10.1016/j.conbuildmat.2024.135171Zhang, B., Yin, X., Zhong, Y., Zang, Q., Yu, J., Lin, Z., Zou, G., Yu, H., Leng, Z., & Zhang, Y. (2024). Long-term performance of recycled asphalt mixtures containing high RAP and RAS. Journal of Road Engineering. https://doi.org/10.1016/j.jreng.2024.01.003Zhang, J., Yang, F., Pei, J., Xu, S., & An, F. (2015). Viscosity-temperature characteristics of warm mix asphalt binder with Sasobit®. Construction and Building Materials, 78, 34-39. https://doi.org/10.1016/j.conbuildmat.2014.12.123Zhang, S., Wang, D., Guo, F., Deng, Y., Feng, F., Wu, Q., ... & Li, Y. (2021). Properties investigation of the SBS modified asphalt with a compound warm mix asphalt (WMA) fashion using the chemical additive and foaming procedure. Journal of Cleaner Production, 319. https://doi.org/10.1016/j.jclepro.2021.128789Zhao, P., Ren, R., Zhou, H., Ouyang, J., Li, Z., & Sun, D. (2021). Preparation and properties of imidazoline surfactant as additive for warm mix asphalt. Construction and Building Materials, 273, 121692. https://doi.org/10.1016/j.conbuildmat.2020.121692Zou, F., Leng, Z., Cao, R., Li, G., Zhang, Y., & Sreeram, A. (2022). Performance of zeolite synthesized from sewage sludge ash as a warm mix asphalt additive. Resources, Conservation & Recycling, 181, 106254. https://doi.org/10.1016/j.resconrec.2022.106254Zou, F., Xu, X., Chen, R., Lan, J., Li, G., Tan, Z., Xu, J., Jiang, X., & Leng, Z. (2024). A novel foaming additive derived from waste polyethylene terephthalate (PET) for low-carbon warm mix asphalt. Resources, Conservation & Recycling, 202, 107377. https://doi.org/10.1016/j.resconrec.2023.107377LICENSElicense.txtlicense.txttext/plain; charset=utf-87167https://repository.udistrital.edu.co/bitstreams/33865f13-990f-4d77-90e9-dcb093c0820a/download997daf6c648c962d566d7b082dac908dMD51ORIGINALSánchezParraHectorAndres2024Anexos.rarSánchezParraHectorAndres2024Anexos.rarTrabajo de gradoapplication/octet-stream108673https://repository.udistrital.edu.co/bitstreams/2ef340ec-fc23-4ac1-a09d-6f5d7eeca1d6/downloade340e1e77c161c59fda1aca368de1ff0MD52SanchezParraHectorAndrés2024.pdfSanchezParraHectorAndrés2024.pdfapplication/pdf774512https://repository.udistrital.edu.co/bitstreams/7e60c120-321c-4e19-aa71-49d35215a1f0/downloadeb82792205e0e611fa0fe1ca699b4499MD53Licencia de uso y publicación.pdfLicencia de uso y publicación.pdfLicencia de uso y publicaciónapplication/pdf213935https://repository.udistrital.edu.co/bitstreams/f18246eb-c12b-4906-8b53-5f8328bfc77b/download854266acdb4cef520cabd82c7cdb6d18MD54THUMBNAILSanchezParraHectorAndrés2024.pdf.jpgSanchezParraHectorAndrés2024.pdf.jpgIM Thumbnailimage/jpeg2628https://repository.udistrital.edu.co/bitstreams/f636f2d3-1a82-4624-be33-66002656b878/downloadcc7a7fe8589922ac7df3164bd4e7344cMD55Licencia de uso y publicación.pdf.jpgLicencia de uso y publicación.pdf.jpgIM Thumbnailimage/jpeg9427https://repository.udistrital.edu.co/bitstreams/e9bc5dad-670a-4e7d-8d7f-2ded8684e86e/downloade6f211645f855640f846b58c23b0ec95MD5611349/41893oai:repository.udistrital.edu.co:11349/418932024-11-22 01:05:24.398open.accesshttps://repository.udistrital.edu.coRepositorio Universidad Distritalrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyBERSBDT05URU5JRE9TIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgREUgTEEgVU5JVkVSU0lEQUQgRElTVFJJVEFMCgpUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyAoUklVRCkKCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCBjb25maWVybyAoZXJpbW9zKSBhIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIChlbiBhZGVsYW50ZSwgTEEgVU5JVkVSU0lEQUQpIHVuYSBsaWNlbmNpYSBwYXJhIHVzbyBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgaW50ZWdyYXLDoSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIChlbiBhZGVsYW50ZSwgUklVRCksIGRlIGFjdWVyZG8gYSBsYXMgc2lndWllbnRlcyByZWdsYXMsIGxhcyBjdWFsZXMgZGVjbGFybyAoYW1vcykgY29ub2NlciB5IGFjZXB0YXI6CgphKQlFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWEgZW4gZWwgUklVRCB5IGhhc3RhIHBvciB1biBwbGF6byBkZSBkaWV6ICgxMCkgQcOxb3MsIHByb3Jyb2dhYmxlIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyBsYSBjdWFsIHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHByZXZpYSBzb2xpY2l0dWQgYSBMQSBVTklWRVJTSURBRCBwb3IgZXNjcml0byBjb24gdW5hIGFudGVsYWNpw7NuIGRlIGRvcyAoMikgbWVzZXMgYW50ZXMgZGVsIHZlbmNpbWllbnRvIGRlbCBwbGF6byBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLgoKYikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyBwb3IgZWwgUklVRCAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBMQSBVTklWRVJTSURBRCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsIGRvY3VtZW50byBhcGFyZXpjYSByZWZlcmVuY2lhZG8gZW4gbW90b3JlcyBkZSBiw7pzcXVlZGEgbyByZXBvc2l0b3Jpb3MgZGlmZXJlbnRlcyBhbCBSSVVELCB1bmEgdmV6IGVsKG9zKSBhdXRvcihlcykgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUklVRCwgZGFkbyBxdWUgbGEgbWlzbWEgc2Vyw6EgcHVibGljYWRhIGVuIEludGVybmV0LgoKYykJTGEgYXV0b3JpemFjacOzbiBzZSBoYWNlIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCBsb3MgYXV0b3JlcyByZW51bmNpYW4gYSByZWNpYmlyIGJlbmVmaWNpbyBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKQlMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQgc29uIG9icmEocykgb3JpZ2luYWwoZXMpIHNvYnJlIGxhIGN1YWwoZXMpIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBhc3VtZW4gdG90YWwgcmVzcG9uc2FiaWxpZGFkIHBvciBlbCBjb250ZW5pZG8gZGUgc3Ugb2JyYSBhbnRlIExBIFVOSVZFUlNJREFEIHkgYW50ZSB0ZXJjZXJvcy4gRW4gdG9kbyBjYXNvIExBIFVOSVZFUlNJREFEIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3Mgw61uZGljZXMgeSBidXNjYWRvcmVzIHF1ZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBtYXhpbWl6YXIgbGEgdmlzaWJpbGlkYWQgZWwgdXNvIHkgZWwgaW1wYWN0byBkZSBsYSBwcm9kdWNjacOzbiBjaWVudMOtZmljYSwgYXJ0w61zdGljYSB5IGFjYWTDqW1pY2EgZW4gbGEgY29tdW5pZGFkIGxvY2FsLCBuYWNpb25hbCBvIGludGVybmFjaW9uYWwuCgoKZikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGNvbnZlcnRpciBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluIGRlIHN1IHByZXNlcnZhY2nDs24gZW4gZWwgdGllbXBvIHF1ZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGxhIGRlIHN1cyBwcsOzcnJvZ2FzLgoKCkNvbiBiYXNlIGVuIGxvIGFudGVyaW9yIGF1dG9yaXpvKGFtb3MpLCBhIGZhdm9yIGRlbCBSSVVEIHkgZGUgc3VzIHVzdWFyaW9zLCBsYSBwdWJsaWNhY2nDs24geSBjb25zdWx0YSBkZSBsYSBzaWd1aWVudGUgb2JyYToKClRpdHVsbwoKQXV0b3IgICAgICAgQXBlbGxpZG9zICAgICAgICAgTm9tYnJlcwoKMQoKMgoKMwoKCmcpCUF1dG9yaXpvKGFtb3MpLCBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsb3MgbGl0ZXJhbGVzIGFudGVyaW9yZXMsIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgTEEgVU5JVkVSU0lEQUQsIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQsIGN1eW8gdGV4dG8gY29tcGxldG8gc2UgcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9yZXBvc2l0b3J5LnVkaXN0cml0YWwuZWR1LmNvLwoKaCkJQ29ub3pjbyhjZW1vcykgeSBhY2VwdG8oYW1vcykgcXVlIG90b3JnbyhhbW9zKSB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIChoZW1vcykgb2J0ZW5pZG8gdW5hIGNvcGlhLgoKaSkJTWFuaWZpZXN0byhhbW9zKSBtaSAobnVlc3RybykgdG90YWwgYWN1ZXJkbyBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIHVzbyB5IHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHF1ZSBzZSBkZXNjcmliZW4geSBleHBsaWNhbiBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8uCgpqKQlDb25vemNvKGNlbW9zKSBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSAgTEEgVU5JVkVSU0lEQUQ7IGVuIGNvbmNyZXRvLCBlbCBBY3VlcmRvIDAwNCBkZSAyMDEyIGRlbCBDU1UsIEFjdWVyZG8gMDIzIGRlIDIwMTIgZGVsIENTVSBzb2JyZSBQb2zDrXRpY2EgRWRpdG9yaWFsLCBBY3VlcmRvIDAyNiAgZGVsIDMxIGRlIGp1bGlvIGRlIDIwMTIgc29icmUgZWwgcHJvY2VkaW1pZW50byBwYXJhIGxhIHB1YmxpY2FjacOzbiBkZSB0ZXNpcyBkZSBwb3N0Z3JhZG8gZGUgbG9zIGVzdHVkaWFudGVzIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzLCAgQWN1ZXJkbyAwMzAgZGVsIDAzIGRlIGRpY2llbWJyZSBkZSAyMDEzIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBjcmVhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsIEFjdWVyZG8gMDM4IGRlIDIwMTUgMjAxNSDigJxwb3IgZWwgY3VhbCBzZSBtb2RpZmljYSBlbCBBY3VlcmRvIDAzMSBkZSAyMDE0IGRlIDIwMTQgcXVlIHJlZ2xhbWVudGEgZWwgdHJhYmFqbyBkZSBncmFkbyBwYXJhIGxvcyBlc3R1ZGlhbnRlcyBkZSBwcmVncmFkbyBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IHNlIGRpY3RhbiBvdHJhcyBkaXJlY3RyaWNlc+KAnSB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0bywgZXNwZWNpYWxtZW50ZSBsYSBsZXkgMjMgZGUgMTk4MiwgbGEgbGV5IDQ0IGRlIDE5OTMgeSBsYSBkZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLiBFc3RvcyBkb2N1bWVudG9zIHBvZHLDoW4gc2VyIGNvbnN1bHRhZG9zIHkgZGVzY2FyZ2Fkb3MgZW4gZWwgcG9ydGFsIHdlYiBkZSBsYSBiaWJsaW90ZWNhIGh0dHA6Ly9zaXN0ZW1hZGViaWJsaW90ZWNhcy51ZGlzdHJpdGFsLmVkdS5jby8KCmspCUFjZXB0byhhbW9zKSBxdWUgTEEgVU5JVkVSU0lEQUQgbm8gc2UgcmVzcG9uc2FiaWxpemEgcG9yIGxhcyBpbmZyYWNjaW9uZXMgYSBsYSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBEZXJlY2hvcyBkZSBBdXRvciBjYXVzYWRhcyBwb3IgbG9zIHRpdHVsYXJlcyBkZSBsYSBwcmVzZW50ZSBMaWNlbmNpYSB5IGRlY2xhcmFtb3MgcXVlIG1hbnRlbmRyw6kgKGVtb3MpIGluZGVtbmUgYSBMQSBVTklWRVJTSURBRCBwb3IgbGFzIHJlY2xhbWFjaW9uZXMgbGVnYWxlcyBkZSBjdWFscXVpZXIgdGlwbyBxdWUgbGxlZ2FyZW4gYSBwcmVzZW50YXJzZSBwb3IgdmlvbGFjacOzbiBkZSBkZXJlY2hvcyBhIGxhIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBvIGRlIEF1dG9yIHJlbGFjaW9uYWRvcyBjb24gbG9zIGRvY3VtZW50b3MgcmVnaXN0cmFkb3MgZW4gZWwgUklVRC4KCmwpCUVsIChsb3MpIGF1dG9yKGVzKSBtYW5pZmllc3RhKG1vcykgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwsIGRlIGV4Y2x1c2l2YSBhdXRvcsOtYSwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvczsgZGUgdGFsIHN1ZXJ0ZSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgZWwgKGxvcykgZXN0dWRpYW50ZShzKSDigJMgYXV0b3IoZXMpIGFzdW1pcsOhKG4pIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHkgc2FsZHLDoShuKSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcy4gUGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgTEEgVU5JVkVSU0lEQUQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCgptKQlFbCAobG9zKSBhdXRvcihlcykgbWFuaWZpZXN0YShtb3MpIHF1ZSBjb25vemNvKGNlbW9zKSBsYSBhdXRvbm9tw61hIHkgbG9zIGRlcmVjaG9zLCBxdWUgcG9zZWUobW9zKSBzb2JyZSBsYSBvYnJhIHksIGNvbW8gdGFsLCBlcyAoc29tb3MpIHJlc3BvbnNhYmxlKHMpIGRlbCBhbGNhbmNlIGp1csOtZGljbyB5IGxlZ2FsLCBkZSBlc2NvZ2VyIGxhIG9wY2nDs24gZGUgbGEgcHVibGljYWNpw7NuIG8gZGUgcmVzdHJpY2Npw7NuIGRlIGxhIHB1YmxpY2FjacOzbiBkZWwgZG9jdW1lbnRvIHJlZ2lzdHJhZG8gZW4gZWwgUklVRC4KCgoKCgoKU0kgRUwgRE9DVU1FTlRPIFNFIEJBU0EgRU4gVU4gVFJBQkFKTyBRVUUgSEEgU0lETyBQQVRST0NJTkFETyBPIEFQT1lBRE8gUE9SIFVOQSBBR0VOQ0lBIE8gVU5BIE9SR0FOSVpBQ0nDk04sIENPTiBFWENFUENJw5NOIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTCBGUkFOQ0lTQ08gSk9TRSBERSBDQUxEQVMsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MKREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uCgoKCgoKCgoKCgoKCgoKCgoKCgoKCkVuIGNvbnN0YW5jaWEgZGUgbG8gYW50ZXJpb3IsIGZpcm1vKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50bywgZW4gbGEgY2l1ZGFkIGRlIEJvZ290w6EsIEQuQy4sIGEgbG9zCgoKRklSTUEgREUgTE9TIFRJVFVMQVJFUyBERSBERVJFQ0hPUyBERSBBVVRPUgoKX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwoKCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIChkZSBsb3MpIEF1dG9yKGVzKToKCkF1dG9yCSAgICAgIENvcnJlbyBFbGVjdHLDs25pY28KCjEKCjIKCjMKCk5vbWJyZSBkZSBEaXJlY3RvcihlcykgZGUgR3JhZG86CgoxCgoyCgozCgpOb21icmUgRmFjdWx0YWQgeSBQcm95ZWN0byBDdXJyaWN1bGFyOgoKRmFjdWx0YWQJUHJveWVjdG8gQ3VycmljdWxhcgoKCgoKCgoKCk5vdGE6IEVuIGNhc28gcXVlIG5vIGVzdMOpIGRlIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgeSBtYW5pZmllc3RlIGFsZ3VuYSByZXN0cmljY2nDs24gc29icmUgbGEgb2JyYSwganVzdGlmaXF1ZSBsb3MgbW90aXZvcyBwb3IgbG9zIGN1YWxlcyBlbCBkb2N1bWVudG8geSBzdXMgYW5leG9zIG5vIHB1ZWRlbiBzZXIgcHVibGljYWRvcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIFJJVUQuCgoKU2kgcmVxdWllcmUgbcOhcyBlc3BhY2lvLCBwdWVkZSBhbmV4YXIgdW5hIGNvcGlhIHNpbWlsYXIgYSBlc3RhIGhvamEK