Algoritmo para la Estimación del Periodo de una Señal Muestreada

Si se cuenta solo con muestras de una señal, en general, no es posible determinar su periodo, sino solo se logra una aproximación. En este artículo se propone un algoritmo para aproximar ese periodo, con base en la Transformada Discreta de Fourier. Si esta transformada es evaluada a múltiplos del pe...

Full description

Autores:
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2015
Institución:
Universidad Distrital Francisco José de Caldas
Repositorio:
RIUD: repositorio U. Distrital
Idioma:
spa
OAI Identifier:
oai:repository.udistrital.edu.co:11349/4683
Acceso en línea:
http://hdl.handle.net/11349/4683
Palabra clave:
Estimación del periodo
Señales fisiológicas
Frecuencia de red eléctrica
Transformada Discreta de Fourier
Estimated period
physiological signals
Mains frequency electric
Discrete Fourier Transform
Rights
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UDISTRITA2_daaaac0b77dc92f1a4c750770116138e
oai_identifier_str oai:repository.udistrital.edu.co:11349/4683
network_acronym_str UDISTRITA2
network_name_str RIUD: repositorio U. Distrital
repository_id_str
dc.title.spa.fl_str_mv Algoritmo para la Estimación del Periodo de una Señal Muestreada
dc.title.titleenglish.spa.fl_str_mv Estimation Algorithm for Period sampled signal
title Algoritmo para la Estimación del Periodo de una Señal Muestreada
spellingShingle Algoritmo para la Estimación del Periodo de una Señal Muestreada
Estimación del periodo
Señales fisiológicas
Frecuencia de red eléctrica
Transformada Discreta de Fourier
Estimated period
physiological signals
Mains frequency electric
Discrete Fourier Transform
title_short Algoritmo para la Estimación del Periodo de una Señal Muestreada
title_full Algoritmo para la Estimación del Periodo de una Señal Muestreada
title_fullStr Algoritmo para la Estimación del Periodo de una Señal Muestreada
title_full_unstemmed Algoritmo para la Estimación del Periodo de una Señal Muestreada
title_sort Algoritmo para la Estimación del Periodo de una Señal Muestreada
dc.contributor.advisor.spa.fl_str_mv Rairán Antolines, José Danilo
dc.subject.spa.fl_str_mv Estimación del periodo
Señales fisiológicas
Frecuencia de red eléctrica
Transformada Discreta de Fourier
topic Estimación del periodo
Señales fisiológicas
Frecuencia de red eléctrica
Transformada Discreta de Fourier
Estimated period
physiological signals
Mains frequency electric
Discrete Fourier Transform
dc.subject.keyword.spa.fl_str_mv Estimated period
physiological signals
Mains frequency electric
Discrete Fourier Transform
description Si se cuenta solo con muestras de una señal, en general, no es posible determinar su periodo, sino solo se logra una aproximación. En este artículo se propone un algoritmo para aproximar ese periodo, con base en la Transformada Discreta de Fourier. Si esta transformada es evaluada a múltiplos del periodo real, presenta algunos armónicos con amplitud nula. Así, el periodo estimado es aquel que minimiza el valor de esos armónicos. Para validar el algoritmo se utilizan funciones con y sin ruido, de lo cual resulta que el error relativo siempre es igual o menor a un cuarto del tiempo entre dos muestras. Como ejemplo de utilización del algoritmo, se estima el periodo de señales fisiológicas reales, y también se estima la frecuencia de la red eléctrica, en tiempo real.
publishDate 2015
dc.date.created.spa.fl_str_mv 2015-09-24
dc.date.accessioned.none.fl_str_mv 2016-12-19T19:46:24Z
dc.date.available.none.fl_str_mv 2016-12-19T19:46:24Z
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11349/4683
url http://hdl.handle.net/11349/4683
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv pdf
institution Universidad Distrital Francisco José de Caldas
bitstream.url.fl_str_mv http://repository.udistrital.edu.co/bitstream/11349/4683/6/Rodr%c3%adguezG%c3%b3mezGabrielArnulfo2016.pdf.jpg
http://repository.udistrital.edu.co/bitstream/11349/4683/2/license_url
http://repository.udistrital.edu.co/bitstream/11349/4683/3/license_text
http://repository.udistrital.edu.co/bitstream/11349/4683/4/license_rdf
http://repository.udistrital.edu.co/bitstream/11349/4683/1/Rodr%c3%adguezG%c3%b3mezGabrielArnulfo2016.pdf
http://repository.udistrital.edu.co/bitstream/11349/4683/5/license.txt
bitstream.checksum.fl_str_mv 7274d8cdc04e6b25365303468a1a8a03
924993ce0b3ba389f79f32a1b2735415
54dd59d40230fe99c6f8f5992623f9e2
b92763cfc0af52c7c868455edfaf3266
68a034d6654f2b7375b37b5fe7bcc6a2
b204d61d4cc8bf0ee3a2b0e84c5755dd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Distrital - RIUD
repository.mail.fl_str_mv repositorio@udistrital.edu.co
_version_ 1803712638310416384
spelling Rairán Antolines, José DaniloRodríguez Gómez, Gabriel Arnulfo2016-12-19T19:46:24Z2016-12-19T19:46:24Z2015-09-24http://hdl.handle.net/11349/4683Si se cuenta solo con muestras de una señal, en general, no es posible determinar su periodo, sino solo se logra una aproximación. En este artículo se propone un algoritmo para aproximar ese periodo, con base en la Transformada Discreta de Fourier. Si esta transformada es evaluada a múltiplos del periodo real, presenta algunos armónicos con amplitud nula. Así, el periodo estimado es aquel que minimiza el valor de esos armónicos. Para validar el algoritmo se utilizan funciones con y sin ruido, de lo cual resulta que el error relativo siempre es igual o menor a un cuarto del tiempo entre dos muestras. Como ejemplo de utilización del algoritmo, se estima el periodo de señales fisiológicas reales, y también se estima la frecuencia de la red eléctrica, en tiempo real.If there are only samples of a signal generally it is not possible to determine the period, but only an approximation is achieved. This article describes an algorithm to approximate that period, based on the Discrete Fourier Transform is proposed. If this transform is evaluated multiples of the actual period, it presents some harmonics with zero amplitude. Thus, the estimated period is one that minimizes the value of these harmonics. To validate the algorithm functions are used with and without noise, which is that the relative error is always equal to or less than a quarter of the time between two samples. As an example of use of the algorithm, the actual period is estimated physiological signals, and frequency of the grid is also estimated, in real time.pdfspaAtribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Estimación del periodoSeñales fisiológicasFrecuencia de red eléctricaTransformada Discreta de FourierEstimated periodphysiological signalsMains frequency electricDiscrete Fourier TransformAlgoritmo para la Estimación del Periodo de una Señal MuestreadaEstimation Algorithm for Period sampled signalinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fTHUMBNAILRodríguezGómezGabrielArnulfo2016.pdf.jpgRodríguezGómezGabrielArnulfo2016.pdf.jpgIM Thumbnailimage/jpeg13332http://repository.udistrital.edu.co/bitstream/11349/4683/6/Rodr%c3%adguezG%c3%b3mezGabrielArnulfo2016.pdf.jpg7274d8cdc04e6b25365303468a1a8a03MD56open accessCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repository.udistrital.edu.co/bitstream/11349/4683/2/license_url924993ce0b3ba389f79f32a1b2735415MD52open accesslicense_textlicense_texttext/html; charset=utf-821597http://repository.udistrital.edu.co/bitstream/11349/4683/3/license_text54dd59d40230fe99c6f8f5992623f9e2MD53open accesslicense_rdflicense_rdfapplication/rdf+xml; charset=utf-823748http://repository.udistrital.edu.co/bitstream/11349/4683/4/license_rdfb92763cfc0af52c7c868455edfaf3266MD54open accessORIGINALRodríguezGómezGabrielArnulfo2016.pdfRodríguezGómezGabrielArnulfo2016.pdfTrabajo de Gradoapplication/pdf306788http://repository.udistrital.edu.co/bitstream/11349/4683/1/Rodr%c3%adguezG%c3%b3mezGabrielArnulfo2016.pdf68a034d6654f2b7375b37b5fe7bcc6a2MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-85896http://repository.udistrital.edu.co/bitstream/11349/4683/5/license.txtb204d61d4cc8bf0ee3a2b0e84c5755ddMD55open access11349/4683oai:repository.udistrital.edu.co:11349/46832023-06-13 12:23:18.425open accessRepositorio Institucional Universidad Distrital - RIUDrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyAgREUgQ09OVEVOSURPUyBFTiBFTCBSRVBPU0lUT1JJTyBJTlNUSVRVQ0lPTkFMIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTApUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gIHBhcmEgcHVibGljYWNpw7NuIGRlIG9icmFzIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMgUklVRC4KCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCAgY29uZmllcm8gKGVyaW1vcykgYSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB1bmEgbGljZW5jaWEgcGFyYSB1c28gIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSAgaW50ZWdyYXLDoSAgZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBhY3VlcmRvIGEgbGFzIHNpZ3VpZW50ZXMgcmVnbGFzLCAgbGFzIGN1YWxlcyBkZWNsYXJvIChhbW9zKSBjb25vY2VyIHkgYWNlcHRhcjoKCmEpIEVzdGFyw6EgdmlnZW50ZSBhIHBhcnRpciBkZSBsYSBmZWNoYSAgZW4gcXVlIHNlIGluY2x1eWEgIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgeSBoYXN0YSAgcG9yIHVuIHBsYXpvIGRlICBkaWV6ICgxMCkgIEHDsW9zLCAgcHJvcnJvZ2FibGUgIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyAgbGEgY3VhbCBwb2Ryw6EgICBkYXJzZSAgcG9yIHRlcm1pbmFkYSAgcHJldmlhICBzb2xpY2l0dWQgICBhIGxhIFVuaXZlcnNpZGFkIHBvciBlc2NyaXRvIGNvbiB1bmEgYW50ZWxhY2nDs24gZGUgZG9zICgyKSBtZXNlcyBhbnRlcyBkZWwgdmVuY2ltaWVudG8gZGVsIHBsYXpvICBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLiAgCgpiKSBMYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyBwb2Ryw6EgIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSAgcG9yIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsICBMYSBVbml2ZXJzaWRhZCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsICBkb2N1bWVudG8gYXBhcmV6Y2EgcmVmZXJlbmNpYWRvIGVuIG1vdG9yZXMgZGUgYsO6c3F1ZWRhIG8gcmVwb3NpdG9yaW9zICBkaWZlcmVudGVzIGFsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHVuYSB2ZXogZWwob3MpIGF1dG9yKGVzKSAgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUmVwb3NpdG9yaW8gZGUgbGEgVW5pdmVyc2lkYWQsIGRhZG8gcXVlICBsYSBtaXNtYSBzZXLDoSBwdWJsaWNhZGEgZW4gIEludGVybmV0LiAKCmMpIExhIGF1dG9yaXphY2nDs24gc2UgaGFjZSBhIHTDrXR1bG8gZ3JhdHVpdG8sIHBvciBsbyB0YW50bywgbG9zIGF1dG9yZXMgcmVudW5jaWFuIGEgcmVjaWJpciBiZW5lZmljaW8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gIHDDumJsaWNhIHkgY3VhbHF1aWVyIG90cm8gdXNvIHF1ZSBzZSBoYWdhIGVuIGxvcyB0w6lybWlub3MgZGUgbGEgcHJlc2VudGUgbGljZW5jaWEgeSBkZSBsYSBsaWNlbmNpYSAgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKSBMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgc29uICBvYnJhKHMpIG9yaWdpbmFsKGVzKSBzb2JyZSBsYSAgY3VhbChlcykgIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zICBkZXJlY2hvcyBkZSBhdXRvciwgYXN1bWVuIHRvdGFsIHJlc3BvbnNhYmlsaWRhZCBwb3IgZWwgY29udGVuaWRvIGRlIHN1IG9icmEgYW50ZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IGFudGUgdGVyY2Vyb3MuIEVuIHRvZG8gY2FzbyBsYSBVbml2ZXJzaWRhZCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkgTGEgIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHBvZHLDoSAgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIG1heGltaXphciBsYSB2aXNpYmlsaWRhZCBlbCB1c28geSBlbCBpbXBhY3RvIGRlIGxhIHByb2R1Y2Npw7NuIGNpZW50w61maWNhLCBhcnTDrXN0aWNhIHkgYWNhZMOpbWljYSBlbiBsYSBjb211bmlkYWQgbG9jYWwsIG5hY2lvbmFsIG8gaW50ZXJuYWNpb25hbC4gCgpmKSBMYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyBwb2Ryw6EgY29udmVydGlyIGxhIG9icmEgIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluICBkZSBzdSBwcmVzZXJ2YWNpw7NuIGVuIGVsIHRpZW1wbyBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgeSBsYSBkZSBzdXMgcHLDs3Jyb2dhcy4KQ29uIGJhc2UgZW4gbG8gYW50ZXJpb3IgYXV0b3JpesOzIGxhIHB1YmxpY2FjacOzbiB5IGNvbnN1bHRhIGRlIGxhIG9icmEgIHRpdHVsYWRhIF9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18KCiBBIGZhdm9yIGRlbCAgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5ICBkZSBzdXMgdXN1YXJpb3MsICAgY3V5byhzKSAgYXV0b3IoZXMpIHNvbjogCkF1dG9yCUFwZWxsaWRvcwlOb21icmVzCjEJCQoyCQkKMwkJCgphKSBBdXRvcml6byBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGF1dG9yaXphZG9zIGVuIGxvcyBsaXRlcmFsZXMgYW50ZXJpb3JlcywgIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMgZW4gbGFzIOKAnENvbmRpY2lvbmVzIGRlIHVzbyBkZSBlc3RyaWN0byBjdW1wbGltaWVudG/igJ0gZGUgbG9zIHJlY3Vyc29zIHB1YmxpY2Fkb3MgZW4gUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBSSVVELCBjdXlvIHRleHRvIGNvbXBsZXRvIHNlIHB1ZWRlIGNvbnN1bHRhciBlbiBodHRwOi8vcmVwb3NpdG9yeS51ZGlzdHJpdGFsLmVkdS5jby8KCmIpIENvbm96Y28geSBhY2VwdG8gcXVlIG90b3JnbyB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIG9idGVuaWRvIHVuYSBjb3BpYS4KCmMpICBNYW5pZmllc3RvIG1pIHRvdGFsIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSB1c28geSBwdWJsaWNhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyBxdWUgc2UgZGVzY3JpYmVuIHkgZXhwbGljYW4gZW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvLgoKZykgUXVlIGNvbm96Y28gICBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyByZWxhdGl2byBhIHByb3BpZWRhZCAgaW50ZWxlY3R1YWwgcmVndWxhZGEgcG9yIGVsIEFjdWVyZG8gMDA0IGRlIDIwMTIgZGVsIENTVSwgQWN1ZXJkbyAwMjMgZGUgMjAxMiBkZWwgQ1NVIHNvYnJlIFBvbMOtdGljYSBFZGl0b3JpYWwsIEFjdWVyZG8gMDI2ICBkZWwgMzEgZGUganVsaW8gZGUgMjAxMiBzb2JyZSBlbCBwcm9jZWRpbWllbnRvIHBhcmEgbGEgcHVibGljYWNpw7NuIGRlIHRlc2lzIGRlIHBvc3RncmFkbyBkZSBsb3MgZXN0dWRpYW50ZXMgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsICBBY3VlcmRvIDAzMCBkZWwgMDMgZGUgZGljaWVtYnJlIGRlIDIwMTMgcG9yIG1lZGlvIGRlbCBjdWFsIHNlIGNyZWEgZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0by4gRXN0b3MgZG9jdW1lbnRvcyBwb2Ryw6FuIHNlciBjb25zdWx0YWRvcyB5IGRlc2NhcmdhZG9zIGVuIGVsIHBvcnRhbCB3ZWIgZGUgbGEgYmlibGlvdGVjYSBodHRwOi8vc2lzdGVtYWRlYmlibGlvdGVjYXMudWRpc3RyaXRhbC5lZHUuY28vICAKClNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBESVNUUklUQUwgRlJBTkNJU0NPIEpPU0UgREUgQ0FMREFTLCBMT1MgQVVUT1JFUyBHQVJBTlRJWkFOIFFVRSBTRSBIQSBDVU1QTElETyBDT04gTE9TIApERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KRW4gY29uc3RhbmNpYSBkZSBsbyBhbnRlcmlvciwgZmlybW8gKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50byBhIGxvcyAKCkZJUk1BIERFIExPUyBUSVRVTEFSRVMgREUgREVSRUNIT1MgREUgQVVUT1IKCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIEF1dG9yIChlcyk6CkF1dG9yCUNvcnJlbyBFbGVjdHLDs25pY28gCjEJCjIJCjMJCgpOb3RhOiBFbiBjYXNvIHF1ZSBubyBlc3TDqSBkZSBhY3VlcmRvIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIGp1c3RpZmlxdWUgbG9zIG1vdGl2b3MgcG9yIGxvcyBjdWFsZXMgZWwgZG9jdW1lbnRvIHkgc3VzIGFuZXhvcyBubyBwdWVkZW4gc2VyIHB1YmxpY2Fkb3MgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyBSSVVECg==