Sistema de medición de bajo costo para determinar la respiración de tronco de los áboles “Tree-Hugger”
En comparación con los estudios sobre la respiración del suelo o de las hojas, que se han realizado con mucha más frecuencia, la medición de la respiración del tallo es más bien escasa. Sin embargo, cuando se pretende comprender y determinar los balances de CO2 de los ecosistemas forestales, es cruc...
- Autores:
-
Gil Valenzuela, José Camilo
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Distrital Francisco José de Caldas
- Repositorio:
- RIUD: repositorio U. Distrital
- Idioma:
- OAI Identifier:
- oai:repository.udistrital.edu.co:11349/93211
- Acceso en línea:
- http://hdl.handle.net/11349/93211
- Palabra clave:
- Respiración de tronco
Cámara cerrada
Sensores de bajo costo
Flujos de CO2
GEI
Mediciones basadas en cámara
Ingeniería Forestal -- Tesis y disertaciones académicas
Ecología
Vigilancia ambiental
Ecología forestal
Innovación tecnológica
Stem repiration
Closed chamber
Low-cost sensors
CO2 fluxes
GHG
Chamber-based measurements
- Rights
- License
- Abierto (Texto Completo)
id |
UDISTRITA2_df7de83a7ebbe0c339eeed1e72c40234 |
---|---|
oai_identifier_str |
oai:repository.udistrital.edu.co:11349/93211 |
network_acronym_str |
UDISTRITA2 |
network_name_str |
RIUD: repositorio U. Distrital |
repository_id_str |
|
dc.title.none.fl_str_mv |
Sistema de medición de bajo costo para determinar la respiración de tronco de los áboles “Tree-Hugger” |
dc.title.titleenglish.none.fl_str_mv |
Low-cost measurement system to determine stem respiration of trees "Tree-Hugger" |
title |
Sistema de medición de bajo costo para determinar la respiración de tronco de los áboles “Tree-Hugger” |
spellingShingle |
Sistema de medición de bajo costo para determinar la respiración de tronco de los áboles “Tree-Hugger” Respiración de tronco Cámara cerrada Sensores de bajo costo Flujos de CO2 GEI Mediciones basadas en cámara Ingeniería Forestal -- Tesis y disertaciones académicas Ecología Vigilancia ambiental Ecología forestal Innovación tecnológica Stem repiration Closed chamber Low-cost sensors CO2 fluxes GHG Chamber-based measurements |
title_short |
Sistema de medición de bajo costo para determinar la respiración de tronco de los áboles “Tree-Hugger” |
title_full |
Sistema de medición de bajo costo para determinar la respiración de tronco de los áboles “Tree-Hugger” |
title_fullStr |
Sistema de medición de bajo costo para determinar la respiración de tronco de los áboles “Tree-Hugger” |
title_full_unstemmed |
Sistema de medición de bajo costo para determinar la respiración de tronco de los áboles “Tree-Hugger” |
title_sort |
Sistema de medición de bajo costo para determinar la respiración de tronco de los áboles “Tree-Hugger” |
dc.creator.fl_str_mv |
Gil Valenzuela, José Camilo |
dc.contributor.advisor.none.fl_str_mv |
Guzmán Avendaño, Antonio José |
dc.contributor.author.none.fl_str_mv |
Gil Valenzuela, José Camilo |
dc.subject.none.fl_str_mv |
Respiración de tronco Cámara cerrada Sensores de bajo costo Flujos de CO2 GEI Mediciones basadas en cámara |
topic |
Respiración de tronco Cámara cerrada Sensores de bajo costo Flujos de CO2 GEI Mediciones basadas en cámara Ingeniería Forestal -- Tesis y disertaciones académicas Ecología Vigilancia ambiental Ecología forestal Innovación tecnológica Stem repiration Closed chamber Low-cost sensors CO2 fluxes GHG Chamber-based measurements |
dc.subject.lemb.none.fl_str_mv |
Ingeniería Forestal -- Tesis y disertaciones académicas Ecología Vigilancia ambiental Ecología forestal Innovación tecnológica |
dc.subject.keyword.none.fl_str_mv |
Stem repiration Closed chamber Low-cost sensors CO2 fluxes GHG Chamber-based measurements |
description |
En comparación con los estudios sobre la respiración del suelo o de las hojas, que se han realizado con mucha más frecuencia, la medición de la respiración del tallo es más bien escasa. Sin embargo, cuando se pretende comprender y determinar los balances de CO2 de los ecosistemas forestales, es crucial obtener también la respiración del tallo como fuente neta de CO2. Las razones de la escasa cantidad de mediciones de la respiración del tronco, no son sólo las dificultades técnicas para evaluar la respiración del tronco en sí (por ejemplo, generar un sellado adecuado de las cámaras encerradas en la corteza del árbol), sino también las limitaciones económicas, ya que la mayoría de los sistemas comerciales de medición de gases efecto invernadero (GEI) son bastante caros. Por lo tanto, su adquisición puede suponer un reto en regiones donde los recursos son limitados, como el Sur Global, donde la información sobre los balances completos de CO2 de los ecosistemas forestales, incluyendo también los diferentes componentes del balance, como la respiración del tallo, suelen estar infrarrepresentados en comparación con el Norte Global. Para permitir las mediciones de la respiración del tronco en donde los recursos son limitados, aquí se presenta un sistema de cámara automática de bajo coste “Tree-Hugger”. El sistema se basa en Arduino y un sensor de CO2 infrarrojo no dispersivo (NDIR; SCD 30) (171,82 EUR/765.450 COP) para determinar los cambios de concentración de CO2 durante el cierre de la cámara. Para validar la precisión y veracidad (exactitud global) del sistema, se realizó una serie de pruebas de laboratorio y de campo, cuyos resultados se presentan en esta tesis. Por último, el sistema se aplicó durante un estudio de campo a largo plazo (de febrero a junio) con el objetivo de detectar diferencias estacionales en la respiración del tronco entre dos especies de árboles diferentes. Se ha demostrado que el sistema desarrollado proporciona resultados precisos y es capaz de determinar no solo las diferencias en la respiración del tronco entre distintas especies de árboles, sino también la dependencia subyacente de la temperatura. Además, el sistema mide automáticamente el ciclo diurno subyacente en los flujos de respiración del tronco. Por todo ello, el “Tree-Hugger” podría contribuir a complementar los estudios relacionados con el balance de carbono (C) de los ecosistemas forestales del mundo, especialmente los del Sur Global. |
publishDate |
2024 |
dc.date.created.none.fl_str_mv |
2024-09-26 |
dc.date.accessioned.none.fl_str_mv |
2025-03-04T19:33:39Z |
dc.date.available.none.fl_str_mv |
2025-03-04T19:33:39Z |
dc.type.none.fl_str_mv |
bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.degree.none.fl_str_mv |
Investigación-Innovación |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11349/93211 |
url |
http://hdl.handle.net/11349/93211 |
dc.relation.references.none.fl_str_mv |
Andersson, F. A. (2005). Coniferous forests (Vol. 6). Elsevier. Araki, M. G., Utsugi, H., Kajimoto, T., Han, Q., Kawasaki, T., & Chiba, Y. (2010). Estimation of whole-stem respiration, incorporating vertical and seasonal variations in stem CO2 efflux rate,of Chamaecyparis obtusa trees. J For Res, 15, 115-122. https://doi.org/10.1007/s10310-009-0163-3 Aubrey, D. P., & Teskey, R. O. (2021). Xylem transport of root‐derived CO2 caused a substantial underestimation of belowground respiration during a growing season. Global Change Biology, 27(12), 2991-3000. https://doi.org/10.1111/gcb.15624 Baldocchi, D. D. (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, 9(4), 479-492. https://doi.org/10.1046/j.1365-2486.2003.00629.x Barba, J., Poyatos, R., & Vargas, R. (2019). Automated measurements of greenhouse gases fluxes from tree stems and soils: magnitudes, patterns and drivers. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-39663-8 Baur, E. (1934). Arbeiten des Kaiser Wilhelm-Instituts für Züchtungsforschung in Müncheberg. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-38434-3 Beckley, T. M. (1998). The nestedness of forest dependence: A conceptual framework and empirical exploration. Society & Natural Resources, 11(2), 101-120. https://doi.org/10.1080/08941929809381066 Brändle, J., & Kunert, N. (2019). A new automated stem CO2 efflux chamber based on industrial ultra-low-cost sensors. Tree Physiology, 1-9. https://doi.org/10.1093/treephys/tpz104 Bréchet, L. M., Daniel, W., Stahl, C., Burban, B., Goret, J., Salomόn, R. L., & Janssens, I. A. (2021). Simultaneous tree stem and soil greenhouse gas (CO 2 , CH 4 , N 2 O) flux measurements: a novel design for continuous monitoring towards improving flux estimates and temporal resolution. New Phytologist, 230(6), 2481-2500. https://doi.org/10.1111/nph.17352 Brooks, J. R., Hinckley, T. M., Ford, E. D., & Sprugel, D. G. (1991). Foliage dark respiration in Abies amabilis (Dougl.) Forbes: variation within the canopy. Tree Physiology, 9(3), 325-338. https://doi.org/10.1093/treephys/9.3.325 Calcerrada, J. R., Rodriguez, R. A., Moreno, R. L., De Tejada Benavides, C. M., Gordaliza, G. G., Carabaña, M. V., . . . Sanchez, L. A. (2015). Emisión de CO2 de troncos de varias especies arbóreas. Foresta, 62, 30-37. http://oa.upm.es/40956/ Campioli, M., Gielen, B., Göckede, M., Papale, D., Bouriaud, O., & Granier, A. (2011). Temporal variability of the NPP-GPP ratio at seasonal and interannual time scales in a temperate beech forest. Biogeosciences, 9(8), 2481-2492. https://doi.org/10.5194/bg-8-2481-2011 Carey, E. V., Callaway, R. M., & DeLucia, E. H. (1997). Stem respiration of ponderosa pines grown in contrasting climates: implications for global climate change. Oecologia, 111(1), 19-25. https://doi.org/10.1007/s004420050203 Chabot, B., & Hicks, D. (1982). The ecology of leaf life spans. Annual Review of Ecology and Systematics, 13, 229-259. https://doi.org/10.1146/annurev.es.13.110182.001305 Chambers, J. Q., Tribuzy, E. S., Toledo, L. C., Crispim, B. F., Higuchi, N., Santos, J. d., . . . Trumbore, S. E. (2004). RESPIRATION FROM A TROPICAL FOREST ECOSYSTEM: PARTITIONING OF SOURCES AND LOW CARBON USE EFFICIENCY. Ecological Applications, 14, 72-88. https://doi.org/10.1890/01-6012 Covey, K. R., & Megonigal, J. P. (2019). Methane production and emissions in trees and forests. New Phytologist, 222(1), 35-51. https://doi.org/10.1111/nph.15624 Damesin, C., Ceschia, E., Goff, N. L., Ottorini, J., & Dufrêne, E. (2002). Stem and branch respiration of beech: from tree measurements to estimations at the stand level. New Phytologist, 153(1), 159-172. https://doi.org/10.1046/j.0028-646x.2001.00296.x Dickmann, D. I. (1971). Photosynthesis and Respiration by Developing Leaves of Cottonwood (Populus deltoides Bartr.). Botanical Gazette, 132(4), 253-259. https://doi.org/10.1086/336588 Dreiss, L. M., & Volin, J. C. (2020). Forests: Temperate Evergreen and Deciduous. In Y. wang, Terrestrial Ecosystems and Biodiversity (pp. 214-223). CRC Press. Drösler, M. (2005). Trace gas exchange and climatic relevance of bog ecosystems, Southern Germany. Technische Universität München. Edwards, N. T., & Hanson, P. J. (1996). Stem respiration in a closed-canopy upland oak forest. Tree Physiology, 16(4), 433-439. https://doi.org/10.1093/treephys/16.4.433 Esders, E. M., Klemm, O., Breuer, B., Lai, Y. J., Yu, J. C., & Lai, I. L. (2020). Use of a flexible chamber to measure stem respiration. Trees, 1(35), 319-323. https://doi.org/10.1007/s00468-020-02009-3 Ewel, K. C., Cropper. Jr, W. P., & Gholz, H. L. (1987). Soil CO2 evolution in Florida slash pine plantations. II. Importance of root respiration. Canadian Journal of Forest Research, 17(4), 330-333. https://doi.org/10.1139/x87-055 Goulden, M. L., McMillan, A. M., Winston, G. C., Rocha, A. V., Maines, K. L., Harden, J. W., & Bond-Lamberty, B. P. (2011). Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Global Change Biology, 17(2), 855-871. https://doi.org/10.1111/j.1365-2486.2010.02274.x Guevara, E., & Jiménez, V. (1998). Principios Y Aplicaciones de la Fisiología Vegetal: Manual de Laboratorio. Editorial Universidad de Costa Rica. Hättenschwiler, S. E., & Körner, C. R. (2000). Tree seedling responses to in situ CO2‐enrichment differ among species and depend on understorey light availability. Global Change Biology, 6(2), 213-226. https://doi.org/10.1046/j.1365-2486.2000.00301.x Helm, J., Hartmann, H., Göbel, M., Hilman, B., Ramírez, D. H., & Muhr, J. (2021). Low-cost chamber design for simultaneous CO2 and O2 flux measurements between tree stems and the atmosphere. Tree Physiology, 41(9), 1767-1780. https://doi.org/10.1093/treephys/tpab022 Hilman, B., Muhr, J., Trumbore, S. E., Kunert, N., Carbone, M. S., Yuval, P., . . . Angert, A. (2019). Comparison of CO2 and O2 fluxes demonstrate retention of respired CO2 in tree stems from a range of tree species. Biogeosciences, 16(1), 177-191. https://doi.org/10.5194/bg-16-177-2019 Hoffmann, M., Hamwi, W. A., Lück, M., Schmidt, M., & Dubbert, M. (2023). A low cost multi-chamber system (“Greenhouse Coffins”) to monitor CO2 and ET fluxes under semi-controlled conditions: Design and first results. EGU General Assembly. https://doi.org/10.5194/egusphere-egu23-11777 Hoffmann, M., Jurisch, N., Borraz, E. A., Hagemann, U., Drösler, M., Sommer, M., & Augustin, J. (2015). Automated modeling of ecosystem CO2 fluxes based on periodic closed chamber measurements: A standardized conceptual and practical approach. Agricultural and Forest Meteorology, 200, 30-45. https://doi.org/10.1016/j.agrformet.2014.09.005 IPCC. (2014). Climate Change 2014: Synthesis Report. Cambridge: Cambridge University Press, 35-112. Jardine, K. J., Cobello, L. O., Teixeira, L. M., East, M. S., Levine, S., Gimenez, B. O., . . . Chambers, J. Q. (2022). Stem respiration and growth in a central Amazon rainforest. Trees, 36(3), 991-1004. https://doi.org/10.1007/s00468-022-02265-5 Jardine, K., Augusto, E., Levine, S. D., Sunder, A., Som, S., & Chambers, J. (2023). Development of a lightweight, portable, waterproof, and low power stem respiration system for trees. MethodsX, 10. https://doi.org/10.1016/j.mex.2022.101986 Jeffrey, L. C., Maher, D. T., Tait, D. R., & Johnston, S. G. (2020). A Small Nimble In Situ Fine-Scale Flux Method for Measuring Tree Stem Greenhouse Gas Emissions and Processes (S.N.I.F.F). Ecosystems, 23(8), 1676-1689. https://doi.org/10.1007/s10021-020-00496-6 Katayama, A., Kume, T., Komatsu, H., Ohashi, M., Matsumoto, K., Ichihashi, R., . . . Otsuki, K. (2014). Vertical variations in wood CO2 efflux for live emergent trees in a Bornean tropical rainforest. Tree Physiology, 34(5), 503-512. https://doi.org/10.1093/treephys/tpu041 Kim, M. H., & Nakane, K. (2005). Effects of flow rate and chamber position on measurement of stem respiration rate with an open flow system in a Japanese red pine. Forest Ecology and Management, 210(1-3), 469–476. https://doi.org/10.1016/j.foreco.2005.02.047 Kondo, M., Ichii, K., Takagi, H., & Sasakawa, M. (2015). Comparison of the data-driven top-down and bottom-up global terrestrial CO2 exchanges: GOSAT CO2 inversion and empirical eddy flux upscaling. J. Geophys. Res. Biogeosci, 120, 1226–1245. https://doi.org/10.1002/ 2014JG002866, 2015 Körner, C. (2006). Plant CO2 responses: an issue of definition, time and resource supply. New Phytologist, 172(3), 393-411. https://doi.org/10.1111/j.1469-8137.2006.01886.x Körner, C., & Basler, D. (2010). Phenology under global warming. Science, 327(5972), 1461-1462. https://doi.org/10.1126/science.1186473 Kozlowski, T. (1992). Carbohydrate sources and sinks in woody plants. The botanical review. Kübert, A., Paulus, S., Dahlmann, A., Werner, C., Rothfuss, Y., Orlowski, N., & Dubbert, M. (2020). Water Stable Isotopes in Ecohydrological Field Research: Comparison Between In Situ and Destructive Monitoring Methods to Determine Soil Water Isotopic Signatures. Frontiers In Plant Science, 11. https://doi.org/10.3389/fpls.2020.00387 Lasse Tarvainen, M. R. (2014). Vertical gradients and seasonal variation in stem CO2 efflux within a Norway spruce stand. Tree Physiology, 34(5), 488-502. https://doi.org/10.1093/treephys/tpu036 Lavigne, M. B., Franklin, S. E., & R., H. E. (1996). Estimating stem maintenance respiration rates of dissimilar balsam fir stands. Tree Physiology, 16(8), 687-695. https://doi.org/10.1093/treephys/16.8.687 Law, B. E., Ryan, M. G., & Anthoni, P. M. (1999). Seasonal and annual respiration of a ponderosa pine ecosystem. Global Change Biology, 5(2), 169-182. https://doi.org/10.1046/j.1365-2486.1999.00214.x Leiber-Sauheitl, K., Fuß, R., Voig, C., & Freibauer, A. (2014). High CO2 fluxes from grassland on histic Gleysol along soil carbon and drainage gradients. Biogeosciences, 11, 749-761. https://doi.org/10.5194/bg-11-749-2014 Lloyd, J., & Taylor, J. A. (1994). On the temperature dependence of soil respiration . Functional Ecology, 8, 315-323. https://doi.org/10.2307/2389824 Luyssaert, S., Inglima, I., Jung, M., Reichstein, M., Papale, D., Piao, S., . . . H, E. (2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13, 2509–2537. https://doi.org/10.1111/j.1365-2486.2007.01439.x Lyr, H., Fiedler, H. J., & Tranquillini, W. (1992). Physiologie und ökologie der Gehölze. Fischer. Macagga, R., Asante, M., Sossa, G., Antonijevic, D., Dubbert, M., & Hoffmann, M. (2024). Validation and field application of a low-cost device to measure CO2 and evapotranspiration (ET) fluxes. Atmospheric Measurement Techniques, 17(4), 1317-1332. https://doi.org/10.5194/amt-17-1317-2024 Maier, C. (2001). Stem growth and respiration in loblolly pine plantations differing in soil resource availability. Tree Physiology, 21(16), 1183-1193. https://doi.org/10.1093/treephys/21.16.1183 Maier, C. A., Zarnoch, S. J., & Dougherty, P. M. (1998). Effects of temperature and tissue nitrogen on dormant season stem and branch maintenance respiration in a young loblolly pine (Pinus taeda) plantation. Tree Physiology, 18(1), 11-20. https://doi.org/10.1093/treephys/18.1.11 Malhi, Y. (2011). The productivity, metabolism and carbon cycle of tropical forest vegetation. ournal Of Ecology, 100(1), 65-75. https://doi.org/10.1111/j.1365-2745.2011.01916.x Miquelajauregui, Y. (2013). Modelos de simulación de las dinámicas del carbono. In J. L. Pérez, Aplicaciones de modelos ecológicos a la gestión de recursos naturales (pp. 15-38). OmniaScience. Molchanov, A. G., & Olchev, A. V. (2020). CO2 Efflux from the Stem Surface of Scots Pine under Various Growing Conditions. Biology Bulletin/Biology Bulletin Of The Russian Academy Of Sciences, 47(4), 417-426. https://doi.org/10.1134/s106235902003005x Pallardy, S. G. (2010). PHYSIOLOGY OF WOODY PLANTS. academic press. Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., . . . Piao, S. (2011). A Large and Persistent Carbon Sink in the World’s Forests. Science, 333(6045), 988-993. https://doi.org/10.1126/science.1201609 Pardos, J. A. (2016). El carbono, los ecosistemas forestales y el cambio climático: Un triángulo de relaciones mutuas. Sociedad Española de Ciencias Forestales. Robertson, A. L., Malhi, Y., Farfan‐Amezquita, F., Aragão, L. E., Espejo, J. E., & Robertson, M. A. (2010). Stem respiration in tropical forests along an elevation gradient in the Amazon and Andes. Global Change Biology, 16(12), 3193-3204. https://doi.org/10.1111/j.1365-2486.2010.02314.x Ryan, M. G., & Waring, R. H. (1992). Maintenance Respiration and Stand Development in a Subalpine Lodgepole Pine Forest. Ecology, 73(6), 2100-2108. https://doi.org/10.2307/1941458 Ryan, M. G., Gower, S. T., Hubbard, R. M., Waring, R. H., Gholz, H. L., Cropper, W. P., & Running, S. W. (1995). Woody tissue maintenance respiration of four conifers in contrasting climates. Oecologia, 101(2), 133-140. https://doi.org/10.1007/bf00317276 Ryan, M. G., Hubbard, R. M., Clark, D. A., & Sanford, R. L. (1994). Woody-tissue respiration for Simarouba amara and Minquartia guianensis, two tropical wet forest trees with different growth habits. Oecologia, 100(3), 213-220. https://doi.org/10.1007/bf00316947 Salamone, F., Sibilio, S., & Masullo, M. (2023). Low-cost carbon dioxide concentration sensors for assessing air quality in the built environment: an on-site evaluation of their measurement performance. Journal Of Physics Conference Series, 2600(10), 102019. https://doi.org/10.1088/1742-6596/2600/10/102019 Salomón, R. L., Steppe, K., Crous, K. Y., Noh, N. J., & Ellsworth, D. S. (2019). Elevated CO 2 does not affect stem CO 2 efflux nor stem respiration in a dry Eucalyptus woodland, but it shifts the vertical gradient in xylem [CO2]. Plant, Cell & Environment/Plant, Cell And Environment, 42(7), 2151-2164. https://doi.org/10.1111/pce.13550 Saveyn, A., Steppe, K., McGuire, M. A., Lemeur, R., & Teskey, R. O. (2007). Stem respiration and carbon dioxide efflux of young Populus deltoides trees in relation to temperature and xylem carbon dioxide concentration. Oecologia, 154(4), 637-649. https://doi.org/10.1007/s00442-007-0868-y Smith, W. K., & Hinckley, T. M. (1995). Ecophysiology of Coniferous Forests. Elsevier eBooks. https://doi.org/10.1016/c2009-0-02453-2 Stockfors, J., & Linder, S. (1998). Effect of nitrogen on the seasonal course of growth and maintenance respiration in stems of Norway spruce trees. Tree Physiology, 18(3), 155-166. https://doi.org/10.1093/treephys/18.3.155 Tarvainen, L., Räntfors, M., & Wallin, G. (2014). Vertical gradients and seasonal variation in stem CO2 efflux within a Norway spruce stand. Tree Physiology, 34, 488-502. https://doi.org/10.1093/treephys/tpu036 Tejero, H. (2019). Cómo hacer ante la crisis climática. Política exterior, 190(33), 100-106. https://dialnet.unirioja.es/servlet/articulo?codigo=7006998 Teskey, R. O., Saveyn, A., Steppe, K., & McGuire, M. A. (2007). Origin, fate and significance of CO2 in tree stems. New Phytologist, 177(1), 17-32. https://doi.org/10.1111/j.1469-8137.2007.02286.x Tselniker, Y. L., Malkina, I. S., Kovalev, A. G., Chmora, S. N., Mamaev, V. V., & Molchanov, L. G. (1993). Growth and CO2 Gas Exchange in Forest Trees. Naúka. Van Haren, J., Brewer, P. E., Kurtzberg, L., Wehr, R. N., Springer, V. L., Espinoza, R. T., . . . Cadillo-Quiroz, H. (2021). A versatile gas flux chamber reveals high tree stem CH4 emissions in Amazonian peatland. Agricultural And Forest Meteorology, 307, 108504. https://doi.org/10.1016/j.agrformet.2021.108504 Vargas, R., & Barba, J. (2019). Greenhouse gas fluxes from tree stems. Trends In Plant Science, 24(4), 296-299. https://doi.org/10.1016/j.tplants.2019.02.005 Viguera, B., Martínez-Rodríguez, M. R., Donatti, C. I., Harvey, C. A., & Alpízar, F. (2017). Impactos del cambio climático en la agricultura de Centroamérica, estrategias de mitigación y adaptación Módulo 2. https://repositorio.catie.ac.cr/handle/11554/9476 Vose, J. M., & Ryan, M. G. (2002). Seasonal respiration of foliage, fine roots, and woody tissues in relation to growth, tissue N, and photosynthesis. Global Change Biology, 8(2), 182-193. https://doi.org/10.1046/j.1365-2486.2002.00464.x Walker, R. B. (2005). Special ASpects of the Physiology of Conifers. In F. A. Andersson, Coniferous forests (Vol. 6) (pp. 319-335). Elsevier. Wang, X., Mao, Z., McGuire, M. A., & Teskey, R. O. (2018). Stem radial CO2 conductance affects stem respiratory CO2 fluxes in ash and birch trees. Journal Of Forestry Research/Journal Of Forestry Research, 30(1), 21-29. https://doi.org/10.1007/s11676-018-0737-z Ward, N., Indivero, J., Gunn, C., Wang, W., Bailey, V., & McDowell, N. (2019). Longitudinal Gradients in Tree Stem Greenhouse Gas Concentrations Across Six Pacific Northwest Coastal Forests. Journal Of Geophysical Research Biogeosciences, 124(6), 1401-1412. https://doi.org/10.1029/2019jg005064 Waring, R. H., & Schlesinger, W. H. (1985). Forest ecosystems: concepts and management. https://ci.nii.ac.jp/ncid/BA00805966 WBGU. (1998). The Accounting of Biological Sinks and Sources Under the Kyoto Protocol – A Step Forwards or Backwards for Global Environmental Protection? Wohlfahrt, G., Klumpp, K., & Soussana, J. J. (2012). Eddy Covariance A Practical Guide to Measurement and Data Analysis. Springer eBooks. https://doi.org/10.1007/978-94-007-2351-1 Xu, M., DeBiase, T. A., & Qi, Y. (2000). A simple technique to measure stem respiration using a horizontally oriented soil chamber. Canadian Journal Of Forest Research, 30(10), 1555-1560. https://doi.org/10.1139/x00-083 Xu, M., DeBiase, T. A., Qi, Y., Goldstein, A., & Liu, Z. (2001). Ecosystem respiration in a young ponderosa pine plantation in the Sierra Nevada Mountains, California. Tree Physiology, 21(5), 309-318. https://doi.org/10.1093/treephys/21.5.309 Yang, J., He, Y., Aubrey, D. P., Zhuang, Q., & Teskey, R. O. (2016). Global patterns and predictors of stem CO2 efflux in forest ecosystems. Global Change Biology, 22(4), 1433-1444. https://doi.org/10.1111/gcb.13188 Zawilski, B. M., & Bustillo, V. (2024). Ultra-low-cost manual soil respiration chamber. Geoscientific Instrumentation, 13(1), 51-62. https://doi.org/10.5194/gi-13-51-2024 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.none.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
pdf |
institution |
Universidad Distrital Francisco José de Caldas |
bitstream.url.fl_str_mv |
https://repository.udistrital.edu.co/bitstreams/0dc2831f-913f-4ede-82c7-7b0ec5970cb9/download https://repository.udistrital.edu.co/bitstreams/2cac332f-6864-4522-8264-71b003a2a26c/download https://repository.udistrital.edu.co/bitstreams/d311a91d-f879-4f71-8274-e78bd71b2e81/download https://repository.udistrital.edu.co/bitstreams/30e2f2ba-ca97-44da-9f71-217b9665bfce/download https://repository.udistrital.edu.co/bitstreams/55068aa8-de0d-400b-b2f4-055e8901e851/download |
bitstream.checksum.fl_str_mv |
997daf6c648c962d566d7b082dac908d 8f85b1da6a6d536cf26fdde0a186ceeb b994f4be224a5b05a49cabbed166bbbb c6630838775eaad61f2ce31108ce297f c6cafef995eed29d136a4f69ad785d76 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Distrital |
repository.mail.fl_str_mv |
repositorio@udistrital.edu.co |
_version_ |
1828165249104084992 |
spelling |
Guzmán Avendaño, Antonio JoséGil Valenzuela, José Camilo2025-03-04T19:33:39Z2025-03-04T19:33:39Z2024-09-26http://hdl.handle.net/11349/93211En comparación con los estudios sobre la respiración del suelo o de las hojas, que se han realizado con mucha más frecuencia, la medición de la respiración del tallo es más bien escasa. Sin embargo, cuando se pretende comprender y determinar los balances de CO2 de los ecosistemas forestales, es crucial obtener también la respiración del tallo como fuente neta de CO2. Las razones de la escasa cantidad de mediciones de la respiración del tronco, no son sólo las dificultades técnicas para evaluar la respiración del tronco en sí (por ejemplo, generar un sellado adecuado de las cámaras encerradas en la corteza del árbol), sino también las limitaciones económicas, ya que la mayoría de los sistemas comerciales de medición de gases efecto invernadero (GEI) son bastante caros. Por lo tanto, su adquisición puede suponer un reto en regiones donde los recursos son limitados, como el Sur Global, donde la información sobre los balances completos de CO2 de los ecosistemas forestales, incluyendo también los diferentes componentes del balance, como la respiración del tallo, suelen estar infrarrepresentados en comparación con el Norte Global. Para permitir las mediciones de la respiración del tronco en donde los recursos son limitados, aquí se presenta un sistema de cámara automática de bajo coste “Tree-Hugger”. El sistema se basa en Arduino y un sensor de CO2 infrarrojo no dispersivo (NDIR; SCD 30) (171,82 EUR/765.450 COP) para determinar los cambios de concentración de CO2 durante el cierre de la cámara. Para validar la precisión y veracidad (exactitud global) del sistema, se realizó una serie de pruebas de laboratorio y de campo, cuyos resultados se presentan en esta tesis. Por último, el sistema se aplicó durante un estudio de campo a largo plazo (de febrero a junio) con el objetivo de detectar diferencias estacionales en la respiración del tronco entre dos especies de árboles diferentes. Se ha demostrado que el sistema desarrollado proporciona resultados precisos y es capaz de determinar no solo las diferencias en la respiración del tronco entre distintas especies de árboles, sino también la dependencia subyacente de la temperatura. Además, el sistema mide automáticamente el ciclo diurno subyacente en los flujos de respiración del tronco. Por todo ello, el “Tree-Hugger” podría contribuir a complementar los estudios relacionados con el balance de carbono (C) de los ecosistemas forestales del mundo, especialmente los del Sur Global.Compared to studies about soil or leaf respiration which have been conducted much more frequent, measurement of stem respiration is rather rare. However, when aiming to understand and determine the forest ecosystem CO2 balances, it is crucial to also obtain stem respiration as a net source of CO2. The reason for the low amount of stem respiration measurements are not only technical difficulties in assessing stem respiration itself (e.g., generate proper sealing of chambers enclosed on the tree bark), but also economic limitations, since most commercial GHG measurement systems are rather expensive. Hence, their acquisition can be challenging in regions where resources are limited, such as the Global South, wherefore information on full CO2 balances of forest ecosystems also including the different balance components such as stem respiration are usually underrepresented when compared to the Global North. To allow for stem respiration measurements also under resource limited conditions, here it is presented a low-cost automatic chamber system for stem respiration “Tree-Hugger”. The system is based on Arduino and a non-dispersive infrared (NDIR; SCD 30) (171.82 EUR/765,450 COP) CO2 sensor to determine CO2 concentration changes during chamber closure. To validate the systems precision and trueness (overall accuracy), a row of laboratory and field tests was conducted, whose results are presented within this thesis. Finally, the system was applied during a longer-term field study (February to June) aiming to detect seasonal differences in stem respiration between two different tree species. It could be shown, that the developed system delivers accurate results and is able to determine not only differences in stem respiration between different tree species, but also the underlying temperature dependency and due to its automatic measurement of diurnal cycle underlying diurnally in stem respiration fluxes. In view of this, the “Tree-Hugger” could contribute to complementing studies related to the carbon (C) balance of the world's forest ecosystems, especially those in the Global South.Centro Leibniz de Investigación del Paisaje Agrícola (Zalf)pdfRespiración de troncoCámara cerradaSensores de bajo costoFlujos de CO2GEIMediciones basadas en cámaraIngeniería Forestal -- Tesis y disertaciones académicasEcologíaVigilancia ambientalEcología forestalInnovación tecnológicaStem repirationClosed chamberLow-cost sensorsCO2 fluxesGHGChamber-based measurementsSistema de medición de bajo costo para determinar la respiración de tronco de los áboles “Tree-Hugger”Low-cost measurement system to determine stem respiration of trees "Tree-Hugger"bachelorThesisInvestigación-Innovaciónhttp://purl.org/coar/resource_type/c_7a1fAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Andersson, F. A. (2005). Coniferous forests (Vol. 6). Elsevier.Araki, M. G., Utsugi, H., Kajimoto, T., Han, Q., Kawasaki, T., & Chiba, Y. (2010). Estimation of whole-stem respiration, incorporating vertical and seasonal variations in stem CO2 efflux rate,of Chamaecyparis obtusa trees. J For Res, 15, 115-122. https://doi.org/10.1007/s10310-009-0163-3Aubrey, D. P., & Teskey, R. O. (2021). Xylem transport of root‐derived CO2 caused a substantial underestimation of belowground respiration during a growing season. Global Change Biology, 27(12), 2991-3000. https://doi.org/10.1111/gcb.15624Baldocchi, D. D. (2003). Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, 9(4), 479-492. https://doi.org/10.1046/j.1365-2486.2003.00629.xBarba, J., Poyatos, R., & Vargas, R. (2019). Automated measurements of greenhouse gases fluxes from tree stems and soils: magnitudes, patterns and drivers. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-39663-8Baur, E. (1934). Arbeiten des Kaiser Wilhelm-Instituts für Züchtungsforschung in Müncheberg. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-38434-3Beckley, T. M. (1998). The nestedness of forest dependence: A conceptual framework and empirical exploration. Society & Natural Resources, 11(2), 101-120. https://doi.org/10.1080/08941929809381066Brändle, J., & Kunert, N. (2019). A new automated stem CO2 efflux chamber based on industrial ultra-low-cost sensors. Tree Physiology, 1-9. https://doi.org/10.1093/treephys/tpz104Bréchet, L. M., Daniel, W., Stahl, C., Burban, B., Goret, J., Salomόn, R. L., & Janssens, I. A. (2021). Simultaneous tree stem and soil greenhouse gas (CO 2 , CH 4 , N 2 O) flux measurements: a novel design for continuous monitoring towards improving flux estimates and temporal resolution. New Phytologist, 230(6), 2481-2500. https://doi.org/10.1111/nph.17352Brooks, J. R., Hinckley, T. M., Ford, E. D., & Sprugel, D. G. (1991). Foliage dark respiration in Abies amabilis (Dougl.) Forbes: variation within the canopy. Tree Physiology, 9(3), 325-338. https://doi.org/10.1093/treephys/9.3.325Calcerrada, J. R., Rodriguez, R. A., Moreno, R. L., De Tejada Benavides, C. M., Gordaliza, G. G., Carabaña, M. V., . . . Sanchez, L. A. (2015). Emisión de CO2 de troncos de varias especies arbóreas. Foresta, 62, 30-37. http://oa.upm.es/40956/Campioli, M., Gielen, B., Göckede, M., Papale, D., Bouriaud, O., & Granier, A. (2011). Temporal variability of the NPP-GPP ratio at seasonal and interannual time scales in a temperate beech forest. Biogeosciences, 9(8), 2481-2492. https://doi.org/10.5194/bg-8-2481-2011Carey, E. V., Callaway, R. M., & DeLucia, E. H. (1997). Stem respiration of ponderosa pines grown in contrasting climates: implications for global climate change. Oecologia, 111(1), 19-25. https://doi.org/10.1007/s004420050203Chabot, B., & Hicks, D. (1982). The ecology of leaf life spans. Annual Review of Ecology and Systematics, 13, 229-259. https://doi.org/10.1146/annurev.es.13.110182.001305Chambers, J. Q., Tribuzy, E. S., Toledo, L. C., Crispim, B. F., Higuchi, N., Santos, J. d., . . . Trumbore, S. E. (2004). RESPIRATION FROM A TROPICAL FOREST ECOSYSTEM: PARTITIONING OF SOURCES AND LOW CARBON USE EFFICIENCY. Ecological Applications, 14, 72-88. https://doi.org/10.1890/01-6012Covey, K. R., & Megonigal, J. P. (2019). Methane production and emissions in trees and forests. New Phytologist, 222(1), 35-51. https://doi.org/10.1111/nph.15624Damesin, C., Ceschia, E., Goff, N. L., Ottorini, J., & Dufrêne, E. (2002). Stem and branch respiration of beech: from tree measurements to estimations at the stand level. New Phytologist, 153(1), 159-172. https://doi.org/10.1046/j.0028-646x.2001.00296.xDickmann, D. I. (1971). Photosynthesis and Respiration by Developing Leaves of Cottonwood (Populus deltoides Bartr.). Botanical Gazette, 132(4), 253-259. https://doi.org/10.1086/336588Dreiss, L. M., & Volin, J. C. (2020). Forests: Temperate Evergreen and Deciduous. In Y. wang, Terrestrial Ecosystems and Biodiversity (pp. 214-223). CRC Press.Drösler, M. (2005). Trace gas exchange and climatic relevance of bog ecosystems, Southern Germany. Technische Universität München.Edwards, N. T., & Hanson, P. J. (1996). Stem respiration in a closed-canopy upland oak forest. Tree Physiology, 16(4), 433-439. https://doi.org/10.1093/treephys/16.4.433Esders, E. M., Klemm, O., Breuer, B., Lai, Y. J., Yu, J. C., & Lai, I. L. (2020). Use of a flexible chamber to measure stem respiration. Trees, 1(35), 319-323. https://doi.org/10.1007/s00468-020-02009-3Ewel, K. C., Cropper. Jr, W. P., & Gholz, H. L. (1987). Soil CO2 evolution in Florida slash pine plantations. II. Importance of root respiration. Canadian Journal of Forest Research, 17(4), 330-333. https://doi.org/10.1139/x87-055Goulden, M. L., McMillan, A. M., Winston, G. C., Rocha, A. V., Maines, K. L., Harden, J. W., & Bond-Lamberty, B. P. (2011). Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Global Change Biology, 17(2), 855-871. https://doi.org/10.1111/j.1365-2486.2010.02274.xGuevara, E., & Jiménez, V. (1998). Principios Y Aplicaciones de la Fisiología Vegetal: Manual de Laboratorio. Editorial Universidad de Costa Rica.Hättenschwiler, S. E., & Körner, C. R. (2000). Tree seedling responses to in situ CO2‐enrichment differ among species and depend on understorey light availability. Global Change Biology, 6(2), 213-226. https://doi.org/10.1046/j.1365-2486.2000.00301.xHelm, J., Hartmann, H., Göbel, M., Hilman, B., Ramírez, D. H., & Muhr, J. (2021). Low-cost chamber design for simultaneous CO2 and O2 flux measurements between tree stems and the atmosphere. Tree Physiology, 41(9), 1767-1780. https://doi.org/10.1093/treephys/tpab022Hilman, B., Muhr, J., Trumbore, S. E., Kunert, N., Carbone, M. S., Yuval, P., . . . Angert, A. (2019). Comparison of CO2 and O2 fluxes demonstrate retention of respired CO2 in tree stems from a range of tree species. Biogeosciences, 16(1), 177-191. https://doi.org/10.5194/bg-16-177-2019Hoffmann, M., Hamwi, W. A., Lück, M., Schmidt, M., & Dubbert, M. (2023). A low cost multi-chamber system (“Greenhouse Coffins”) to monitor CO2 and ET fluxes under semi-controlled conditions: Design and first results. EGU General Assembly. https://doi.org/10.5194/egusphere-egu23-11777Hoffmann, M., Jurisch, N., Borraz, E. A., Hagemann, U., Drösler, M., Sommer, M., & Augustin, J. (2015). Automated modeling of ecosystem CO2 fluxes based on periodic closed chamber measurements: A standardized conceptual and practical approach. Agricultural and Forest Meteorology, 200, 30-45. https://doi.org/10.1016/j.agrformet.2014.09.005IPCC. (2014). Climate Change 2014: Synthesis Report. Cambridge: Cambridge University Press, 35-112.Jardine, K. J., Cobello, L. O., Teixeira, L. M., East, M. S., Levine, S., Gimenez, B. O., . . . Chambers, J. Q. (2022). Stem respiration and growth in a central Amazon rainforest. Trees, 36(3), 991-1004. https://doi.org/10.1007/s00468-022-02265-5Jardine, K., Augusto, E., Levine, S. D., Sunder, A., Som, S., & Chambers, J. (2023). Development of a lightweight, portable, waterproof, and low power stem respiration system for trees. MethodsX, 10. https://doi.org/10.1016/j.mex.2022.101986Jeffrey, L. C., Maher, D. T., Tait, D. R., & Johnston, S. G. (2020). A Small Nimble In Situ Fine-Scale Flux Method for Measuring Tree Stem Greenhouse Gas Emissions and Processes (S.N.I.F.F). Ecosystems, 23(8), 1676-1689. https://doi.org/10.1007/s10021-020-00496-6Katayama, A., Kume, T., Komatsu, H., Ohashi, M., Matsumoto, K., Ichihashi, R., . . . Otsuki, K. (2014). Vertical variations in wood CO2 efflux for live emergent trees in a Bornean tropical rainforest. Tree Physiology, 34(5), 503-512. https://doi.org/10.1093/treephys/tpu041Kim, M. H., & Nakane, K. (2005). Effects of flow rate and chamber position on measurement of stem respiration rate with an open flow system in a Japanese red pine. Forest Ecology and Management, 210(1-3), 469–476. https://doi.org/10.1016/j.foreco.2005.02.047Kondo, M., Ichii, K., Takagi, H., & Sasakawa, M. (2015). Comparison of the data-driven top-down and bottom-up global terrestrial CO2 exchanges: GOSAT CO2 inversion and empirical eddy flux upscaling. J. Geophys. Res. Biogeosci, 120, 1226–1245. https://doi.org/10.1002/ 2014JG002866, 2015Körner, C. (2006). Plant CO2 responses: an issue of definition, time and resource supply. New Phytologist, 172(3), 393-411. https://doi.org/10.1111/j.1469-8137.2006.01886.xKörner, C., & Basler, D. (2010). Phenology under global warming. Science, 327(5972), 1461-1462. https://doi.org/10.1126/science.1186473Kozlowski, T. (1992). Carbohydrate sources and sinks in woody plants. The botanical review.Kübert, A., Paulus, S., Dahlmann, A., Werner, C., Rothfuss, Y., Orlowski, N., & Dubbert, M. (2020). Water Stable Isotopes in Ecohydrological Field Research: Comparison Between In Situ and Destructive Monitoring Methods to Determine Soil Water Isotopic Signatures. Frontiers In Plant Science, 11. https://doi.org/10.3389/fpls.2020.00387Lasse Tarvainen, M. R. (2014). Vertical gradients and seasonal variation in stem CO2 efflux within a Norway spruce stand. Tree Physiology, 34(5), 488-502. https://doi.org/10.1093/treephys/tpu036Lavigne, M. B., Franklin, S. E., & R., H. E. (1996). Estimating stem maintenance respiration rates of dissimilar balsam fir stands. Tree Physiology, 16(8), 687-695. https://doi.org/10.1093/treephys/16.8.687Law, B. E., Ryan, M. G., & Anthoni, P. M. (1999). Seasonal and annual respiration of a ponderosa pine ecosystem. Global Change Biology, 5(2), 169-182. https://doi.org/10.1046/j.1365-2486.1999.00214.xLeiber-Sauheitl, K., Fuß, R., Voig, C., & Freibauer, A. (2014). High CO2 fluxes from grassland on histic Gleysol along soil carbon and drainage gradients. Biogeosciences, 11, 749-761. https://doi.org/10.5194/bg-11-749-2014Lloyd, J., & Taylor, J. A. (1994). On the temperature dependence of soil respiration . Functional Ecology, 8, 315-323. https://doi.org/10.2307/2389824Luyssaert, S., Inglima, I., Jung, M., Reichstein, M., Papale, D., Piao, S., . . . H, E. (2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13, 2509–2537. https://doi.org/10.1111/j.1365-2486.2007.01439.xLyr, H., Fiedler, H. J., & Tranquillini, W. (1992). Physiologie und ökologie der Gehölze. Fischer.Macagga, R., Asante, M., Sossa, G., Antonijevic, D., Dubbert, M., & Hoffmann, M. (2024). Validation and field application of a low-cost device to measure CO2 and evapotranspiration (ET) fluxes. Atmospheric Measurement Techniques, 17(4), 1317-1332. https://doi.org/10.5194/amt-17-1317-2024Maier, C. (2001). Stem growth and respiration in loblolly pine plantations differing in soil resource availability. Tree Physiology, 21(16), 1183-1193. https://doi.org/10.1093/treephys/21.16.1183Maier, C. A., Zarnoch, S. J., & Dougherty, P. M. (1998). Effects of temperature and tissue nitrogen on dormant season stem and branch maintenance respiration in a young loblolly pine (Pinus taeda) plantation. Tree Physiology, 18(1), 11-20. https://doi.org/10.1093/treephys/18.1.11Malhi, Y. (2011). The productivity, metabolism and carbon cycle of tropical forest vegetation. ournal Of Ecology, 100(1), 65-75. https://doi.org/10.1111/j.1365-2745.2011.01916.xMiquelajauregui, Y. (2013). Modelos de simulación de las dinámicas del carbono. In J. L. Pérez, Aplicaciones de modelos ecológicos a la gestión de recursos naturales (pp. 15-38). OmniaScience.Molchanov, A. G., & Olchev, A. V. (2020). CO2 Efflux from the Stem Surface of Scots Pine under Various Growing Conditions. Biology Bulletin/Biology Bulletin Of The Russian Academy Of Sciences, 47(4), 417-426. https://doi.org/10.1134/s106235902003005xPallardy, S. G. (2010). PHYSIOLOGY OF WOODY PLANTS. academic press.Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., . . . Piao, S. (2011). A Large and Persistent Carbon Sink in the World’s Forests. Science, 333(6045), 988-993. https://doi.org/10.1126/science.1201609Pardos, J. A. (2016). El carbono, los ecosistemas forestales y el cambio climático: Un triángulo de relaciones mutuas. Sociedad Española de Ciencias Forestales.Robertson, A. L., Malhi, Y., Farfan‐Amezquita, F., Aragão, L. E., Espejo, J. E., & Robertson, M. A. (2010). Stem respiration in tropical forests along an elevation gradient in the Amazon and Andes. Global Change Biology, 16(12), 3193-3204. https://doi.org/10.1111/j.1365-2486.2010.02314.xRyan, M. G., & Waring, R. H. (1992). Maintenance Respiration and Stand Development in a Subalpine Lodgepole Pine Forest. Ecology, 73(6), 2100-2108. https://doi.org/10.2307/1941458Ryan, M. G., Gower, S. T., Hubbard, R. M., Waring, R. H., Gholz, H. L., Cropper, W. P., & Running, S. W. (1995). Woody tissue maintenance respiration of four conifers in contrasting climates. Oecologia, 101(2), 133-140. https://doi.org/10.1007/bf00317276Ryan, M. G., Hubbard, R. M., Clark, D. A., & Sanford, R. L. (1994). Woody-tissue respiration for Simarouba amara and Minquartia guianensis, two tropical wet forest trees with different growth habits. Oecologia, 100(3), 213-220. https://doi.org/10.1007/bf00316947Salamone, F., Sibilio, S., & Masullo, M. (2023). Low-cost carbon dioxide concentration sensors for assessing air quality in the built environment: an on-site evaluation of their measurement performance. Journal Of Physics Conference Series, 2600(10), 102019. https://doi.org/10.1088/1742-6596/2600/10/102019Salomón, R. L., Steppe, K., Crous, K. Y., Noh, N. J., & Ellsworth, D. S. (2019). Elevated CO 2 does not affect stem CO 2 efflux nor stem respiration in a dry Eucalyptus woodland, but it shifts the vertical gradient in xylem [CO2]. Plant, Cell & Environment/Plant, Cell And Environment, 42(7), 2151-2164. https://doi.org/10.1111/pce.13550Saveyn, A., Steppe, K., McGuire, M. A., Lemeur, R., & Teskey, R. O. (2007). Stem respiration and carbon dioxide efflux of young Populus deltoides trees in relation to temperature and xylem carbon dioxide concentration. Oecologia, 154(4), 637-649. https://doi.org/10.1007/s00442-007-0868-ySmith, W. K., & Hinckley, T. M. (1995). Ecophysiology of Coniferous Forests. Elsevier eBooks. https://doi.org/10.1016/c2009-0-02453-2Stockfors, J., & Linder, S. (1998). Effect of nitrogen on the seasonal course of growth and maintenance respiration in stems of Norway spruce trees. Tree Physiology, 18(3), 155-166. https://doi.org/10.1093/treephys/18.3.155Tarvainen, L., Räntfors, M., & Wallin, G. (2014). Vertical gradients and seasonal variation in stem CO2 efflux within a Norway spruce stand. Tree Physiology, 34, 488-502. https://doi.org/10.1093/treephys/tpu036Tejero, H. (2019). Cómo hacer ante la crisis climática. Política exterior, 190(33), 100-106. https://dialnet.unirioja.es/servlet/articulo?codigo=7006998Teskey, R. O., Saveyn, A., Steppe, K., & McGuire, M. A. (2007). Origin, fate and significance of CO2 in tree stems. New Phytologist, 177(1), 17-32. https://doi.org/10.1111/j.1469-8137.2007.02286.xTselniker, Y. L., Malkina, I. S., Kovalev, A. G., Chmora, S. N., Mamaev, V. V., & Molchanov, L. G. (1993). Growth and CO2 Gas Exchange in Forest Trees. Naúka.Van Haren, J., Brewer, P. E., Kurtzberg, L., Wehr, R. N., Springer, V. L., Espinoza, R. T., . . . Cadillo-Quiroz, H. (2021). A versatile gas flux chamber reveals high tree stem CH4 emissions in Amazonian peatland. Agricultural And Forest Meteorology, 307, 108504. https://doi.org/10.1016/j.agrformet.2021.108504Vargas, R., & Barba, J. (2019). Greenhouse gas fluxes from tree stems. Trends In Plant Science, 24(4), 296-299. https://doi.org/10.1016/j.tplants.2019.02.005Viguera, B., Martínez-Rodríguez, M. R., Donatti, C. I., Harvey, C. A., & Alpízar, F. (2017). Impactos del cambio climático en la agricultura de Centroamérica, estrategias de mitigación y adaptación Módulo 2. https://repositorio.catie.ac.cr/handle/11554/9476Vose, J. M., & Ryan, M. G. (2002). Seasonal respiration of foliage, fine roots, and woody tissues in relation to growth, tissue N, and photosynthesis. Global Change Biology, 8(2), 182-193. https://doi.org/10.1046/j.1365-2486.2002.00464.xWalker, R. B. (2005). Special ASpects of the Physiology of Conifers. In F. A. Andersson, Coniferous forests (Vol. 6) (pp. 319-335). Elsevier.Wang, X., Mao, Z., McGuire, M. A., & Teskey, R. O. (2018). Stem radial CO2 conductance affects stem respiratory CO2 fluxes in ash and birch trees. Journal Of Forestry Research/Journal Of Forestry Research, 30(1), 21-29. https://doi.org/10.1007/s11676-018-0737-zWard, N., Indivero, J., Gunn, C., Wang, W., Bailey, V., & McDowell, N. (2019). Longitudinal Gradients in Tree Stem Greenhouse Gas Concentrations Across Six Pacific Northwest Coastal Forests. Journal Of Geophysical Research Biogeosciences, 124(6), 1401-1412. https://doi.org/10.1029/2019jg005064Waring, R. H., & Schlesinger, W. H. (1985). Forest ecosystems: concepts and management. https://ci.nii.ac.jp/ncid/BA00805966WBGU. (1998). The Accounting of Biological Sinks and Sources Under the Kyoto Protocol – A Step Forwards or Backwards for Global Environmental Protection?Wohlfahrt, G., Klumpp, K., & Soussana, J. J. (2012). Eddy Covariance A Practical Guide to Measurement and Data Analysis. Springer eBooks. https://doi.org/10.1007/978-94-007-2351-1Xu, M., DeBiase, T. A., & Qi, Y. (2000). A simple technique to measure stem respiration using a horizontally oriented soil chamber. Canadian Journal Of Forest Research, 30(10), 1555-1560. https://doi.org/10.1139/x00-083Xu, M., DeBiase, T. A., Qi, Y., Goldstein, A., & Liu, Z. (2001). Ecosystem respiration in a young ponderosa pine plantation in the Sierra Nevada Mountains, California. Tree Physiology, 21(5), 309-318. https://doi.org/10.1093/treephys/21.5.309Yang, J., He, Y., Aubrey, D. P., Zhuang, Q., & Teskey, R. O. (2016). Global patterns and predictors of stem CO2 efflux in forest ecosystems. Global Change Biology, 22(4), 1433-1444. https://doi.org/10.1111/gcb.13188Zawilski, B. M., & Bustillo, V. (2024). Ultra-low-cost manual soil respiration chamber. Geoscientific Instrumentation, 13(1), 51-62. https://doi.org/10.5194/gi-13-51-2024LICENSElicense.txtlicense.txttext/plain; charset=utf-87167https://repository.udistrital.edu.co/bitstreams/0dc2831f-913f-4ede-82c7-7b0ec5970cb9/download997daf6c648c962d566d7b082dac908dMD51ORIGINALGilValenzuelaJoséCamilo2024.pdfGilValenzuelaJoséCamilo2024.pdfapplication/pdf2100553https://repository.udistrital.edu.co/bitstreams/2cac332f-6864-4522-8264-71b003a2a26c/download8f85b1da6a6d536cf26fdde0a186ceebMD52Licencia de uso y autorizaciónLicencia de uso y autorizaciónapplication/pdf622766https://repository.udistrital.edu.co/bitstreams/d311a91d-f879-4f71-8274-e78bd71b2e81/downloadb994f4be224a5b05a49cabbed166bbbbMD53THUMBNAILGilValenzuelaJoséCamilo2024.pdf.jpgGilValenzuelaJoséCamilo2024.pdf.jpgIM Thumbnailimage/jpeg5618https://repository.udistrital.edu.co/bitstreams/30e2f2ba-ca97-44da-9f71-217b9665bfce/downloadc6630838775eaad61f2ce31108ce297fMD54Licencia de uso y autorización.jpgLicencia de uso y autorización.jpgIM Thumbnailimage/jpeg12098https://repository.udistrital.edu.co/bitstreams/55068aa8-de0d-400b-b2f4-055e8901e851/downloadc6cafef995eed29d136a4f69ad785d76MD5511349/93211oai:repository.udistrital.edu.co:11349/932112025-03-05 01:04:18.979open.accesshttps://repository.udistrital.edu.coRepositorio Universidad Distritalrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyBERSBDT05URU5JRE9TIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgREUgTEEgVU5JVkVSU0lEQUQgRElTVFJJVEFMCgpUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyAoUklVRCkKCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCBjb25maWVybyAoZXJpbW9zKSBhIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIChlbiBhZGVsYW50ZSwgTEEgVU5JVkVSU0lEQUQpIHVuYSBsaWNlbmNpYSBwYXJhIHVzbyBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgaW50ZWdyYXLDoSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIChlbiBhZGVsYW50ZSwgUklVRCksIGRlIGFjdWVyZG8gYSBsYXMgc2lndWllbnRlcyByZWdsYXMsIGxhcyBjdWFsZXMgZGVjbGFybyAoYW1vcykgY29ub2NlciB5IGFjZXB0YXI6CgphKQlFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWEgZW4gZWwgUklVRCB5IGhhc3RhIHBvciB1biBwbGF6byBkZSBkaWV6ICgxMCkgQcOxb3MsIHByb3Jyb2dhYmxlIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyBsYSBjdWFsIHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHByZXZpYSBzb2xpY2l0dWQgYSBMQSBVTklWRVJTSURBRCBwb3IgZXNjcml0byBjb24gdW5hIGFudGVsYWNpw7NuIGRlIGRvcyAoMikgbWVzZXMgYW50ZXMgZGVsIHZlbmNpbWllbnRvIGRlbCBwbGF6byBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLgoKYikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyBwb3IgZWwgUklVRCAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBMQSBVTklWRVJTSURBRCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsIGRvY3VtZW50byBhcGFyZXpjYSByZWZlcmVuY2lhZG8gZW4gbW90b3JlcyBkZSBiw7pzcXVlZGEgbyByZXBvc2l0b3Jpb3MgZGlmZXJlbnRlcyBhbCBSSVVELCB1bmEgdmV6IGVsKG9zKSBhdXRvcihlcykgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUklVRCwgZGFkbyBxdWUgbGEgbWlzbWEgc2Vyw6EgcHVibGljYWRhIGVuIEludGVybmV0LgoKYykJTGEgYXV0b3JpemFjacOzbiBzZSBoYWNlIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCBsb3MgYXV0b3JlcyByZW51bmNpYW4gYSByZWNpYmlyIGJlbmVmaWNpbyBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKQlMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQgc29uIG9icmEocykgb3JpZ2luYWwoZXMpIHNvYnJlIGxhIGN1YWwoZXMpIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBhc3VtZW4gdG90YWwgcmVzcG9uc2FiaWxpZGFkIHBvciBlbCBjb250ZW5pZG8gZGUgc3Ugb2JyYSBhbnRlIExBIFVOSVZFUlNJREFEIHkgYW50ZSB0ZXJjZXJvcy4gRW4gdG9kbyBjYXNvIExBIFVOSVZFUlNJREFEIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3Mgw61uZGljZXMgeSBidXNjYWRvcmVzIHF1ZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBtYXhpbWl6YXIgbGEgdmlzaWJpbGlkYWQgZWwgdXNvIHkgZWwgaW1wYWN0byBkZSBsYSBwcm9kdWNjacOzbiBjaWVudMOtZmljYSwgYXJ0w61zdGljYSB5IGFjYWTDqW1pY2EgZW4gbGEgY29tdW5pZGFkIGxvY2FsLCBuYWNpb25hbCBvIGludGVybmFjaW9uYWwuCgoKZikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGNvbnZlcnRpciBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluIGRlIHN1IHByZXNlcnZhY2nDs24gZW4gZWwgdGllbXBvIHF1ZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGxhIGRlIHN1cyBwcsOzcnJvZ2FzLgoKCkNvbiBiYXNlIGVuIGxvIGFudGVyaW9yIGF1dG9yaXpvKGFtb3MpLCBhIGZhdm9yIGRlbCBSSVVEIHkgZGUgc3VzIHVzdWFyaW9zLCBsYSBwdWJsaWNhY2nDs24geSBjb25zdWx0YSBkZSBsYSBzaWd1aWVudGUgb2JyYToKClRpdHVsbwoKQXV0b3IgICAgICAgQXBlbGxpZG9zICAgICAgICAgTm9tYnJlcwoKMQoKMgoKMwoKCmcpCUF1dG9yaXpvKGFtb3MpLCBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsb3MgbGl0ZXJhbGVzIGFudGVyaW9yZXMsIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgTEEgVU5JVkVSU0lEQUQsIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQsIGN1eW8gdGV4dG8gY29tcGxldG8gc2UgcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9yZXBvc2l0b3J5LnVkaXN0cml0YWwuZWR1LmNvLwoKaCkJQ29ub3pjbyhjZW1vcykgeSBhY2VwdG8oYW1vcykgcXVlIG90b3JnbyhhbW9zKSB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIChoZW1vcykgb2J0ZW5pZG8gdW5hIGNvcGlhLgoKaSkJTWFuaWZpZXN0byhhbW9zKSBtaSAobnVlc3RybykgdG90YWwgYWN1ZXJkbyBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIHVzbyB5IHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHF1ZSBzZSBkZXNjcmliZW4geSBleHBsaWNhbiBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8uCgpqKQlDb25vemNvKGNlbW9zKSBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSAgTEEgVU5JVkVSU0lEQUQ7IGVuIGNvbmNyZXRvLCBlbCBBY3VlcmRvIDAwNCBkZSAyMDEyIGRlbCBDU1UsIEFjdWVyZG8gMDIzIGRlIDIwMTIgZGVsIENTVSBzb2JyZSBQb2zDrXRpY2EgRWRpdG9yaWFsLCBBY3VlcmRvIDAyNiAgZGVsIDMxIGRlIGp1bGlvIGRlIDIwMTIgc29icmUgZWwgcHJvY2VkaW1pZW50byBwYXJhIGxhIHB1YmxpY2FjacOzbiBkZSB0ZXNpcyBkZSBwb3N0Z3JhZG8gZGUgbG9zIGVzdHVkaWFudGVzIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzLCAgQWN1ZXJkbyAwMzAgZGVsIDAzIGRlIGRpY2llbWJyZSBkZSAyMDEzIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBjcmVhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsIEFjdWVyZG8gMDM4IGRlIDIwMTUgMjAxNSDigJxwb3IgZWwgY3VhbCBzZSBtb2RpZmljYSBlbCBBY3VlcmRvIDAzMSBkZSAyMDE0IGRlIDIwMTQgcXVlIHJlZ2xhbWVudGEgZWwgdHJhYmFqbyBkZSBncmFkbyBwYXJhIGxvcyBlc3R1ZGlhbnRlcyBkZSBwcmVncmFkbyBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IHNlIGRpY3RhbiBvdHJhcyBkaXJlY3RyaWNlc+KAnSB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0bywgZXNwZWNpYWxtZW50ZSBsYSBsZXkgMjMgZGUgMTk4MiwgbGEgbGV5IDQ0IGRlIDE5OTMgeSBsYSBkZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLiBFc3RvcyBkb2N1bWVudG9zIHBvZHLDoW4gc2VyIGNvbnN1bHRhZG9zIHkgZGVzY2FyZ2Fkb3MgZW4gZWwgcG9ydGFsIHdlYiBkZSBsYSBiaWJsaW90ZWNhIGh0dHA6Ly9zaXN0ZW1hZGViaWJsaW90ZWNhcy51ZGlzdHJpdGFsLmVkdS5jby8KCmspCUFjZXB0byhhbW9zKSBxdWUgTEEgVU5JVkVSU0lEQUQgbm8gc2UgcmVzcG9uc2FiaWxpemEgcG9yIGxhcyBpbmZyYWNjaW9uZXMgYSBsYSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBEZXJlY2hvcyBkZSBBdXRvciBjYXVzYWRhcyBwb3IgbG9zIHRpdHVsYXJlcyBkZSBsYSBwcmVzZW50ZSBMaWNlbmNpYSB5IGRlY2xhcmFtb3MgcXVlIG1hbnRlbmRyw6kgKGVtb3MpIGluZGVtbmUgYSBMQSBVTklWRVJTSURBRCBwb3IgbGFzIHJlY2xhbWFjaW9uZXMgbGVnYWxlcyBkZSBjdWFscXVpZXIgdGlwbyBxdWUgbGxlZ2FyZW4gYSBwcmVzZW50YXJzZSBwb3IgdmlvbGFjacOzbiBkZSBkZXJlY2hvcyBhIGxhIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBvIGRlIEF1dG9yIHJlbGFjaW9uYWRvcyBjb24gbG9zIGRvY3VtZW50b3MgcmVnaXN0cmFkb3MgZW4gZWwgUklVRC4KCmwpCUVsIChsb3MpIGF1dG9yKGVzKSBtYW5pZmllc3RhKG1vcykgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwsIGRlIGV4Y2x1c2l2YSBhdXRvcsOtYSwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvczsgZGUgdGFsIHN1ZXJ0ZSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgZWwgKGxvcykgZXN0dWRpYW50ZShzKSDigJMgYXV0b3IoZXMpIGFzdW1pcsOhKG4pIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHkgc2FsZHLDoShuKSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcy4gUGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgTEEgVU5JVkVSU0lEQUQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCgptKQlFbCAobG9zKSBhdXRvcihlcykgbWFuaWZpZXN0YShtb3MpIHF1ZSBjb25vemNvKGNlbW9zKSBsYSBhdXRvbm9tw61hIHkgbG9zIGRlcmVjaG9zLCBxdWUgcG9zZWUobW9zKSBzb2JyZSBsYSBvYnJhIHksIGNvbW8gdGFsLCBlcyAoc29tb3MpIHJlc3BvbnNhYmxlKHMpIGRlbCBhbGNhbmNlIGp1csOtZGljbyB5IGxlZ2FsLCBkZSBlc2NvZ2VyIGxhIG9wY2nDs24gZGUgbGEgcHVibGljYWNpw7NuIG8gZGUgcmVzdHJpY2Npw7NuIGRlIGxhIHB1YmxpY2FjacOzbiBkZWwgZG9jdW1lbnRvIHJlZ2lzdHJhZG8gZW4gZWwgUklVRC4KCgoKCgoKU0kgRUwgRE9DVU1FTlRPIFNFIEJBU0EgRU4gVU4gVFJBQkFKTyBRVUUgSEEgU0lETyBQQVRST0NJTkFETyBPIEFQT1lBRE8gUE9SIFVOQSBBR0VOQ0lBIE8gVU5BIE9SR0FOSVpBQ0nDk04sIENPTiBFWENFUENJw5NOIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTCBGUkFOQ0lTQ08gSk9TRSBERSBDQUxEQVMsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MKREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uCgoKCgoKCgoKCgoKCgoKCgoKCgoKCkVuIGNvbnN0YW5jaWEgZGUgbG8gYW50ZXJpb3IsIGZpcm1vKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50bywgZW4gbGEgY2l1ZGFkIGRlIEJvZ290w6EsIEQuQy4sIGEgbG9zCgoKRklSTUEgREUgTE9TIFRJVFVMQVJFUyBERSBERVJFQ0hPUyBERSBBVVRPUgoKX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwoKCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIChkZSBsb3MpIEF1dG9yKGVzKToKCkF1dG9yCSAgICAgIENvcnJlbyBFbGVjdHLDs25pY28KCjEKCjIKCjMKCk5vbWJyZSBkZSBEaXJlY3RvcihlcykgZGUgR3JhZG86CgoxCgoyCgozCgpOb21icmUgRmFjdWx0YWQgeSBQcm95ZWN0byBDdXJyaWN1bGFyOgoKRmFjdWx0YWQJUHJveWVjdG8gQ3VycmljdWxhcgoKCgoKCgoKCk5vdGE6IEVuIGNhc28gcXVlIG5vIGVzdMOpIGRlIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgeSBtYW5pZmllc3RlIGFsZ3VuYSByZXN0cmljY2nDs24gc29icmUgbGEgb2JyYSwganVzdGlmaXF1ZSBsb3MgbW90aXZvcyBwb3IgbG9zIGN1YWxlcyBlbCBkb2N1bWVudG8geSBzdXMgYW5leG9zIG5vIHB1ZWRlbiBzZXIgcHVibGljYWRvcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIFJJVUQuCgoKU2kgcmVxdWllcmUgbcOhcyBlc3BhY2lvLCBwdWVkZSBhbmV4YXIgdW5hIGNvcGlhIHNpbWlsYXIgYSBlc3RhIGhvamEK |