Algoritmo para la Estimación del Periodo de una Señal Muestreada
Si se cuenta solo con muestras de una señal, en general, no es posible determinar su periodo, sino solo se logra una aproximación. En este artículo se propone un algoritmo para aproximar ese periodo, con base en la Transformada Discreta de Fourier. Si esta transformada es evaluada a múltiplos del pe...
- Autores:
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2015
- Institución:
- Universidad Distrital Francisco José de Caldas
- Repositorio:
- RIUD: repositorio U. Distrital
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udistrital.edu.co:11349/4683
- Acceso en línea:
- http://hdl.handle.net/11349/4683
- Palabra clave:
- Estimación del periodo
Señales fisiológicas
Frecuencia de red eléctrica
Transformada Discreta de Fourier
Estimated period
physiological signals
Mains frequency electric
Discrete Fourier Transform
- Rights
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UDISTRITA2_daaaac0b77dc92f1a4c750770116138e |
---|---|
oai_identifier_str |
oai:repository.udistrital.edu.co:11349/4683 |
network_acronym_str |
UDISTRITA2 |
network_name_str |
RIUD: repositorio U. Distrital |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Algoritmo para la Estimación del Periodo de una Señal Muestreada |
dc.title.titleenglish.spa.fl_str_mv |
Estimation Algorithm for Period sampled signal |
title |
Algoritmo para la Estimación del Periodo de una Señal Muestreada |
spellingShingle |
Algoritmo para la Estimación del Periodo de una Señal Muestreada Estimación del periodo Señales fisiológicas Frecuencia de red eléctrica Transformada Discreta de Fourier Estimated period physiological signals Mains frequency electric Discrete Fourier Transform |
title_short |
Algoritmo para la Estimación del Periodo de una Señal Muestreada |
title_full |
Algoritmo para la Estimación del Periodo de una Señal Muestreada |
title_fullStr |
Algoritmo para la Estimación del Periodo de una Señal Muestreada |
title_full_unstemmed |
Algoritmo para la Estimación del Periodo de una Señal Muestreada |
title_sort |
Algoritmo para la Estimación del Periodo de una Señal Muestreada |
dc.contributor.advisor.spa.fl_str_mv |
Rairán Antolines, José Danilo |
dc.subject.spa.fl_str_mv |
Estimación del periodo Señales fisiológicas Frecuencia de red eléctrica Transformada Discreta de Fourier |
topic |
Estimación del periodo Señales fisiológicas Frecuencia de red eléctrica Transformada Discreta de Fourier Estimated period physiological signals Mains frequency electric Discrete Fourier Transform |
dc.subject.keyword.spa.fl_str_mv |
Estimated period physiological signals Mains frequency electric Discrete Fourier Transform |
description |
Si se cuenta solo con muestras de una señal, en general, no es posible determinar su periodo, sino solo se logra una aproximación. En este artículo se propone un algoritmo para aproximar ese periodo, con base en la Transformada Discreta de Fourier. Si esta transformada es evaluada a múltiplos del periodo real, presenta algunos armónicos con amplitud nula. Así, el periodo estimado es aquel que minimiza el valor de esos armónicos. Para validar el algoritmo se utilizan funciones con y sin ruido, de lo cual resulta que el error relativo siempre es igual o menor a un cuarto del tiempo entre dos muestras. Como ejemplo de utilización del algoritmo, se estima el periodo de señales fisiológicas reales, y también se estima la frecuencia de la red eléctrica, en tiempo real. |
publishDate |
2015 |
dc.date.created.spa.fl_str_mv |
2015-09-24 |
dc.date.accessioned.none.fl_str_mv |
2016-12-19T19:46:24Z |
dc.date.available.none.fl_str_mv |
2016-12-19T19:46:24Z |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11349/4683 |
url |
http://hdl.handle.net/11349/4683 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
pdf |
institution |
Universidad Distrital Francisco José de Caldas |
bitstream.url.fl_str_mv |
http://repository.udistrital.edu.co/bitstream/11349/4683/6/Rodr%c3%adguezG%c3%b3mezGabrielArnulfo2016.pdf.jpg http://repository.udistrital.edu.co/bitstream/11349/4683/2/license_url http://repository.udistrital.edu.co/bitstream/11349/4683/3/license_text http://repository.udistrital.edu.co/bitstream/11349/4683/4/license_rdf http://repository.udistrital.edu.co/bitstream/11349/4683/1/Rodr%c3%adguezG%c3%b3mezGabrielArnulfo2016.pdf http://repository.udistrital.edu.co/bitstream/11349/4683/5/license.txt |
bitstream.checksum.fl_str_mv |
7274d8cdc04e6b25365303468a1a8a03 924993ce0b3ba389f79f32a1b2735415 54dd59d40230fe99c6f8f5992623f9e2 b92763cfc0af52c7c868455edfaf3266 68a034d6654f2b7375b37b5fe7bcc6a2 b204d61d4cc8bf0ee3a2b0e84c5755dd |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Distrital - RIUD |
repository.mail.fl_str_mv |
repositorio@udistrital.edu.co |
_version_ |
1803712638310416384 |
spelling |
Rairán Antolines, José DaniloRodríguez Gómez, Gabriel Arnulfo2016-12-19T19:46:24Z2016-12-19T19:46:24Z2015-09-24http://hdl.handle.net/11349/4683Si se cuenta solo con muestras de una señal, en general, no es posible determinar su periodo, sino solo se logra una aproximación. En este artículo se propone un algoritmo para aproximar ese periodo, con base en la Transformada Discreta de Fourier. Si esta transformada es evaluada a múltiplos del periodo real, presenta algunos armónicos con amplitud nula. Así, el periodo estimado es aquel que minimiza el valor de esos armónicos. Para validar el algoritmo se utilizan funciones con y sin ruido, de lo cual resulta que el error relativo siempre es igual o menor a un cuarto del tiempo entre dos muestras. Como ejemplo de utilización del algoritmo, se estima el periodo de señales fisiológicas reales, y también se estima la frecuencia de la red eléctrica, en tiempo real.If there are only samples of a signal generally it is not possible to determine the period, but only an approximation is achieved. This article describes an algorithm to approximate that period, based on the Discrete Fourier Transform is proposed. If this transform is evaluated multiples of the actual period, it presents some harmonics with zero amplitude. Thus, the estimated period is one that minimizes the value of these harmonics. To validate the algorithm functions are used with and without noise, which is that the relative error is always equal to or less than a quarter of the time between two samples. As an example of use of the algorithm, the actual period is estimated physiological signals, and frequency of the grid is also estimated, in real time.pdfspaAtribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Estimación del periodoSeñales fisiológicasFrecuencia de red eléctricaTransformada Discreta de FourierEstimated periodphysiological signalsMains frequency electricDiscrete Fourier TransformAlgoritmo para la Estimación del Periodo de una Señal MuestreadaEstimation Algorithm for Period sampled signalinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fTHUMBNAILRodríguezGómezGabrielArnulfo2016.pdf.jpgRodríguezGómezGabrielArnulfo2016.pdf.jpgIM Thumbnailimage/jpeg13332http://repository.udistrital.edu.co/bitstream/11349/4683/6/Rodr%c3%adguezG%c3%b3mezGabrielArnulfo2016.pdf.jpg7274d8cdc04e6b25365303468a1a8a03MD56open accessCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repository.udistrital.edu.co/bitstream/11349/4683/2/license_url924993ce0b3ba389f79f32a1b2735415MD52open accesslicense_textlicense_texttext/html; charset=utf-821597http://repository.udistrital.edu.co/bitstream/11349/4683/3/license_text54dd59d40230fe99c6f8f5992623f9e2MD53open accesslicense_rdflicense_rdfapplication/rdf+xml; charset=utf-823748http://repository.udistrital.edu.co/bitstream/11349/4683/4/license_rdfb92763cfc0af52c7c868455edfaf3266MD54open accessORIGINALRodríguezGómezGabrielArnulfo2016.pdfRodríguezGómezGabrielArnulfo2016.pdfTrabajo de Gradoapplication/pdf306788http://repository.udistrital.edu.co/bitstream/11349/4683/1/Rodr%c3%adguezG%c3%b3mezGabrielArnulfo2016.pdf68a034d6654f2b7375b37b5fe7bcc6a2MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-85896http://repository.udistrital.edu.co/bitstream/11349/4683/5/license.txtb204d61d4cc8bf0ee3a2b0e84c5755ddMD55open access11349/4683oai:repository.udistrital.edu.co:11349/46832023-06-13 12:23:18.425open accessRepositorio Institucional Universidad Distrital - RIUDrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyAgREUgQ09OVEVOSURPUyBFTiBFTCBSRVBPU0lUT1JJTyBJTlNUSVRVQ0lPTkFMIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTApUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gIHBhcmEgcHVibGljYWNpw7NuIGRlIG9icmFzIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMgUklVRC4KCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCAgY29uZmllcm8gKGVyaW1vcykgYSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB1bmEgbGljZW5jaWEgcGFyYSB1c28gIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSAgaW50ZWdyYXLDoSAgZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBhY3VlcmRvIGEgbGFzIHNpZ3VpZW50ZXMgcmVnbGFzLCAgbGFzIGN1YWxlcyBkZWNsYXJvIChhbW9zKSBjb25vY2VyIHkgYWNlcHRhcjoKCmEpIEVzdGFyw6EgdmlnZW50ZSBhIHBhcnRpciBkZSBsYSBmZWNoYSAgZW4gcXVlIHNlIGluY2x1eWEgIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgeSBoYXN0YSAgcG9yIHVuIHBsYXpvIGRlICBkaWV6ICgxMCkgIEHDsW9zLCAgcHJvcnJvZ2FibGUgIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyAgbGEgY3VhbCBwb2Ryw6EgICBkYXJzZSAgcG9yIHRlcm1pbmFkYSAgcHJldmlhICBzb2xpY2l0dWQgICBhIGxhIFVuaXZlcnNpZGFkIHBvciBlc2NyaXRvIGNvbiB1bmEgYW50ZWxhY2nDs24gZGUgZG9zICgyKSBtZXNlcyBhbnRlcyBkZWwgdmVuY2ltaWVudG8gZGVsIHBsYXpvICBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLiAgCgpiKSBMYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyBwb2Ryw6EgIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSAgcG9yIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsICBMYSBVbml2ZXJzaWRhZCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsICBkb2N1bWVudG8gYXBhcmV6Y2EgcmVmZXJlbmNpYWRvIGVuIG1vdG9yZXMgZGUgYsO6c3F1ZWRhIG8gcmVwb3NpdG9yaW9zICBkaWZlcmVudGVzIGFsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHVuYSB2ZXogZWwob3MpIGF1dG9yKGVzKSAgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUmVwb3NpdG9yaW8gZGUgbGEgVW5pdmVyc2lkYWQsIGRhZG8gcXVlICBsYSBtaXNtYSBzZXLDoSBwdWJsaWNhZGEgZW4gIEludGVybmV0LiAKCmMpIExhIGF1dG9yaXphY2nDs24gc2UgaGFjZSBhIHTDrXR1bG8gZ3JhdHVpdG8sIHBvciBsbyB0YW50bywgbG9zIGF1dG9yZXMgcmVudW5jaWFuIGEgcmVjaWJpciBiZW5lZmljaW8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gIHDDumJsaWNhIHkgY3VhbHF1aWVyIG90cm8gdXNvIHF1ZSBzZSBoYWdhIGVuIGxvcyB0w6lybWlub3MgZGUgbGEgcHJlc2VudGUgbGljZW5jaWEgeSBkZSBsYSBsaWNlbmNpYSAgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKSBMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgc29uICBvYnJhKHMpIG9yaWdpbmFsKGVzKSBzb2JyZSBsYSAgY3VhbChlcykgIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zICBkZXJlY2hvcyBkZSBhdXRvciwgYXN1bWVuIHRvdGFsIHJlc3BvbnNhYmlsaWRhZCBwb3IgZWwgY29udGVuaWRvIGRlIHN1IG9icmEgYW50ZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IGFudGUgdGVyY2Vyb3MuIEVuIHRvZG8gY2FzbyBsYSBVbml2ZXJzaWRhZCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkgTGEgIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHBvZHLDoSAgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIG1heGltaXphciBsYSB2aXNpYmlsaWRhZCBlbCB1c28geSBlbCBpbXBhY3RvIGRlIGxhIHByb2R1Y2Npw7NuIGNpZW50w61maWNhLCBhcnTDrXN0aWNhIHkgYWNhZMOpbWljYSBlbiBsYSBjb211bmlkYWQgbG9jYWwsIG5hY2lvbmFsIG8gaW50ZXJuYWNpb25hbC4gCgpmKSBMYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyBwb2Ryw6EgY29udmVydGlyIGxhIG9icmEgIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluICBkZSBzdSBwcmVzZXJ2YWNpw7NuIGVuIGVsIHRpZW1wbyBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgeSBsYSBkZSBzdXMgcHLDs3Jyb2dhcy4KQ29uIGJhc2UgZW4gbG8gYW50ZXJpb3IgYXV0b3JpesOzIGxhIHB1YmxpY2FjacOzbiB5IGNvbnN1bHRhIGRlIGxhIG9icmEgIHRpdHVsYWRhIF9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18KCiBBIGZhdm9yIGRlbCAgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5ICBkZSBzdXMgdXN1YXJpb3MsICAgY3V5byhzKSAgYXV0b3IoZXMpIHNvbjogCkF1dG9yCUFwZWxsaWRvcwlOb21icmVzCjEJCQoyCQkKMwkJCgphKSBBdXRvcml6byBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGF1dG9yaXphZG9zIGVuIGxvcyBsaXRlcmFsZXMgYW50ZXJpb3JlcywgIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMgZW4gbGFzIOKAnENvbmRpY2lvbmVzIGRlIHVzbyBkZSBlc3RyaWN0byBjdW1wbGltaWVudG/igJ0gZGUgbG9zIHJlY3Vyc29zIHB1YmxpY2Fkb3MgZW4gUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBSSVVELCBjdXlvIHRleHRvIGNvbXBsZXRvIHNlIHB1ZWRlIGNvbnN1bHRhciBlbiBodHRwOi8vcmVwb3NpdG9yeS51ZGlzdHJpdGFsLmVkdS5jby8KCmIpIENvbm96Y28geSBhY2VwdG8gcXVlIG90b3JnbyB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIG9idGVuaWRvIHVuYSBjb3BpYS4KCmMpICBNYW5pZmllc3RvIG1pIHRvdGFsIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSB1c28geSBwdWJsaWNhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyBxdWUgc2UgZGVzY3JpYmVuIHkgZXhwbGljYW4gZW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvLgoKZykgUXVlIGNvbm96Y28gICBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyByZWxhdGl2byBhIHByb3BpZWRhZCAgaW50ZWxlY3R1YWwgcmVndWxhZGEgcG9yIGVsIEFjdWVyZG8gMDA0IGRlIDIwMTIgZGVsIENTVSwgQWN1ZXJkbyAwMjMgZGUgMjAxMiBkZWwgQ1NVIHNvYnJlIFBvbMOtdGljYSBFZGl0b3JpYWwsIEFjdWVyZG8gMDI2ICBkZWwgMzEgZGUganVsaW8gZGUgMjAxMiBzb2JyZSBlbCBwcm9jZWRpbWllbnRvIHBhcmEgbGEgcHVibGljYWNpw7NuIGRlIHRlc2lzIGRlIHBvc3RncmFkbyBkZSBsb3MgZXN0dWRpYW50ZXMgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsICBBY3VlcmRvIDAzMCBkZWwgMDMgZGUgZGljaWVtYnJlIGRlIDIwMTMgcG9yIG1lZGlvIGRlbCBjdWFsIHNlIGNyZWEgZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0by4gRXN0b3MgZG9jdW1lbnRvcyBwb2Ryw6FuIHNlciBjb25zdWx0YWRvcyB5IGRlc2NhcmdhZG9zIGVuIGVsIHBvcnRhbCB3ZWIgZGUgbGEgYmlibGlvdGVjYSBodHRwOi8vc2lzdGVtYWRlYmlibGlvdGVjYXMudWRpc3RyaXRhbC5lZHUuY28vICAKClNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBESVNUUklUQUwgRlJBTkNJU0NPIEpPU0UgREUgQ0FMREFTLCBMT1MgQVVUT1JFUyBHQVJBTlRJWkFOIFFVRSBTRSBIQSBDVU1QTElETyBDT04gTE9TIApERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KRW4gY29uc3RhbmNpYSBkZSBsbyBhbnRlcmlvciwgZmlybW8gKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50byBhIGxvcyAKCkZJUk1BIERFIExPUyBUSVRVTEFSRVMgREUgREVSRUNIT1MgREUgQVVUT1IKCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIEF1dG9yIChlcyk6CkF1dG9yCUNvcnJlbyBFbGVjdHLDs25pY28gCjEJCjIJCjMJCgpOb3RhOiBFbiBjYXNvIHF1ZSBubyBlc3TDqSBkZSBhY3VlcmRvIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIGp1c3RpZmlxdWUgbG9zIG1vdGl2b3MgcG9yIGxvcyBjdWFsZXMgZWwgZG9jdW1lbnRvIHkgc3VzIGFuZXhvcyBubyBwdWVkZW4gc2VyIHB1YmxpY2Fkb3MgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyBSSVVECg== |