Modelado espacial hidrogeológico para determinar índices de calidad y vulnerabilidad de las aguas subterráneas en la zona centro de Boyacá

En el presente estudio, se aplican técnicas de predicción espacial tradicionales y modernas con el fin de realizar un modelamiento del sistema hidrogeológico de la zona centro del departamento de Boyacá, Colombia. El objetivo es determinar la calidad de las aguas subterráneas para el abastecimiento...

Full description

Autores:
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Distrital Francisco José de Caldas
Repositorio:
RIUD: repositorio U. Distrital
Idioma:
spa
OAI Identifier:
oai:repository.udistrital.edu.co:11349/29264
Acceso en línea:
http://hdl.handle.net/11349/29264
Palabra clave:
Kriging
INLA
SPDE
DRASTIC
Métodos bayesianos
Calidad de agua subterránea
Ingeniería Catastral y Geodesia - Tesis y disertaciones académicas
Hidrología - Procesamiento de datos
Calidad del agua - Control
Aguas subterráneas
Análisis espacial (Estadística)
Kriging
INLA
SPDE
DRASTIC
Bayesian methods
Underground water quality
Rights
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UDISTRITA2_c46ab09445b1878ba61054ae36bfc3ca
oai_identifier_str oai:repository.udistrital.edu.co:11349/29264
network_acronym_str UDISTRITA2
network_name_str RIUD: repositorio U. Distrital
repository_id_str
dc.title.spa.fl_str_mv Modelado espacial hidrogeológico para determinar índices de calidad y vulnerabilidad de las aguas subterráneas en la zona centro de Boyacá
dc.title.titleenglish.spa.fl_str_mv Hydrogeological spatial modelling to determine quality and vulnerability indices of groundwater in the central area of Boyacá
title Modelado espacial hidrogeológico para determinar índices de calidad y vulnerabilidad de las aguas subterráneas en la zona centro de Boyacá
spellingShingle Modelado espacial hidrogeológico para determinar índices de calidad y vulnerabilidad de las aguas subterráneas en la zona centro de Boyacá
Kriging
INLA
SPDE
DRASTIC
Métodos bayesianos
Calidad de agua subterránea
Ingeniería Catastral y Geodesia - Tesis y disertaciones académicas
Hidrología - Procesamiento de datos
Calidad del agua - Control
Aguas subterráneas
Análisis espacial (Estadística)
Kriging
INLA
SPDE
DRASTIC
Bayesian methods
Underground water quality
title_short Modelado espacial hidrogeológico para determinar índices de calidad y vulnerabilidad de las aguas subterráneas en la zona centro de Boyacá
title_full Modelado espacial hidrogeológico para determinar índices de calidad y vulnerabilidad de las aguas subterráneas en la zona centro de Boyacá
title_fullStr Modelado espacial hidrogeológico para determinar índices de calidad y vulnerabilidad de las aguas subterráneas en la zona centro de Boyacá
title_full_unstemmed Modelado espacial hidrogeológico para determinar índices de calidad y vulnerabilidad de las aguas subterráneas en la zona centro de Boyacá
title_sort Modelado espacial hidrogeológico para determinar índices de calidad y vulnerabilidad de las aguas subterráneas en la zona centro de Boyacá
dc.contributor.advisor.none.fl_str_mv Melo Martínez, Carlos Eduardo
dc.subject.spa.fl_str_mv Kriging
INLA
SPDE
DRASTIC
Métodos bayesianos
Calidad de agua subterránea
topic Kriging
INLA
SPDE
DRASTIC
Métodos bayesianos
Calidad de agua subterránea
Ingeniería Catastral y Geodesia - Tesis y disertaciones académicas
Hidrología - Procesamiento de datos
Calidad del agua - Control
Aguas subterráneas
Análisis espacial (Estadística)
Kriging
INLA
SPDE
DRASTIC
Bayesian methods
Underground water quality
dc.subject.lemb.spa.fl_str_mv Ingeniería Catastral y Geodesia - Tesis y disertaciones académicas
Hidrología - Procesamiento de datos
Calidad del agua - Control
Aguas subterráneas
Análisis espacial (Estadística)
dc.subject.keyword.spa.fl_str_mv Kriging
INLA
SPDE
DRASTIC
Bayesian methods
Underground water quality
description En el presente estudio, se aplican técnicas de predicción espacial tradicionales y modernas con el fin de realizar un modelamiento del sistema hidrogeológico de la zona centro del departamento de Boyacá, Colombia. El objetivo es determinar la calidad de las aguas subterráneas para el abastecimiento de la población para uso de consumo humano y riego de plantaciones. En el proceso se realizaron predicciones espaciales basadas en métodos frecuentistas (kriging - cokriging) y métodos bayesianos (SPDE R - INLA). Los métodos bayesianos se basan en la determinación de una distribución a priori adecuada, que aporte conocimiento previo suficiente en la construcción de la distribución a posterior del fenómeno espacial para acercarse a la realidad del territorio a través del modelo. Entonces, se realizó una comparación usando pruebas estadísticas (MAE, RMSE, CRPS y Diebold-Mariano) para determinar la bondad de ajuste, ventajas y desventajas de los métodos aplicados. El interés en este estudio se fundamenta en la implementación de una solución más robusta y eficiente computacionalmente, particularmente para información hidrogeológica y de esta forma administrar recursos hídricos de la región adecuadamente. También se hizo una evaluación de la vulnerabilidad de los acuíferos aplicando el método DRASTIC, el cual es obtenido analizando las variables Profundidad (D), Recarga Neta (R), Geología (A), Suelo (S), Topografía (T), Impacto de la zona vadosa (I) y Conductividad hidráulica (C).
publishDate 2021
dc.date.created.none.fl_str_mv 2021-04-07
dc.date.accessioned.none.fl_str_mv 2022-06-06T17:41:24Z
dc.date.available.none.fl_str_mv 2022-06-06T17:41:24Z
dc.type.degree.spa.fl_str_mv Investigación-Innovación
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11349/29264
url http://hdl.handle.net/11349/29264
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv pdf
institution Universidad Distrital Francisco José de Caldas
bitstream.url.fl_str_mv http://repository.udistrital.edu.co/bitstream/11349/29264/1/RomeroJason-Casta%c3%b1oDaniel2021.pdf
http://repository.udistrital.edu.co/bitstream/11349/29264/8/Licencia%20de%20uso%20y%20publicacion%20editable.docx.pdf
http://repository.udistrital.edu.co/bitstream/11349/29264/9/license_rdf
http://repository.udistrital.edu.co/bitstream/11349/29264/10/license.txt
http://repository.udistrital.edu.co/bitstream/11349/29264/11/RomeroJason-Casta%c3%b1oDaniel2021.pdf.jpg
http://repository.udistrital.edu.co/bitstream/11349/29264/12/Licencia%20de%20uso%20y%20publicacion%20editable.docx.pdf.jpg
bitstream.checksum.fl_str_mv 4c08d2c022ee8adc21cdae2123833484
99eb66a0ed4ebc8a71981a85bc2fc03f
217700a34da79ed616c2feb68d4c5e06
997daf6c648c962d566d7b082dac908d
06be4f434f179efa75c11b07af19a1a9
d8a8c0de1ca84ffe86bcff9f691758a5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Distrital - RIUD
repository.mail.fl_str_mv repositorio@udistrital.edu.co
_version_ 1803712698301546496
spelling Melo Martínez, Carlos EduardoRomero Ríos, Jason MauricioCastaño Salazar, Daniel2022-06-06T17:41:24Z2022-06-06T17:41:24Z2021-04-07http://hdl.handle.net/11349/29264En el presente estudio, se aplican técnicas de predicción espacial tradicionales y modernas con el fin de realizar un modelamiento del sistema hidrogeológico de la zona centro del departamento de Boyacá, Colombia. El objetivo es determinar la calidad de las aguas subterráneas para el abastecimiento de la población para uso de consumo humano y riego de plantaciones. En el proceso se realizaron predicciones espaciales basadas en métodos frecuentistas (kriging - cokriging) y métodos bayesianos (SPDE R - INLA). Los métodos bayesianos se basan en la determinación de una distribución a priori adecuada, que aporte conocimiento previo suficiente en la construcción de la distribución a posterior del fenómeno espacial para acercarse a la realidad del territorio a través del modelo. Entonces, se realizó una comparación usando pruebas estadísticas (MAE, RMSE, CRPS y Diebold-Mariano) para determinar la bondad de ajuste, ventajas y desventajas de los métodos aplicados. El interés en este estudio se fundamenta en la implementación de una solución más robusta y eficiente computacionalmente, particularmente para información hidrogeológica y de esta forma administrar recursos hídricos de la región adecuadamente. También se hizo una evaluación de la vulnerabilidad de los acuíferos aplicando el método DRASTIC, el cual es obtenido analizando las variables Profundidad (D), Recarga Neta (R), Geología (A), Suelo (S), Topografía (T), Impacto de la zona vadosa (I) y Conductividad hidráulica (C).In the present study, traditional and modern spatial prediction techniques are applied in order to model the hydrogeological system of the central zone of the department of Boyacá, Colombia .The aim is determine the quality of groundwater for supplying the population for use for human consumption and for irrigation of plantations. In the process, spatial predictions were made based on frequentist methods (kriging - cokriging) and Bayesian methods (SPDE R - INLA). Bayesian methods are based on the determination of an adequate a priori distribution, which provides sufficient prior knowledge in the construction of the posterior distribution of the spatial phenomenon to approach the reality of the territory through the model. Then, a comparison was made using statistical tests (MAE, RMSE, CRPS and Diebold-Mariano) to determine the goodness of fit, advantages and disadvantages of the applied methods. The interest in this study is based on the implementation of a more robust and computationally efficient solution, particularly for hydrogeological information and thus adequately manage water resources in the region. An evaluation of the vulnerability of the aquifers was also made by applying the DRASTIC method, which is obtained by analyzing the variables Depth (D), Net Recharge (R), Geology (A), Soil (S), Topography (T), Impact of the vadose zone (I) and Hydraulic conductivity (C).pdfspaAtribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2KrigingINLASPDEDRASTICMétodos bayesianosCalidad de agua subterráneaIngeniería Catastral y Geodesia - Tesis y disertaciones académicasHidrología - Procesamiento de datosCalidad del agua - ControlAguas subterráneasAnálisis espacial (Estadística)KrigingINLASPDEDRASTICBayesian methodsUnderground water qualityModelado espacial hidrogeológico para determinar índices de calidad y vulnerabilidad de las aguas subterráneas en la zona centro de BoyacáHydrogeological spatial modelling to determine quality and vulnerability indices of groundwater in the central area of BoyacáInvestigación-Innovacióninfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fORIGINALRomeroJason-CastañoDaniel2021.pdfRomeroJason-CastañoDaniel2021.pdfRomeroJason-CastañoDaniel2021.pdfapplication/pdf12138495http://repository.udistrital.edu.co/bitstream/11349/29264/1/RomeroJason-Casta%c3%b1oDaniel2021.pdf4c08d2c022ee8adc21cdae2123833484MD51open accessLicencia de uso y publicacion editable.docx.pdfLicencia de uso y publicacion editable.docx.pdfLicencia de uso y publicaciónapplication/pdf367840http://repository.udistrital.edu.co/bitstream/11349/29264/8/Licencia%20de%20uso%20y%20publicacion%20editable.docx.pdf99eb66a0ed4ebc8a71981a85bc2fc03fMD58metadata only accessCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811http://repository.udistrital.edu.co/bitstream/11349/29264/9/license_rdf217700a34da79ed616c2feb68d4c5e06MD59open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-87167http://repository.udistrital.edu.co/bitstream/11349/29264/10/license.txt997daf6c648c962d566d7b082dac908dMD510open accessTHUMBNAILRomeroJason-CastañoDaniel2021.pdf.jpgRomeroJason-CastañoDaniel2021.pdf.jpgIM Thumbnailimage/jpeg8408http://repository.udistrital.edu.co/bitstream/11349/29264/11/RomeroJason-Casta%c3%b1oDaniel2021.pdf.jpg06be4f434f179efa75c11b07af19a1a9MD511open accessLicencia de uso y publicacion editable.docx.pdf.jpgLicencia de uso y publicacion editable.docx.pdf.jpgIM Thumbnailimage/jpeg13848http://repository.udistrital.edu.co/bitstream/11349/29264/12/Licencia%20de%20uso%20y%20publicacion%20editable.docx.pdf.jpgd8a8c0de1ca84ffe86bcff9f691758a5MD512open access11349/29264oai:repository.udistrital.edu.co:11349/292642023-06-13 14:26:49.441open accessRepositorio Institucional Universidad Distrital - RIUDrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyBERSBDT05URU5JRE9TIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgREUgTEEgVU5JVkVSU0lEQUQgRElTVFJJVEFMCgpUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyAoUklVRCkKCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCBjb25maWVybyAoZXJpbW9zKSBhIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIChlbiBhZGVsYW50ZSwgTEEgVU5JVkVSU0lEQUQpIHVuYSBsaWNlbmNpYSBwYXJhIHVzbyBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgaW50ZWdyYXLDoSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIChlbiBhZGVsYW50ZSwgUklVRCksIGRlIGFjdWVyZG8gYSBsYXMgc2lndWllbnRlcyByZWdsYXMsIGxhcyBjdWFsZXMgZGVjbGFybyAoYW1vcykgY29ub2NlciB5IGFjZXB0YXI6CgphKQlFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWEgZW4gZWwgUklVRCB5IGhhc3RhIHBvciB1biBwbGF6byBkZSBkaWV6ICgxMCkgQcOxb3MsIHByb3Jyb2dhYmxlIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyBsYSBjdWFsIHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHByZXZpYSBzb2xpY2l0dWQgYSBMQSBVTklWRVJTSURBRCBwb3IgZXNjcml0byBjb24gdW5hIGFudGVsYWNpw7NuIGRlIGRvcyAoMikgbWVzZXMgYW50ZXMgZGVsIHZlbmNpbWllbnRvIGRlbCBwbGF6byBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLgoKYikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyBwb3IgZWwgUklVRCAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBMQSBVTklWRVJTSURBRCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsIGRvY3VtZW50byBhcGFyZXpjYSByZWZlcmVuY2lhZG8gZW4gbW90b3JlcyBkZSBiw7pzcXVlZGEgbyByZXBvc2l0b3Jpb3MgZGlmZXJlbnRlcyBhbCBSSVVELCB1bmEgdmV6IGVsKG9zKSBhdXRvcihlcykgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUklVRCwgZGFkbyBxdWUgbGEgbWlzbWEgc2Vyw6EgcHVibGljYWRhIGVuIEludGVybmV0LgoKYykJTGEgYXV0b3JpemFjacOzbiBzZSBoYWNlIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCBsb3MgYXV0b3JlcyByZW51bmNpYW4gYSByZWNpYmlyIGJlbmVmaWNpbyBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKQlMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQgc29uIG9icmEocykgb3JpZ2luYWwoZXMpIHNvYnJlIGxhIGN1YWwoZXMpIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBhc3VtZW4gdG90YWwgcmVzcG9uc2FiaWxpZGFkIHBvciBlbCBjb250ZW5pZG8gZGUgc3Ugb2JyYSBhbnRlIExBIFVOSVZFUlNJREFEIHkgYW50ZSB0ZXJjZXJvcy4gRW4gdG9kbyBjYXNvIExBIFVOSVZFUlNJREFEIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3Mgw61uZGljZXMgeSBidXNjYWRvcmVzIHF1ZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBtYXhpbWl6YXIgbGEgdmlzaWJpbGlkYWQgZWwgdXNvIHkgZWwgaW1wYWN0byBkZSBsYSBwcm9kdWNjacOzbiBjaWVudMOtZmljYSwgYXJ0w61zdGljYSB5IGFjYWTDqW1pY2EgZW4gbGEgY29tdW5pZGFkIGxvY2FsLCBuYWNpb25hbCBvIGludGVybmFjaW9uYWwuCgoKZikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGNvbnZlcnRpciBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluIGRlIHN1IHByZXNlcnZhY2nDs24gZW4gZWwgdGllbXBvIHF1ZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGxhIGRlIHN1cyBwcsOzcnJvZ2FzLgoKCkNvbiBiYXNlIGVuIGxvIGFudGVyaW9yIGF1dG9yaXpvKGFtb3MpLCBhIGZhdm9yIGRlbCBSSVVEIHkgZGUgc3VzIHVzdWFyaW9zLCBsYSBwdWJsaWNhY2nDs24geSBjb25zdWx0YSBkZSBsYSBzaWd1aWVudGUgb2JyYToKClRpdHVsbwoKQXV0b3IgICAgICAgQXBlbGxpZG9zICAgICAgICAgTm9tYnJlcwoKMQoKMgoKMwoKCmcpCUF1dG9yaXpvKGFtb3MpLCBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsb3MgbGl0ZXJhbGVzIGFudGVyaW9yZXMsIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgTEEgVU5JVkVSU0lEQUQsIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQsIGN1eW8gdGV4dG8gY29tcGxldG8gc2UgcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9yZXBvc2l0b3J5LnVkaXN0cml0YWwuZWR1LmNvLwoKaCkJQ29ub3pjbyhjZW1vcykgeSBhY2VwdG8oYW1vcykgcXVlIG90b3JnbyhhbW9zKSB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIChoZW1vcykgb2J0ZW5pZG8gdW5hIGNvcGlhLgoKaSkJTWFuaWZpZXN0byhhbW9zKSBtaSAobnVlc3RybykgdG90YWwgYWN1ZXJkbyBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIHVzbyB5IHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHF1ZSBzZSBkZXNjcmliZW4geSBleHBsaWNhbiBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8uCgpqKQlDb25vemNvKGNlbW9zKSBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSAgTEEgVU5JVkVSU0lEQUQ7IGVuIGNvbmNyZXRvLCBlbCBBY3VlcmRvIDAwNCBkZSAyMDEyIGRlbCBDU1UsIEFjdWVyZG8gMDIzIGRlIDIwMTIgZGVsIENTVSBzb2JyZSBQb2zDrXRpY2EgRWRpdG9yaWFsLCBBY3VlcmRvIDAyNiAgZGVsIDMxIGRlIGp1bGlvIGRlIDIwMTIgc29icmUgZWwgcHJvY2VkaW1pZW50byBwYXJhIGxhIHB1YmxpY2FjacOzbiBkZSB0ZXNpcyBkZSBwb3N0Z3JhZG8gZGUgbG9zIGVzdHVkaWFudGVzIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzLCAgQWN1ZXJkbyAwMzAgZGVsIDAzIGRlIGRpY2llbWJyZSBkZSAyMDEzIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBjcmVhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsIEFjdWVyZG8gMDM4IGRlIDIwMTUgMjAxNSDigJxwb3IgZWwgY3VhbCBzZSBtb2RpZmljYSBlbCBBY3VlcmRvIDAzMSBkZSAyMDE0IGRlIDIwMTQgcXVlIHJlZ2xhbWVudGEgZWwgdHJhYmFqbyBkZSBncmFkbyBwYXJhIGxvcyBlc3R1ZGlhbnRlcyBkZSBwcmVncmFkbyBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IHNlIGRpY3RhbiBvdHJhcyBkaXJlY3RyaWNlc+KAnSB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0bywgZXNwZWNpYWxtZW50ZSBsYSBsZXkgMjMgZGUgMTk4MiwgbGEgbGV5IDQ0IGRlIDE5OTMgeSBsYSBkZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLiBFc3RvcyBkb2N1bWVudG9zIHBvZHLDoW4gc2VyIGNvbnN1bHRhZG9zIHkgZGVzY2FyZ2Fkb3MgZW4gZWwgcG9ydGFsIHdlYiBkZSBsYSBiaWJsaW90ZWNhIGh0dHA6Ly9zaXN0ZW1hZGViaWJsaW90ZWNhcy51ZGlzdHJpdGFsLmVkdS5jby8KCmspCUFjZXB0byhhbW9zKSBxdWUgTEEgVU5JVkVSU0lEQUQgbm8gc2UgcmVzcG9uc2FiaWxpemEgcG9yIGxhcyBpbmZyYWNjaW9uZXMgYSBsYSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBEZXJlY2hvcyBkZSBBdXRvciBjYXVzYWRhcyBwb3IgbG9zIHRpdHVsYXJlcyBkZSBsYSBwcmVzZW50ZSBMaWNlbmNpYSB5IGRlY2xhcmFtb3MgcXVlIG1hbnRlbmRyw6kgKGVtb3MpIGluZGVtbmUgYSBMQSBVTklWRVJTSURBRCBwb3IgbGFzIHJlY2xhbWFjaW9uZXMgbGVnYWxlcyBkZSBjdWFscXVpZXIgdGlwbyBxdWUgbGxlZ2FyZW4gYSBwcmVzZW50YXJzZSBwb3IgdmlvbGFjacOzbiBkZSBkZXJlY2hvcyBhIGxhIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBvIGRlIEF1dG9yIHJlbGFjaW9uYWRvcyBjb24gbG9zIGRvY3VtZW50b3MgcmVnaXN0cmFkb3MgZW4gZWwgUklVRC4KCmwpCUVsIChsb3MpIGF1dG9yKGVzKSBtYW5pZmllc3RhKG1vcykgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwsIGRlIGV4Y2x1c2l2YSBhdXRvcsOtYSwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvczsgZGUgdGFsIHN1ZXJ0ZSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgZWwgKGxvcykgZXN0dWRpYW50ZShzKSDigJMgYXV0b3IoZXMpIGFzdW1pcsOhKG4pIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHkgc2FsZHLDoShuKSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcy4gUGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgTEEgVU5JVkVSU0lEQUQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCgptKQlFbCAobG9zKSBhdXRvcihlcykgbWFuaWZpZXN0YShtb3MpIHF1ZSBjb25vemNvKGNlbW9zKSBsYSBhdXRvbm9tw61hIHkgbG9zIGRlcmVjaG9zLCBxdWUgcG9zZWUobW9zKSBzb2JyZSBsYSBvYnJhIHksIGNvbW8gdGFsLCBlcyAoc29tb3MpIHJlc3BvbnNhYmxlKHMpIGRlbCBhbGNhbmNlIGp1csOtZGljbyB5IGxlZ2FsLCBkZSBlc2NvZ2VyIGxhIG9wY2nDs24gZGUgbGEgcHVibGljYWNpw7NuIG8gZGUgcmVzdHJpY2Npw7NuIGRlIGxhIHB1YmxpY2FjacOzbiBkZWwgZG9jdW1lbnRvIHJlZ2lzdHJhZG8gZW4gZWwgUklVRC4KCgoKCgoKU0kgRUwgRE9DVU1FTlRPIFNFIEJBU0EgRU4gVU4gVFJBQkFKTyBRVUUgSEEgU0lETyBQQVRST0NJTkFETyBPIEFQT1lBRE8gUE9SIFVOQSBBR0VOQ0lBIE8gVU5BIE9SR0FOSVpBQ0nDk04sIENPTiBFWENFUENJw5NOIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTCBGUkFOQ0lTQ08gSk9TRSBERSBDQUxEQVMsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MKREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uCgoKCgoKCgoKCgoKCgoKCgoKCgoKCkVuIGNvbnN0YW5jaWEgZGUgbG8gYW50ZXJpb3IsIGZpcm1vKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50bywgZW4gbGEgY2l1ZGFkIGRlIEJvZ290w6EsIEQuQy4sIGEgbG9zCgoKRklSTUEgREUgTE9TIFRJVFVMQVJFUyBERSBERVJFQ0hPUyBERSBBVVRPUgoKX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwoKCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIChkZSBsb3MpIEF1dG9yKGVzKToKCkF1dG9yCSAgICAgIENvcnJlbyBFbGVjdHLDs25pY28KCjEKCjIKCjMKCk5vbWJyZSBkZSBEaXJlY3RvcihlcykgZGUgR3JhZG86CgoxCgoyCgozCgpOb21icmUgRmFjdWx0YWQgeSBQcm95ZWN0byBDdXJyaWN1bGFyOgoKRmFjdWx0YWQJUHJveWVjdG8gQ3VycmljdWxhcgoKCgoKCgoKCk5vdGE6IEVuIGNhc28gcXVlIG5vIGVzdMOpIGRlIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgeSBtYW5pZmllc3RlIGFsZ3VuYSByZXN0cmljY2nDs24gc29icmUgbGEgb2JyYSwganVzdGlmaXF1ZSBsb3MgbW90aXZvcyBwb3IgbG9zIGN1YWxlcyBlbCBkb2N1bWVudG8geSBzdXMgYW5leG9zIG5vIHB1ZWRlbiBzZXIgcHVibGljYWRvcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIFJJVUQuCgoKU2kgcmVxdWllcmUgbcOhcyBlc3BhY2lvLCBwdWVkZSBhbmV4YXIgdW5hIGNvcGlhIHNpbWlsYXIgYSBlc3RhIGhvamEK