Una evaluación de los potenciales efectos del cambio climático sobre la Distribución Nymphargus Ignotus (Lynch, 1990) (Amphibia, Anura, Centrolenidae)

El cambio climático antropogénico amenaza la biodiversidad global al ser el clima uno de los factores promotores de la reorganización de la misma. Los anfibios, especialmente los anuros, han mostrado alteraciones en sus patrones de diversidad y distribución debido a esta problemática. Este estudio e...

Full description

Autores:
Sandoval Barbosa, Francy Johanna
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad Distrital Francisco José de Caldas
Repositorio:
RIUD: repositorio U. Distrital
Idioma:
spa
OAI Identifier:
oai:repository.udistrital.edu.co:11349/42192
Acceso en línea:
http://hdl.handle.net/11349/42192
Palabra clave:
Especie Endémica
Modelos de Nicho ecológico
MaxEnt
Precipitación
Temperatura
Licenciatura en Biología -- Tesis y disertaciones académicas
Cambio climático y biodiversidad
Distribución de especies y efectos del cambio climático
Conservación de especies endémicas
Impacto del cambio climático en los anfibios
Endemic Species
Ecological Niche models
MaxEnt
Precipitation
Temperature
Rights
License
Abierto (Texto Completo)
id UDISTRITA2_a55047780aa2145421dea20336f25900
oai_identifier_str oai:repository.udistrital.edu.co:11349/42192
network_acronym_str UDISTRITA2
network_name_str RIUD: repositorio U. Distrital
repository_id_str
dc.title.none.fl_str_mv Una evaluación de los potenciales efectos del cambio climático sobre la Distribución Nymphargus Ignotus (Lynch, 1990) (Amphibia, Anura, Centrolenidae)
dc.title.titleenglish.none.fl_str_mv An assessment of the potential effects of climate change on the Distribution of Nymphargus ignotus (Lynch, 1990) (Amphibia, Anura, Centrolenidae)
title Una evaluación de los potenciales efectos del cambio climático sobre la Distribución Nymphargus Ignotus (Lynch, 1990) (Amphibia, Anura, Centrolenidae)
spellingShingle Una evaluación de los potenciales efectos del cambio climático sobre la Distribución Nymphargus Ignotus (Lynch, 1990) (Amphibia, Anura, Centrolenidae)
Especie Endémica
Modelos de Nicho ecológico
MaxEnt
Precipitación
Temperatura
Licenciatura en Biología -- Tesis y disertaciones académicas
Cambio climático y biodiversidad
Distribución de especies y efectos del cambio climático
Conservación de especies endémicas
Impacto del cambio climático en los anfibios
Endemic Species
Ecological Niche models
MaxEnt
Precipitation
Temperature
title_short Una evaluación de los potenciales efectos del cambio climático sobre la Distribución Nymphargus Ignotus (Lynch, 1990) (Amphibia, Anura, Centrolenidae)
title_full Una evaluación de los potenciales efectos del cambio climático sobre la Distribución Nymphargus Ignotus (Lynch, 1990) (Amphibia, Anura, Centrolenidae)
title_fullStr Una evaluación de los potenciales efectos del cambio climático sobre la Distribución Nymphargus Ignotus (Lynch, 1990) (Amphibia, Anura, Centrolenidae)
title_full_unstemmed Una evaluación de los potenciales efectos del cambio climático sobre la Distribución Nymphargus Ignotus (Lynch, 1990) (Amphibia, Anura, Centrolenidae)
title_sort Una evaluación de los potenciales efectos del cambio climático sobre la Distribución Nymphargus Ignotus (Lynch, 1990) (Amphibia, Anura, Centrolenidae)
dc.creator.fl_str_mv Sandoval Barbosa, Francy Johanna
dc.contributor.advisor.none.fl_str_mv Mahecha Jimenez, Oscar Javier
dc.contributor.author.none.fl_str_mv Sandoval Barbosa, Francy Johanna
dc.contributor.orcid.none.fl_str_mv Mahecha Jimenez, Oscar Javier [0000-0002-8682-0020]
dc.subject.none.fl_str_mv Especie Endémica
Modelos de Nicho ecológico
MaxEnt
Precipitación
Temperatura
topic Especie Endémica
Modelos de Nicho ecológico
MaxEnt
Precipitación
Temperatura
Licenciatura en Biología -- Tesis y disertaciones académicas
Cambio climático y biodiversidad
Distribución de especies y efectos del cambio climático
Conservación de especies endémicas
Impacto del cambio climático en los anfibios
Endemic Species
Ecological Niche models
MaxEnt
Precipitation
Temperature
dc.subject.lemb.none.fl_str_mv Licenciatura en Biología -- Tesis y disertaciones académicas
Cambio climático y biodiversidad
Distribución de especies y efectos del cambio climático
Conservación de especies endémicas
Impacto del cambio climático en los anfibios
dc.subject.keyword.none.fl_str_mv Endemic Species
Ecological Niche models
MaxEnt
Precipitation
Temperature
description El cambio climático antropogénico amenaza la biodiversidad global al ser el clima uno de los factores promotores de la reorganización de la misma. Los anfibios, especialmente los anuros, han mostrado alteraciones en sus patrones de diversidad y distribución debido a esta problemática. Este estudio evalúa cuáles son los potenciales efectos del Cambio Climático sobre la distribución de Nymphargus ignotus (Lynch, 1990), una rana de cristal endémica de la Cordillera Occidental de Colombia, bajo dos escenarios futuros del Sexto Informe de Evaluación (IE6) del IPCC (2021): el SSP1-2.6, con emisiones bajas de CO2 que alcanzarían el 0% para el 2070, y el SSP3-7.0 con emisiones de CO2 que duplicarían para el 2100 las concentraciones actuales. Los resultados preliminares aquí descritos proyectan una reducción significativa del área de distribución potencial de la especie bajo la trayectoria más crítica para el 2050. Considerando las bajas tasas de dispersión de los anuros y otras presiones adicionales como la pérdida y fragmentación del hábitat por minería y agricultura, es pertinente continuar evaluando las amenazas que enfrenta N. ignotus, cuyas poblaciones disminuyen gradualmente. Así mismo, es necesaria la consolidación de información de rangos de distribución, monitoreo de poblaciones y aspectos fundamentales en la historia natural de N. ignotus para integrar en estos modelos análisis más complejos. Se recomienda para futuras investigaciones realizar una adecuada parametrización del modelo, de forma tal que se eviten sesgos y sobreestimaciones. De esta manera sería posible prever y estructurar potenciales estrategias de conservación oportunas que mantengan la especie en su categoría de menor preocupación.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-25T19:49:50Z
dc.date.available.none.fl_str_mv 2024-10-25T19:49:50Z
dc.date.created.none.fl_str_mv 2024-08-09
dc.type.none.fl_str_mv bachelorThesis
dc.type.degree.none.fl_str_mv Investigación-Innovación
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11349/42192
url http://hdl.handle.net/11349/42192
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Acevedo, P., Jiménez-Valverde, A., Lobo, J. M., & Real, R. (2012). Delimiting the geographical background in species distribution modelling. Journal Of Biogeography, 39(8), 1383-1390. https://doi.org/10.1111/j.1365-2699.2012.02713.x
Acosta Galvis, A. (2021). Lista de los anfibios de Colombia: Nymphargus ignotus. BATRACHIA. Retrieved June 23, 2024, from https://www.batrachia.com/orden-anura/centrolenidae-81-spp/nymphargus-ignotus/
Agudelo-Hz, W. J., & Armenteras, D. (2018). Cambio climático en Ecosistemas Andinos de Colombia: una revisión de sus efectos sobre la Biodiversidad. ResearchGate. https://www.researchgate.net/publication/328492678_Cambio_climatico_en_Ecosistemas_Andinos_de_Colombia_una_revision_de_sus_efectos_sobre_la_Biodiversidad
Agudelo-Hz, W. J., Urbina-Cardona, N., & Armenteras-Pascual, D. (2019). Critical shifts on spatial traits and the risk of extinction of Andean anurans: an assessment of the combined effects of climate and land-use change in Colombia. Perspectives In Ecology And Conservation, 17(4), 206-219. https://doi.org/10.1016/j.pecon.2019.11.002
Alves-Ferreira, G., Giné, G. A. F., De Siqueira Fortunato, D., Solé, M., & Heming, N. M. (2022). Projected responses of Cerrado anurans to climate change are mediated by biogeographic character. Perspectives In Ecology And Conservation, 20(2), 126-131. https://doi.org/10.1016/j.pecon.2021.12.001
Anderson, E. P., Marengo, J., Villalba, R., Halloy, S., Young, B., Cordero, D., Gast, F., Jaimes, E., Ruiz, D., Herzog, S. K., Martinez, R., J©argensen, P. M., & Tiessen, H. (2011). Consequences of climate change for ecosystems and ecosystem 62 services in the Tropical Andes. En Climate Change and Biodiversity in the Tropical Andes (pp. 1-18). Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE). http://wedocs.unep.org/handle/20.500.11822/19915
Anunciação, P. R., Ernst, R., Martello, F., Vancine, M. H., De Carvalho, L. M. T., & Ribeiro, M. C. (2023). Climate-driven loss of taxonomic and functional richness in Brazilian Atlantic Forest anurans. Perspectives In Ecology And Conservation, 21(4), 274-285. https://doi.org/10.1016/j.pecon.2023.09.001
Armesto, L. O., & Señaris, J. C. (2017). Anuros del norte de los andes: patrones de riqueza de especies y estado de conservación. Papéis Avulsos de Zoologia, 57(39), 491-526. https://doi.org/10.11606/0031-1049.2017.57.39
Arroyo, S., Chaves-Portilla, G., Rivera-Correa, M., & Rada, M. (2019). Capítulo 2 Sistemática y taxonomía de anfibios. En Sistemática y taxonomía de anfibios (pp. 55-95). https://doi.org/10.19053/978-958-660-341-6.2
Báez, S., Jaramillo, L., Cuesta, F., & Donoso, D. A. (2016). Effects of climate change on Andean biodiversity: a synthesis of studies published until 2015. Neotropical Biodiversity, 2(1), 181-194. https://doi.org/10.1080/23766808.2016.1248710
Ballesteros-Barrera, C., Tapia-Pérez, O., Zárate-Hernández, R., Leyte-Manrique, A., Martínez-Bernal, A., Vargas-Miranda, B., Martínez-Coronel, M., & Ortiz-Burgos, S. (2022). The Potential Effect of Climate Change on the Distribution of Endemic Anurans from Mexico’s Tropical Dry Forest. Diversity, 14(8), 650. https://doi.org/10.3390/d14080650
Barbet‐Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo‐absences for species distribution models: how, where and how many? Methods In Ecology And Evolution, 3(2), 327-338. https://doi.org/10.1111/j.2041-210x.2011.00172.x
Bax, V., & Francesconi, W. (2019). Conservation gaps and priorities in the Tropical Andes biodiversity hotspot: Implications for the expansion of protected areas. Journal Of Environmental Management, 232, 387-396. https://doi.org/10.1016/j.jenvman.2018.11.086
Biggs, R., Simons, H., Bakkenes, M., Scholes, R. J., Eickhout, B., Van Vuuren, D., & Alkemade, R. (2008). Scenarios of biodiversity loss in southern Africa in the 21st century. Global Environmental Change, 18(2), 296-309. https://doi.org/10.1016/j.gloenvcha.2008.02.001
Braunisch, V., Coppes, J., Arlettaz, R., Suchant, R., Schmid, H., & Bollmann, K. (2013). Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change. Ecography, 36(9), 971-983. https://doi.org/10.1111/j.1600-0587.2013.00138.x
Breiner, F. T., Nobis, M. P., Bergamini, A., & Guisan, A. (2018). Optimizing ensembles of small models for predicting the distribution of species with few occurrences. Methods In Ecology And Evolution, 9(4), 802-808. https://doi.org/10.1111/2041-210x.12957
Bunn, C., Läderach, P., Rivera, O. O., & Kirschke, D. (2014). A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Climatic Change, 129(1-2), 89-101. https://doi.org/10.1007/s10584-014-1306-x
Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P. W., Trisos, C., Romero, J., Aldunce, P., Barrett, K., Blanco, G., Cheung, W. W., Connors, S., Denton, F., Diongue-Niang, A., Dodman, D., Garschagen, M., Geden, O., Hayward, B., Jones, C., 64 . . . Ha, M. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. https://doi.org/10.59327/ipcc/ar6-9789291691647
Casajus, N., Périé, C., Logan, T., Lambert, M., De Blois, S., & Berteaux, D. (2016). An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change. PloS One, 11(3), e0152495. https://doi.org/10.1371/journal.pone.0152495
Castro-Herrera, F., & Bolívar-García, W. (2010). LIBRO ROJO DE LOS ANFIBIOS DEL VALLE DEL CAUCA (1.a ed.). Feriva Impresores SA. https://www.researchgate.net/profile/Fernando-Castro-Herrera/publication/292146270_Libro_rojo_de_los_anfibios_del_Valle_del_Cauca/links/56aa630f08aed5a0135897d9/Libro-rojo-de-los-anfibios-del-Valle-del-Cauca.pdf
Castro-Llanos, F., Hyman, G., Rubiano, J., Ramirez-Villegas, J., & Achicanoy, H. (2019). Climate change favors rice production at higher elevations in Colombia. Mitigation And Adaptation Strategies For Global Change, 24(8), 1401-1430. https://doi.org/10.1007/s11027-019-09852-x
Castroviejo‐Fisher, S., Guayasamin, J. M., Gonzalez‐Voyer, A., & Vilà, C. (2013). Neotropical diversification seen through glassfrogs. Journal Of Biogeography, 41(1), 66-80. https://doi.org/10.1111/jbi.12208
Catenazzi, A., & Von May, R. (2021). Systematics and Conservation of Neotropical Amphibians and Reptiles. Diversity, 13(2), 45. https://doi.org/10.3390/d13020045
Ceron, K., Sales, L. P., Santana, D. J., & Pires, M. M. (2023). Decoupled responses of biodiversity facets driven from anuran vulnerability to climate and land‐use changes. Ecology Letters, 26(6), 869-882. https://doi.org/10.1111/ele.14207
Cisneros-Heredia, D. F., & Mcdiarmid, R. W. (2007). Revision of the characters of Centrolenidae (Amphibia: Anura: Athesphatanura), with comments on its taxonomy and the description of new taxa of glassfrogs. Zootaxa, 1572(1), 1-82. https://doi.org/10.11646/zootaxa.1572.1.1
Coumou, D., & Rahmstorf, S. (2012). A decade of weather extremes. Nature Climate Change, 2(7), 491-496. https://doi.org/10.1038/nclimate1452
Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C., & Mace, G. M. (2011). Beyond predictions: Biodiversity conservation in a changing climate. Science, 332(6025), 53-58. https://doi.org/10.1126/science.1200303
Doak, D. F., & Morris, W. F. (2010). Demographic compensation and tipping points in climate-induced range shifts. Nature, 467(7318), 959-962. https://doi.org/10.1038/nature09439
Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2010). A statistical explanation of MaxEnt for ecologists. Diversity And Distributions, 17(1), 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x
Fahrig, L. (2003). Effects of Habitat Fragmentation on Biodiversity. Annual Review Of Ecology, Evolution, And Systematics, 34(1), 487-515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419
Field, Barros, Mastrandrea, Mach, Abdrabo, Adger, N., Anokhin, Anisimov, Arent, Australia, J. B., Burkett, China, R. C., India, M. C., Cohen, S., India, P. D., Davidson, Gambia, F. D., Dow, K., Australia, O. H., . . . Yohe. (2014). Climate 66 change 2014: impacts, adaptation, and vulnerability – IPCC WGII AR5 summary for policymakers. Cambridge University Press. https://www.researchgate.net/profile/Hans_Otto_Poertner2/publication/272150376_Climate_change_2014_impacts_adaptation_and_vulnerability_-_IPCC_WGII_AR5_summary_for_policymakers/links/54db84960cf233119bc638b6.pdf
Frost, D. (2018). Nymphargus ignotus (Lynch, 1990) (De American Museum of Natural History.). Amphibian Species Of The World. https://amphibiansoftheworld.amnh.org/Amphibia/Anura/Centrolenidae/Centroleninae/Nymphargus/Nymphargus-ignotus
Garcia, R. A., Cabeza, M., Rahbek, C., & Araújo, M. B. (2014). Multiple dimensions of climate change and their implications for biodiversity. Science, 344(6183). https://doi.org/10.1126/science.1247579
Guayasamin, J. M., Castroviejo-Fisher, S., Trueb, L., Ayarzagüena, J., Rada, M., & Vilà, C. (2009). Phylogenetic systematics of Glassfrogs (Amphibia: Centrolenidae) and their sister taxon Allophryne ruthveni. Zootaxa, 2100(1), 1-97. https://doi.org/10.11646/zootaxa.2100.1.1
Guayasamin, J. M., Cisneros-Heredia, D. F., McDiarmid, R. W., Peña, P., & Hutter, C. R. (2020). Glassfrogs of Ecuador: Diversity, Evolution, and Conservation. Diversity, 12(6), 222. https://doi.org/10.3390/d12060222
Guayasamin, J. M., Cisneros-Heredia, D. F., Vieira, J., Kohn, S., Gavilanes, G., Lynch, R. L., Hamilton, P. S., & Maynard, R. J. (2019). A new glassfrog (Centrolenidae) from the Chocó-Andean Río Manduriacu Reserve, Ecuador, endangered by mining. PeerJ, 7, e6400. https://doi.org/10.7717/peerj.6400
Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8(9), 993-1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x
Guisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis‐Lewis, I., Sutcliffe, P. R., Tulloch, A. I. T., Regan, T. J., Brotons, L., McDonald‐Madden, E., Mantyka‐Pringle, C., Martin, T. G., Rhodes, J. R., Maggini, R., Setterfield, S. A., Elith, J., Schwartz, M. W., Wintle, B. A., Broennimann, O., Austin, M., . . . Buckley, Y. M. (2013). Predicting species distributions for conservation decisions. Ecology Letters, 16(12), 1424-1435. https://doi.org/10.1111/ele.12189
Haller, A. (2012). Climate Change and Biodiversity in the Tropical Andes. Mountain Research And Development, 32(2), 258. https://doi.org/10.1659/mrd.mm097
Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29(5), 773-785. https://doi.org/10.1111/j.0906-7590.2006.04700.x
Herrera-Lopera, J. M., Castaño, V. A. R., & Cultid-Medina, C. A. (2023). What are the Andean Colombian anurans? Empirical regionalization proposals vs. observed patterns of compositional dissimilarity. PeerJ, 11, e15217. https://doi.org/10.7717/peerj.15217
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal Of Climatology, 25(15), 1965-1978. https://doi.org/10.1002/joc.1276
Instituto Humboldt, & Acosta-Galvis, A. (2016). Los anfibios en Colombia: Ranas, sapos, cecilias y salamandras. Biodiversidad. Recuperado 11 de junio de 2024, de http://reporte.humboldt.org.co/biodiversidad/2015/cap1/105/#seccion3
IPCC. (2013). Climate change 2013 : the physical science basis : Working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. En T. F. Stocker, D. Qin, M. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Intergovernmental Panel on Climate Change eBooks. Cambridge University Press. http://ci.nii.ac.jp/ncid/BB15229414
IPCC. (2014). Cambio climático 2014: impactos, adaptación y vulnerabilidad – Resumen para responsables de políticas. Contribución del Grupo de Trabajo II al quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático. En The Intergovernmental Panel On Climate Change. Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.). Recuperado 20 de junio de 2024, de https://www.ipcc.ch/
IPCC. (2021). Resumen para responsables de políticas. en: Climate Change 2021: the Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu y B. Zhou (editores)]. ]. Cambridge University Press.]. Cambridge University Press. https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_FullVolume.pdf
IPCC. (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. [Core Writing Team, H. Lee and J. Romero (eds.)]. https://doi.org/10.59327/ipcc/ar6-9789291691647
IUCN SSC Amphibian Specialist Group. (2020). IUCN Red List of Threatened Species: : Nymphargus ignotus. IUCN Red List Of Threatened Species. https://www.iucnredlist.org/species/54966/176743577
Kappelle, M., & Brown, A. (2001). Bosques Nublados del Neotropico. ResearchGate. https://www.researchgate.net/publication/237139539_Bosques_Nublados_del_Neotropico
Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the Earth’s land surface areas. Scientific Data, 4(1). https://doi.org/10.1038/sdata.2017.122
Kattan, G. H., Franco, P., Rojas, V., & Morales, G. (2004). Biological diversification in a complex region: a spatial analysis of faunistic diversity and biogeography of the Andes of Colombia. Journal Of Biogeography, 31(11), 1829-1839. https://doi.org/10.1111/j.1365-2699.2004.01109.x
Lacher, T., & Roach, N. (2018). The status of biodiversity in the Anthropocene: Trends, threats, and actions. En Elsevier eBooks (pp. 1-8). https://doi.org/10.1016/b978-0-12-809665-9.10674-3
Liu, C., White, M., & Newell, G. (2013). Selecting thresholds for the prediction of species occurrence with presence-only data. Journal Of Biogeography, 40(4), 778-789. https://doi.org/10.1111/jbi.12058
Marquardt, D. W. (1970). Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation. Technometrics, 12(3), 591. https://doi.org/10.2307/1267205
Menéndez‐Guerrero, P. A., Green, D. M., & Davies, T. J. (2019). Climate change and the future restructuring of Neotropical anuran biodiversity. Ecography, 43(2), 222-235. https://doi.org/10.1111/ecog.04510
Mitchell, P. J., Monk, J., & Laurenson, L. (2016). Sensitivity of fine‐scale species distribution models to locational uncertainty in occurrence data across multiple sample sizes. Methods In Ecology And Evolution, 8(1), 12-21. https://doi.org/10.1111/2041-210x.12645
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858. https://doi.org/10.1038/35002501
Naimi, B., Hamm, N., Groen, T., Skidmore, A., & Toxopeus, A. (2014). USDM: Uncertainty Analysis for Species Distribution models (2.1-7) [Conjunto de datos; CRAN R]. https://doi.org/10.32614/cran.package.usdm
Newbold, T. (2018). Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proceedings - Royal Society. Biological Sciences/Proceedings - Royal Society. Biological Sciences, 285(1881), 20180792. https://doi.org/10.1098/rspb.2018.0792
Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global 71 Ecology And Biogeography, 12(5), 361-371. https://doi.org/10.1046/j.1466-822x.2003.00042.x
Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: an open‐source release of Maxent. Ecography, 40(7), 887-893. https://doi.org/10.1111/ecog.03049
Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026
Phillips, S. J., Dudík, M., & Schapire, R. E. (s. f.). Maxent Software for Modeling Species Niches and Distributions [Software]. En Schapire (Version 3.4.1). http://biodiversityinformatics.amnh.org/open_source/maxent/
Prakash, S., & Srivastava, S. (2019). Impact of climate change on biodiversity: An Overview. International Journal Of Biological Innovations, 01(02), 60-65. https://doi.org/10.46505/ijbi.2019.1205
Rada, M., Ospina-Sarria, J. J., & Guayasamin, J. M. (2017). A Taxonomic Review of Tan-Brown Glassfrogs (Anura: Centrolenidae), with the Description of a New Species from Southwestern Colombia. South American Journal Of Herpetology, 12(2), 136-156. https://doi.org/10.2994/sajh-d-16-00026.1
Rahbek, C., Borregaard, M. K., Colwell, R. K., Dalsgaard, B., Holt, B. G., Morueta-Holme, N., Nogues-Bravo, D., Whittaker, R. J., & Fjeldså, J. (2019). Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science, 365(6458), 1108-1113. https://doi.org/10.1126/science.aax0149
Ramirez-Villegas, J., Cuesta, F., Devenish, C., Peralvo, M., Jarvis, A., & Arnillas, C. A. (2014). Using species distributions models for designing conservation strategies of Tropical Andean biodiversity under climate change. Journal For Nature Conservation, 22(5), 391-404. https://doi.org/10.1016/j.jnc.2014.03.007
Restrepo, J. H., & Naranjo, L. G. (1999). Ecología reproductiva de una población de cochranella ignota (Anura: Centrolenidae). Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 23, ISSN 03703908. https://www.accefyn.com/revista/Vol_23/86/49-59.pdf
Roach, N. S., Castellanos, A. A., & Lacher, T. E. (2024). Assessing the vulnerability of endemic Colombian amphibian species to climate change in an isolated Montane ecosystem. Tropical Conservation Science, 17. https://doi.org/10.1177/19400829231225236
Rödder, D., & Weinsheimer, F. (2009). Will future anthropogenic climate change increase the potential distribution of the alien invasive Cuban treefrog (Anura: Hylidae)? Journal Of Natural History, 43(19-20), 1207-1217. https://doi.org/10.1080/00222930902783752
Rodríguez, A., D., Morales, M., & Romero, M. (2006). Ecosistemas de los Andes colombianos. Instituto de Investigación de Recursos Biológicos Alexander Von Humbolt.
Ruiz, A., & Rueda-Almonacid, J. V. (2008). Batrachochytrium dendrobatidis and Chytridiomycosis in Anuran Amphibians of Colombia. Ecohealth, 5(1), 27-33. https://doi.org/10.1007/s10393-008-0159-z
Salamanca, G. G., Osorio, T. M. P., Vargas, G. E. F., & Gonzalez, V. (2022). Ecorregiones colombia. ResearchGate. 73 https://www.researchgate.net/publication/364844636_Ecorregiones_colombia?enrichId=rgreq-be326375faad124def33859e59a1cce5-XXX&enrichSource=Y292ZXJQYWdlOzM2NDg0NDYzNjtBUzoxMTQzMTI4MTA5Mjk2ODkxMkAxNjY3MDY4MDYxNDc0&el=1_x_2&_esc=publicationCoverPdf
Sánchez-Carvajal, M. J., Reyes-Ortega, G. C., Cisneros-Heredia, D. F., & Ortega-Andrade, H. M. (2021). Rediscovery of Laura’s glassfrog Nymphargus laurae (Anura: Centrolenidae) with new data on its morphology, colouration, phylogenetic position and conservation in Ecuador. PeerJ, 9, e12644. https://doi.org/10.7717/peerj.12644
Thompson, J. N. (1994). The coevolutionary process. https://doi.org/10.7208/chicago/9780226797670.001.0001
Tobar-Suárez, C., Urbina-Cardona, N., Villalobos, F., & Pineda, E. (2021). Amphibian species richness and endemism in tropical montane cloud forests across the Neotropics. Biodiversity And Conservation, 31(1), 295-313. https://doi.org/10.1007/s10531-021-02335-z
Urban, M. C. (2018). Escalator to extinction. Proceedings Of The National Academy Of Sciences Of The United States Of America, 115(47), 11871-11873. https://doi.org/10.1073/pnas.1817416115
Valavi, R., Guillera‐Arroita, G., Lahoz‐Monfort, J. J., & Elith, J. (2021). Predictive performance of presence‐only species distribution models: a benchmark study with reproducible code. Ecological Monographs, 92(1). https://doi.org/10.1002/ecm.1486
Warren, D. L., & Seifert, S. N. (2011). Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications, 21(2), 335-342. https://doi.org/10.1890/10-1171.1
Yadav, E. (2022). Climate change and biodiversity. ResearchGate. https://www.researchgate.net/publication/377766897
Zhong, L., & Wang, J. (2017). Evaluation on effect of land consolidation on habitat quality based on InVEST model[J]. Transactions Of The Chinese Society Of Agricultural Engineering (Transactions Of The CSAE), 33(1), 250-255. https://doi.org/10.11975/j.issn.1002-6819.2017.01.034
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.none.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv pdf
dc.publisher.none.fl_str_mv Universidad Distrital Francisco José de Caldas
publisher.none.fl_str_mv Universidad Distrital Francisco José de Caldas
institution Universidad Distrital Francisco José de Caldas
bitstream.url.fl_str_mv https://repository.udistrital.edu.co/bitstreams/cddc573f-d795-46d8-8e3f-4c566dbbed7c/download
https://repository.udistrital.edu.co/bitstreams/2faa7b6e-c75b-4e50-849d-876a2b2b753c/download
https://repository.udistrital.edu.co/bitstreams/b33ccbe0-6b93-44d0-8433-1f9ef113c0e2/download
https://repository.udistrital.edu.co/bitstreams/eab1f301-4bdc-4bfc-81b7-4da00b096f5e/download
https://repository.udistrital.edu.co/bitstreams/a192e646-38e4-4987-b8b5-342bbc123a4d/download
bitstream.checksum.fl_str_mv 011c49e347b362295f30fa68f4277290
74052741f3af930f30abfb9d82a9d3c4
997daf6c648c962d566d7b082dac908d
e4bfb61991dd1aa0833649195ee66f81
0711682f27d8f328a8b2de37d07c3509
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Distrital
repository.mail.fl_str_mv repositorio@udistrital.edu.co
_version_ 1828164873830268928
spelling Mahecha Jimenez, Oscar JavierSandoval Barbosa, Francy JohannaMahecha Jimenez, Oscar Javier [0000-0002-8682-0020]2024-10-25T19:49:50Z2024-10-25T19:49:50Z2024-08-09http://hdl.handle.net/11349/42192El cambio climático antropogénico amenaza la biodiversidad global al ser el clima uno de los factores promotores de la reorganización de la misma. Los anfibios, especialmente los anuros, han mostrado alteraciones en sus patrones de diversidad y distribución debido a esta problemática. Este estudio evalúa cuáles son los potenciales efectos del Cambio Climático sobre la distribución de Nymphargus ignotus (Lynch, 1990), una rana de cristal endémica de la Cordillera Occidental de Colombia, bajo dos escenarios futuros del Sexto Informe de Evaluación (IE6) del IPCC (2021): el SSP1-2.6, con emisiones bajas de CO2 que alcanzarían el 0% para el 2070, y el SSP3-7.0 con emisiones de CO2 que duplicarían para el 2100 las concentraciones actuales. Los resultados preliminares aquí descritos proyectan una reducción significativa del área de distribución potencial de la especie bajo la trayectoria más crítica para el 2050. Considerando las bajas tasas de dispersión de los anuros y otras presiones adicionales como la pérdida y fragmentación del hábitat por minería y agricultura, es pertinente continuar evaluando las amenazas que enfrenta N. ignotus, cuyas poblaciones disminuyen gradualmente. Así mismo, es necesaria la consolidación de información de rangos de distribución, monitoreo de poblaciones y aspectos fundamentales en la historia natural de N. ignotus para integrar en estos modelos análisis más complejos. Se recomienda para futuras investigaciones realizar una adecuada parametrización del modelo, de forma tal que se eviten sesgos y sobreestimaciones. De esta manera sería posible prever y estructurar potenciales estrategias de conservación oportunas que mantengan la especie en su categoría de menor preocupación.Anthropogenic climate change threatens global biodiversity as climate is one of the driving factors behind its reorganization. Amphibians, especially anurans, have shown alterations in their diversity and distribution patterns due to this issue. This study assesses the potential effects of climate change on the distribution of Nymphargus ignotus (Lynch, 1990), an endemic glass frog from the Western Cordillera of Colombia, under two future scenarios from the Sixth Assessment Report (AR6) of the IPCC (2021): SSP1-2.6, with low CO2 emissions reaching 0% by 2070, and SSP3-7.0, with CO2 emissions doubling current concentrations by 2100. The preliminary results described here project a significant reduction in the potential distribution area of the species under the most critical trajectory by 2050. Considering the low dispersal rates of anurans and other additional pressures such as habitat loss and fragmentation due to mining and agriculture, it is pertinent to continue evaluating the threats faced by N. ignotus, whose populations are gradually decreasing. Additionally, it is necessary to consolidate information on distribution ranges, population monitoring, and fundamental aspects of the natural history of N. ignotus to incorporate more complex analyses into these models. It is recommended that future research includes proper model parameterization to avoid biases and overestimations. This would allow for the anticipation and development of timely conservation strategies that could maintain the species in its least concern category.pdfspaUniversidad Distrital Francisco José de CaldasEspecie EndémicaModelos de Nicho ecológicoMaxEntPrecipitaciónTemperaturaLicenciatura en Biología -- Tesis y disertaciones académicasCambio climático y biodiversidadDistribución de especies y efectos del cambio climáticoConservación de especies endémicasImpacto del cambio climático en los anfibiosEndemic SpeciesEcological Niche modelsMaxEntPrecipitationTemperatureUna evaluación de los potenciales efectos del cambio climático sobre la Distribución Nymphargus Ignotus (Lynch, 1990) (Amphibia, Anura, Centrolenidae)An assessment of the potential effects of climate change on the Distribution of Nymphargus ignotus (Lynch, 1990) (Amphibia, Anura, Centrolenidae)bachelorThesisInvestigación-Innovacióninfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Acevedo, P., Jiménez-Valverde, A., Lobo, J. M., & Real, R. (2012). Delimiting the geographical background in species distribution modelling. Journal Of Biogeography, 39(8), 1383-1390. https://doi.org/10.1111/j.1365-2699.2012.02713.xAcosta Galvis, A. (2021). Lista de los anfibios de Colombia: Nymphargus ignotus. BATRACHIA. Retrieved June 23, 2024, from https://www.batrachia.com/orden-anura/centrolenidae-81-spp/nymphargus-ignotus/Agudelo-Hz, W. J., & Armenteras, D. (2018). Cambio climático en Ecosistemas Andinos de Colombia: una revisión de sus efectos sobre la Biodiversidad. ResearchGate. https://www.researchgate.net/publication/328492678_Cambio_climatico_en_Ecosistemas_Andinos_de_Colombia_una_revision_de_sus_efectos_sobre_la_BiodiversidadAgudelo-Hz, W. J., Urbina-Cardona, N., & Armenteras-Pascual, D. (2019). Critical shifts on spatial traits and the risk of extinction of Andean anurans: an assessment of the combined effects of climate and land-use change in Colombia. Perspectives In Ecology And Conservation, 17(4), 206-219. https://doi.org/10.1016/j.pecon.2019.11.002Alves-Ferreira, G., Giné, G. A. F., De Siqueira Fortunato, D., Solé, M., & Heming, N. M. (2022). Projected responses of Cerrado anurans to climate change are mediated by biogeographic character. Perspectives In Ecology And Conservation, 20(2), 126-131. https://doi.org/10.1016/j.pecon.2021.12.001Anderson, E. P., Marengo, J., Villalba, R., Halloy, S., Young, B., Cordero, D., Gast, F., Jaimes, E., Ruiz, D., Herzog, S. K., Martinez, R., J©argensen, P. M., & Tiessen, H. (2011). Consequences of climate change for ecosystems and ecosystem 62 services in the Tropical Andes. En Climate Change and Biodiversity in the Tropical Andes (pp. 1-18). Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE). http://wedocs.unep.org/handle/20.500.11822/19915Anunciação, P. R., Ernst, R., Martello, F., Vancine, M. H., De Carvalho, L. M. T., & Ribeiro, M. C. (2023). Climate-driven loss of taxonomic and functional richness in Brazilian Atlantic Forest anurans. Perspectives In Ecology And Conservation, 21(4), 274-285. https://doi.org/10.1016/j.pecon.2023.09.001Armesto, L. O., & Señaris, J. C. (2017). Anuros del norte de los andes: patrones de riqueza de especies y estado de conservación. Papéis Avulsos de Zoologia, 57(39), 491-526. https://doi.org/10.11606/0031-1049.2017.57.39Arroyo, S., Chaves-Portilla, G., Rivera-Correa, M., & Rada, M. (2019). Capítulo 2 Sistemática y taxonomía de anfibios. En Sistemática y taxonomía de anfibios (pp. 55-95). https://doi.org/10.19053/978-958-660-341-6.2Báez, S., Jaramillo, L., Cuesta, F., & Donoso, D. A. (2016). Effects of climate change on Andean biodiversity: a synthesis of studies published until 2015. Neotropical Biodiversity, 2(1), 181-194. https://doi.org/10.1080/23766808.2016.1248710Ballesteros-Barrera, C., Tapia-Pérez, O., Zárate-Hernández, R., Leyte-Manrique, A., Martínez-Bernal, A., Vargas-Miranda, B., Martínez-Coronel, M., & Ortiz-Burgos, S. (2022). The Potential Effect of Climate Change on the Distribution of Endemic Anurans from Mexico’s Tropical Dry Forest. Diversity, 14(8), 650. https://doi.org/10.3390/d14080650Barbet‐Massin, M., Jiguet, F., Albert, C. H., & Thuiller, W. (2012). Selecting pseudo‐absences for species distribution models: how, where and how many? Methods In Ecology And Evolution, 3(2), 327-338. https://doi.org/10.1111/j.2041-210x.2011.00172.xBax, V., & Francesconi, W. (2019). Conservation gaps and priorities in the Tropical Andes biodiversity hotspot: Implications for the expansion of protected areas. Journal Of Environmental Management, 232, 387-396. https://doi.org/10.1016/j.jenvman.2018.11.086Biggs, R., Simons, H., Bakkenes, M., Scholes, R. J., Eickhout, B., Van Vuuren, D., & Alkemade, R. (2008). Scenarios of biodiversity loss in southern Africa in the 21st century. Global Environmental Change, 18(2), 296-309. https://doi.org/10.1016/j.gloenvcha.2008.02.001Braunisch, V., Coppes, J., Arlettaz, R., Suchant, R., Schmid, H., & Bollmann, K. (2013). Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change. Ecography, 36(9), 971-983. https://doi.org/10.1111/j.1600-0587.2013.00138.xBreiner, F. T., Nobis, M. P., Bergamini, A., & Guisan, A. (2018). Optimizing ensembles of small models for predicting the distribution of species with few occurrences. Methods In Ecology And Evolution, 9(4), 802-808. https://doi.org/10.1111/2041-210x.12957Bunn, C., Läderach, P., Rivera, O. O., & Kirschke, D. (2014). A bitter cup: climate change profile of global production of Arabica and Robusta coffee. Climatic Change, 129(1-2), 89-101. https://doi.org/10.1007/s10584-014-1306-xCalvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P. W., Trisos, C., Romero, J., Aldunce, P., Barrett, K., Blanco, G., Cheung, W. W., Connors, S., Denton, F., Diongue-Niang, A., Dodman, D., Garschagen, M., Geden, O., Hayward, B., Jones, C., 64 . . . Ha, M. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. https://doi.org/10.59327/ipcc/ar6-9789291691647Casajus, N., Périé, C., Logan, T., Lambert, M., De Blois, S., & Berteaux, D. (2016). An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change. PloS One, 11(3), e0152495. https://doi.org/10.1371/journal.pone.0152495Castro-Herrera, F., & Bolívar-García, W. (2010). LIBRO ROJO DE LOS ANFIBIOS DEL VALLE DEL CAUCA (1.a ed.). Feriva Impresores SA. https://www.researchgate.net/profile/Fernando-Castro-Herrera/publication/292146270_Libro_rojo_de_los_anfibios_del_Valle_del_Cauca/links/56aa630f08aed5a0135897d9/Libro-rojo-de-los-anfibios-del-Valle-del-Cauca.pdfCastro-Llanos, F., Hyman, G., Rubiano, J., Ramirez-Villegas, J., & Achicanoy, H. (2019). Climate change favors rice production at higher elevations in Colombia. Mitigation And Adaptation Strategies For Global Change, 24(8), 1401-1430. https://doi.org/10.1007/s11027-019-09852-xCastroviejo‐Fisher, S., Guayasamin, J. M., Gonzalez‐Voyer, A., & Vilà, C. (2013). Neotropical diversification seen through glassfrogs. Journal Of Biogeography, 41(1), 66-80. https://doi.org/10.1111/jbi.12208Catenazzi, A., & Von May, R. (2021). Systematics and Conservation of Neotropical Amphibians and Reptiles. Diversity, 13(2), 45. https://doi.org/10.3390/d13020045Ceron, K., Sales, L. P., Santana, D. J., & Pires, M. M. (2023). Decoupled responses of biodiversity facets driven from anuran vulnerability to climate and land‐use changes. Ecology Letters, 26(6), 869-882. https://doi.org/10.1111/ele.14207Cisneros-Heredia, D. F., & Mcdiarmid, R. W. (2007). Revision of the characters of Centrolenidae (Amphibia: Anura: Athesphatanura), with comments on its taxonomy and the description of new taxa of glassfrogs. Zootaxa, 1572(1), 1-82. https://doi.org/10.11646/zootaxa.1572.1.1Coumou, D., & Rahmstorf, S. (2012). A decade of weather extremes. Nature Climate Change, 2(7), 491-496. https://doi.org/10.1038/nclimate1452Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C., & Mace, G. M. (2011). Beyond predictions: Biodiversity conservation in a changing climate. Science, 332(6025), 53-58. https://doi.org/10.1126/science.1200303Doak, D. F., & Morris, W. F. (2010). Demographic compensation and tipping points in climate-induced range shifts. Nature, 467(7318), 959-962. https://doi.org/10.1038/nature09439Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2010). A statistical explanation of MaxEnt for ecologists. Diversity And Distributions, 17(1), 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.xFahrig, L. (2003). Effects of Habitat Fragmentation on Biodiversity. Annual Review Of Ecology, Evolution, And Systematics, 34(1), 487-515. https://doi.org/10.1146/annurev.ecolsys.34.011802.132419Field, Barros, Mastrandrea, Mach, Abdrabo, Adger, N., Anokhin, Anisimov, Arent, Australia, J. B., Burkett, China, R. C., India, M. C., Cohen, S., India, P. D., Davidson, Gambia, F. D., Dow, K., Australia, O. H., . . . Yohe. (2014). Climate 66 change 2014: impacts, adaptation, and vulnerability – IPCC WGII AR5 summary for policymakers. Cambridge University Press. https://www.researchgate.net/profile/Hans_Otto_Poertner2/publication/272150376_Climate_change_2014_impacts_adaptation_and_vulnerability_-_IPCC_WGII_AR5_summary_for_policymakers/links/54db84960cf233119bc638b6.pdfFrost, D. (2018). Nymphargus ignotus (Lynch, 1990) (De American Museum of Natural History.). Amphibian Species Of The World. https://amphibiansoftheworld.amnh.org/Amphibia/Anura/Centrolenidae/Centroleninae/Nymphargus/Nymphargus-ignotusGarcia, R. A., Cabeza, M., Rahbek, C., & Araújo, M. B. (2014). Multiple dimensions of climate change and their implications for biodiversity. Science, 344(6183). https://doi.org/10.1126/science.1247579Guayasamin, J. M., Castroviejo-Fisher, S., Trueb, L., Ayarzagüena, J., Rada, M., & Vilà, C. (2009). Phylogenetic systematics of Glassfrogs (Amphibia: Centrolenidae) and their sister taxon Allophryne ruthveni. Zootaxa, 2100(1), 1-97. https://doi.org/10.11646/zootaxa.2100.1.1Guayasamin, J. M., Cisneros-Heredia, D. F., McDiarmid, R. W., Peña, P., & Hutter, C. R. (2020). Glassfrogs of Ecuador: Diversity, Evolution, and Conservation. Diversity, 12(6), 222. https://doi.org/10.3390/d12060222Guayasamin, J. M., Cisneros-Heredia, D. F., Vieira, J., Kohn, S., Gavilanes, G., Lynch, R. L., Hamilton, P. S., & Maynard, R. J. (2019). A new glassfrog (Centrolenidae) from the Chocó-Andean Río Manduriacu Reserve, Ecuador, endangered by mining. PeerJ, 7, e6400. https://doi.org/10.7717/peerj.6400Guisan, A., & Thuiller, W. (2005). Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8(9), 993-1009. https://doi.org/10.1111/j.1461-0248.2005.00792.xGuisan, A., Tingley, R., Baumgartner, J. B., Naujokaitis‐Lewis, I., Sutcliffe, P. R., Tulloch, A. I. T., Regan, T. J., Brotons, L., McDonald‐Madden, E., Mantyka‐Pringle, C., Martin, T. G., Rhodes, J. R., Maggini, R., Setterfield, S. A., Elith, J., Schwartz, M. W., Wintle, B. A., Broennimann, O., Austin, M., . . . Buckley, Y. M. (2013). Predicting species distributions for conservation decisions. Ecology Letters, 16(12), 1424-1435. https://doi.org/10.1111/ele.12189Haller, A. (2012). Climate Change and Biodiversity in the Tropical Andes. Mountain Research And Development, 32(2), 258. https://doi.org/10.1659/mrd.mm097Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29(5), 773-785. https://doi.org/10.1111/j.0906-7590.2006.04700.xHerrera-Lopera, J. M., Castaño, V. A. R., & Cultid-Medina, C. A. (2023). What are the Andean Colombian anurans? Empirical regionalization proposals vs. observed patterns of compositional dissimilarity. PeerJ, 11, e15217. https://doi.org/10.7717/peerj.15217Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal Of Climatology, 25(15), 1965-1978. https://doi.org/10.1002/joc.1276Instituto Humboldt, & Acosta-Galvis, A. (2016). Los anfibios en Colombia: Ranas, sapos, cecilias y salamandras. Biodiversidad. Recuperado 11 de junio de 2024, de http://reporte.humboldt.org.co/biodiversidad/2015/cap1/105/#seccion3IPCC. (2013). Climate change 2013 : the physical science basis : Working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. En T. F. Stocker, D. Qin, M. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, & P. M. Midgley (Eds.), Intergovernmental Panel on Climate Change eBooks. Cambridge University Press. http://ci.nii.ac.jp/ncid/BB15229414IPCC. (2014). Cambio climático 2014: impactos, adaptación y vulnerabilidad – Resumen para responsables de políticas. Contribución del Grupo de Trabajo II al quinto Informe de Evaluación del Grupo Intergubernamental de Expertos sobre el Cambio Climático. En The Intergovernmental Panel On Climate Change. Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.). Recuperado 20 de junio de 2024, de https://www.ipcc.ch/IPCC. (2021). Resumen para responsables de políticas. en: Climate Change 2021: the Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu y B. Zhou (editores)]. ]. Cambridge University Press.]. Cambridge University Press. https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_FullVolume.pdfIPCC. (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. [Core Writing Team, H. Lee and J. Romero (eds.)]. https://doi.org/10.59327/ipcc/ar6-9789291691647IUCN SSC Amphibian Specialist Group. (2020). IUCN Red List of Threatened Species: : Nymphargus ignotus. IUCN Red List Of Threatened Species. https://www.iucnredlist.org/species/54966/176743577Kappelle, M., & Brown, A. (2001). Bosques Nublados del Neotropico. ResearchGate. https://www.researchgate.net/publication/237139539_Bosques_Nublados_del_NeotropicoKarger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the Earth’s land surface areas. Scientific Data, 4(1). https://doi.org/10.1038/sdata.2017.122Kattan, G. H., Franco, P., Rojas, V., & Morales, G. (2004). Biological diversification in a complex region: a spatial analysis of faunistic diversity and biogeography of the Andes of Colombia. Journal Of Biogeography, 31(11), 1829-1839. https://doi.org/10.1111/j.1365-2699.2004.01109.xLacher, T., & Roach, N. (2018). The status of biodiversity in the Anthropocene: Trends, threats, and actions. En Elsevier eBooks (pp. 1-8). https://doi.org/10.1016/b978-0-12-809665-9.10674-3Liu, C., White, M., & Newell, G. (2013). Selecting thresholds for the prediction of species occurrence with presence-only data. Journal Of Biogeography, 40(4), 778-789. https://doi.org/10.1111/jbi.12058Marquardt, D. W. (1970). Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation. Technometrics, 12(3), 591. https://doi.org/10.2307/1267205Menéndez‐Guerrero, P. A., Green, D. M., & Davies, T. J. (2019). Climate change and the future restructuring of Neotropical anuran biodiversity. Ecography, 43(2), 222-235. https://doi.org/10.1111/ecog.04510Mitchell, P. J., Monk, J., & Laurenson, L. (2016). Sensitivity of fine‐scale species distribution models to locational uncertainty in occurrence data across multiple sample sizes. Methods In Ecology And Evolution, 8(1), 12-21. https://doi.org/10.1111/2041-210x.12645Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858. https://doi.org/10.1038/35002501Naimi, B., Hamm, N., Groen, T., Skidmore, A., & Toxopeus, A. (2014). USDM: Uncertainty Analysis for Species Distribution models (2.1-7) [Conjunto de datos; CRAN R]. https://doi.org/10.32614/cran.package.usdmNewbold, T. (2018). Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proceedings - Royal Society. Biological Sciences/Proceedings - Royal Society. Biological Sciences, 285(1881), 20180792. https://doi.org/10.1098/rspb.2018.0792Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global 71 Ecology And Biogeography, 12(5), 361-371. https://doi.org/10.1046/j.1466-822x.2003.00042.xPhillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., & Blair, M. E. (2017). Opening the black box: an open‐source release of Maxent. Ecography, 40(7), 887-893. https://doi.org/10.1111/ecog.03049Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3-4), 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026Phillips, S. J., Dudík, M., & Schapire, R. E. (s. f.). Maxent Software for Modeling Species Niches and Distributions [Software]. En Schapire (Version 3.4.1). http://biodiversityinformatics.amnh.org/open_source/maxent/Prakash, S., & Srivastava, S. (2019). Impact of climate change on biodiversity: An Overview. International Journal Of Biological Innovations, 01(02), 60-65. https://doi.org/10.46505/ijbi.2019.1205Rada, M., Ospina-Sarria, J. J., & Guayasamin, J. M. (2017). A Taxonomic Review of Tan-Brown Glassfrogs (Anura: Centrolenidae), with the Description of a New Species from Southwestern Colombia. South American Journal Of Herpetology, 12(2), 136-156. https://doi.org/10.2994/sajh-d-16-00026.1Rahbek, C., Borregaard, M. K., Colwell, R. K., Dalsgaard, B., Holt, B. G., Morueta-Holme, N., Nogues-Bravo, D., Whittaker, R. J., & Fjeldså, J. (2019). Humboldt’s enigma: What causes global patterns of mountain biodiversity? Science, 365(6458), 1108-1113. https://doi.org/10.1126/science.aax0149Ramirez-Villegas, J., Cuesta, F., Devenish, C., Peralvo, M., Jarvis, A., & Arnillas, C. A. (2014). Using species distributions models for designing conservation strategies of Tropical Andean biodiversity under climate change. Journal For Nature Conservation, 22(5), 391-404. https://doi.org/10.1016/j.jnc.2014.03.007Restrepo, J. H., & Naranjo, L. G. (1999). Ecología reproductiva de una población de cochranella ignota (Anura: Centrolenidae). Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 23, ISSN 03703908. https://www.accefyn.com/revista/Vol_23/86/49-59.pdfRoach, N. S., Castellanos, A. A., & Lacher, T. E. (2024). Assessing the vulnerability of endemic Colombian amphibian species to climate change in an isolated Montane ecosystem. Tropical Conservation Science, 17. https://doi.org/10.1177/19400829231225236Rödder, D., & Weinsheimer, F. (2009). Will future anthropogenic climate change increase the potential distribution of the alien invasive Cuban treefrog (Anura: Hylidae)? Journal Of Natural History, 43(19-20), 1207-1217. https://doi.org/10.1080/00222930902783752Rodríguez, A., D., Morales, M., & Romero, M. (2006). Ecosistemas de los Andes colombianos. Instituto de Investigación de Recursos Biológicos Alexander Von Humbolt.Ruiz, A., & Rueda-Almonacid, J. V. (2008). Batrachochytrium dendrobatidis and Chytridiomycosis in Anuran Amphibians of Colombia. Ecohealth, 5(1), 27-33. https://doi.org/10.1007/s10393-008-0159-zSalamanca, G. G., Osorio, T. M. P., Vargas, G. E. F., & Gonzalez, V. (2022). Ecorregiones colombia. ResearchGate. 73 https://www.researchgate.net/publication/364844636_Ecorregiones_colombia?enrichId=rgreq-be326375faad124def33859e59a1cce5-XXX&enrichSource=Y292ZXJQYWdlOzM2NDg0NDYzNjtBUzoxMTQzMTI4MTA5Mjk2ODkxMkAxNjY3MDY4MDYxNDc0&el=1_x_2&_esc=publicationCoverPdfSánchez-Carvajal, M. J., Reyes-Ortega, G. C., Cisneros-Heredia, D. F., & Ortega-Andrade, H. M. (2021). Rediscovery of Laura’s glassfrog Nymphargus laurae (Anura: Centrolenidae) with new data on its morphology, colouration, phylogenetic position and conservation in Ecuador. PeerJ, 9, e12644. https://doi.org/10.7717/peerj.12644Thompson, J. N. (1994). The coevolutionary process. https://doi.org/10.7208/chicago/9780226797670.001.0001Tobar-Suárez, C., Urbina-Cardona, N., Villalobos, F., & Pineda, E. (2021). Amphibian species richness and endemism in tropical montane cloud forests across the Neotropics. Biodiversity And Conservation, 31(1), 295-313. https://doi.org/10.1007/s10531-021-02335-zUrban, M. C. (2018). Escalator to extinction. Proceedings Of The National Academy Of Sciences Of The United States Of America, 115(47), 11871-11873. https://doi.org/10.1073/pnas.1817416115Valavi, R., Guillera‐Arroita, G., Lahoz‐Monfort, J. J., & Elith, J. (2021). Predictive performance of presence‐only species distribution models: a benchmark study with reproducible code. Ecological Monographs, 92(1). https://doi.org/10.1002/ecm.1486Warren, D. L., & Seifert, S. N. (2011). Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications, 21(2), 335-342. https://doi.org/10.1890/10-1171.1Yadav, E. (2022). Climate change and biodiversity. ResearchGate. https://www.researchgate.net/publication/377766897Zhong, L., & Wang, J. (2017). Evaluation on effect of land consolidation on habitat quality based on InVEST model[J]. Transactions Of The Chinese Society Of Agricultural Engineering (Transactions Of The CSAE), 33(1), 250-255. https://doi.org/10.11975/j.issn.1002-6819.2017.01.034ORIGINALTrabajo de grado Trabajo de grado application/pdf1184902https://repository.udistrital.edu.co/bitstreams/cddc573f-d795-46d8-8e3f-4c566dbbed7c/download011c49e347b362295f30fa68f4277290MD51Licencia de uso y autorizaciónLicencia de uso y autorizaciónapplication/pdf218676https://repository.udistrital.edu.co/bitstreams/2faa7b6e-c75b-4e50-849d-876a2b2b753c/download74052741f3af930f30abfb9d82a9d3c4MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-87167https://repository.udistrital.edu.co/bitstreams/b33ccbe0-6b93-44d0-8433-1f9ef113c0e2/download997daf6c648c962d566d7b082dac908dMD52THUMBNAILTrabajo de grado .jpgTrabajo de grado .jpgIM Thumbnailimage/jpeg3334https://repository.udistrital.edu.co/bitstreams/eab1f301-4bdc-4bfc-81b7-4da00b096f5e/downloade4bfb61991dd1aa0833649195ee66f81MD54Licencia de uso y autorización.jpgLicencia de uso y autorización.jpgIM Thumbnailimage/jpeg9422https://repository.udistrital.edu.co/bitstreams/a192e646-38e4-4987-b8b5-342bbc123a4d/download0711682f27d8f328a8b2de37d07c3509MD5511349/42192oai:repository.udistrital.edu.co:11349/421922024-11-05 01:02:05.614open.accesshttps://repository.udistrital.edu.coRepositorio Universidad Distritalrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyBERSBDT05URU5JRE9TIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgREUgTEEgVU5JVkVSU0lEQUQgRElTVFJJVEFMCgpUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyAoUklVRCkKCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCBjb25maWVybyAoZXJpbW9zKSBhIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIChlbiBhZGVsYW50ZSwgTEEgVU5JVkVSU0lEQUQpIHVuYSBsaWNlbmNpYSBwYXJhIHVzbyBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgaW50ZWdyYXLDoSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIChlbiBhZGVsYW50ZSwgUklVRCksIGRlIGFjdWVyZG8gYSBsYXMgc2lndWllbnRlcyByZWdsYXMsIGxhcyBjdWFsZXMgZGVjbGFybyAoYW1vcykgY29ub2NlciB5IGFjZXB0YXI6CgphKQlFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWEgZW4gZWwgUklVRCB5IGhhc3RhIHBvciB1biBwbGF6byBkZSBkaWV6ICgxMCkgQcOxb3MsIHByb3Jyb2dhYmxlIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyBsYSBjdWFsIHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHByZXZpYSBzb2xpY2l0dWQgYSBMQSBVTklWRVJTSURBRCBwb3IgZXNjcml0byBjb24gdW5hIGFudGVsYWNpw7NuIGRlIGRvcyAoMikgbWVzZXMgYW50ZXMgZGVsIHZlbmNpbWllbnRvIGRlbCBwbGF6byBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLgoKYikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyBwb3IgZWwgUklVRCAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBMQSBVTklWRVJTSURBRCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsIGRvY3VtZW50byBhcGFyZXpjYSByZWZlcmVuY2lhZG8gZW4gbW90b3JlcyBkZSBiw7pzcXVlZGEgbyByZXBvc2l0b3Jpb3MgZGlmZXJlbnRlcyBhbCBSSVVELCB1bmEgdmV6IGVsKG9zKSBhdXRvcihlcykgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUklVRCwgZGFkbyBxdWUgbGEgbWlzbWEgc2Vyw6EgcHVibGljYWRhIGVuIEludGVybmV0LgoKYykJTGEgYXV0b3JpemFjacOzbiBzZSBoYWNlIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCBsb3MgYXV0b3JlcyByZW51bmNpYW4gYSByZWNpYmlyIGJlbmVmaWNpbyBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKQlMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQgc29uIG9icmEocykgb3JpZ2luYWwoZXMpIHNvYnJlIGxhIGN1YWwoZXMpIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBhc3VtZW4gdG90YWwgcmVzcG9uc2FiaWxpZGFkIHBvciBlbCBjb250ZW5pZG8gZGUgc3Ugb2JyYSBhbnRlIExBIFVOSVZFUlNJREFEIHkgYW50ZSB0ZXJjZXJvcy4gRW4gdG9kbyBjYXNvIExBIFVOSVZFUlNJREFEIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3Mgw61uZGljZXMgeSBidXNjYWRvcmVzIHF1ZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBtYXhpbWl6YXIgbGEgdmlzaWJpbGlkYWQgZWwgdXNvIHkgZWwgaW1wYWN0byBkZSBsYSBwcm9kdWNjacOzbiBjaWVudMOtZmljYSwgYXJ0w61zdGljYSB5IGFjYWTDqW1pY2EgZW4gbGEgY29tdW5pZGFkIGxvY2FsLCBuYWNpb25hbCBvIGludGVybmFjaW9uYWwuCgoKZikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGNvbnZlcnRpciBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluIGRlIHN1IHByZXNlcnZhY2nDs24gZW4gZWwgdGllbXBvIHF1ZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGxhIGRlIHN1cyBwcsOzcnJvZ2FzLgoKCkNvbiBiYXNlIGVuIGxvIGFudGVyaW9yIGF1dG9yaXpvKGFtb3MpLCBhIGZhdm9yIGRlbCBSSVVEIHkgZGUgc3VzIHVzdWFyaW9zLCBsYSBwdWJsaWNhY2nDs24geSBjb25zdWx0YSBkZSBsYSBzaWd1aWVudGUgb2JyYToKClRpdHVsbwoKQXV0b3IgICAgICAgQXBlbGxpZG9zICAgICAgICAgTm9tYnJlcwoKMQoKMgoKMwoKCmcpCUF1dG9yaXpvKGFtb3MpLCBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsb3MgbGl0ZXJhbGVzIGFudGVyaW9yZXMsIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgTEEgVU5JVkVSU0lEQUQsIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQsIGN1eW8gdGV4dG8gY29tcGxldG8gc2UgcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9yZXBvc2l0b3J5LnVkaXN0cml0YWwuZWR1LmNvLwoKaCkJQ29ub3pjbyhjZW1vcykgeSBhY2VwdG8oYW1vcykgcXVlIG90b3JnbyhhbW9zKSB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIChoZW1vcykgb2J0ZW5pZG8gdW5hIGNvcGlhLgoKaSkJTWFuaWZpZXN0byhhbW9zKSBtaSAobnVlc3RybykgdG90YWwgYWN1ZXJkbyBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIHVzbyB5IHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHF1ZSBzZSBkZXNjcmliZW4geSBleHBsaWNhbiBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8uCgpqKQlDb25vemNvKGNlbW9zKSBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSAgTEEgVU5JVkVSU0lEQUQ7IGVuIGNvbmNyZXRvLCBlbCBBY3VlcmRvIDAwNCBkZSAyMDEyIGRlbCBDU1UsIEFjdWVyZG8gMDIzIGRlIDIwMTIgZGVsIENTVSBzb2JyZSBQb2zDrXRpY2EgRWRpdG9yaWFsLCBBY3VlcmRvIDAyNiAgZGVsIDMxIGRlIGp1bGlvIGRlIDIwMTIgc29icmUgZWwgcHJvY2VkaW1pZW50byBwYXJhIGxhIHB1YmxpY2FjacOzbiBkZSB0ZXNpcyBkZSBwb3N0Z3JhZG8gZGUgbG9zIGVzdHVkaWFudGVzIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzLCAgQWN1ZXJkbyAwMzAgZGVsIDAzIGRlIGRpY2llbWJyZSBkZSAyMDEzIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBjcmVhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsIEFjdWVyZG8gMDM4IGRlIDIwMTUgMjAxNSDigJxwb3IgZWwgY3VhbCBzZSBtb2RpZmljYSBlbCBBY3VlcmRvIDAzMSBkZSAyMDE0IGRlIDIwMTQgcXVlIHJlZ2xhbWVudGEgZWwgdHJhYmFqbyBkZSBncmFkbyBwYXJhIGxvcyBlc3R1ZGlhbnRlcyBkZSBwcmVncmFkbyBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IHNlIGRpY3RhbiBvdHJhcyBkaXJlY3RyaWNlc+KAnSB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0bywgZXNwZWNpYWxtZW50ZSBsYSBsZXkgMjMgZGUgMTk4MiwgbGEgbGV5IDQ0IGRlIDE5OTMgeSBsYSBkZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLiBFc3RvcyBkb2N1bWVudG9zIHBvZHLDoW4gc2VyIGNvbnN1bHRhZG9zIHkgZGVzY2FyZ2Fkb3MgZW4gZWwgcG9ydGFsIHdlYiBkZSBsYSBiaWJsaW90ZWNhIGh0dHA6Ly9zaXN0ZW1hZGViaWJsaW90ZWNhcy51ZGlzdHJpdGFsLmVkdS5jby8KCmspCUFjZXB0byhhbW9zKSBxdWUgTEEgVU5JVkVSU0lEQUQgbm8gc2UgcmVzcG9uc2FiaWxpemEgcG9yIGxhcyBpbmZyYWNjaW9uZXMgYSBsYSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBEZXJlY2hvcyBkZSBBdXRvciBjYXVzYWRhcyBwb3IgbG9zIHRpdHVsYXJlcyBkZSBsYSBwcmVzZW50ZSBMaWNlbmNpYSB5IGRlY2xhcmFtb3MgcXVlIG1hbnRlbmRyw6kgKGVtb3MpIGluZGVtbmUgYSBMQSBVTklWRVJTSURBRCBwb3IgbGFzIHJlY2xhbWFjaW9uZXMgbGVnYWxlcyBkZSBjdWFscXVpZXIgdGlwbyBxdWUgbGxlZ2FyZW4gYSBwcmVzZW50YXJzZSBwb3IgdmlvbGFjacOzbiBkZSBkZXJlY2hvcyBhIGxhIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBvIGRlIEF1dG9yIHJlbGFjaW9uYWRvcyBjb24gbG9zIGRvY3VtZW50b3MgcmVnaXN0cmFkb3MgZW4gZWwgUklVRC4KCmwpCUVsIChsb3MpIGF1dG9yKGVzKSBtYW5pZmllc3RhKG1vcykgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwsIGRlIGV4Y2x1c2l2YSBhdXRvcsOtYSwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvczsgZGUgdGFsIHN1ZXJ0ZSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgZWwgKGxvcykgZXN0dWRpYW50ZShzKSDigJMgYXV0b3IoZXMpIGFzdW1pcsOhKG4pIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHkgc2FsZHLDoShuKSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcy4gUGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgTEEgVU5JVkVSU0lEQUQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCgptKQlFbCAobG9zKSBhdXRvcihlcykgbWFuaWZpZXN0YShtb3MpIHF1ZSBjb25vemNvKGNlbW9zKSBsYSBhdXRvbm9tw61hIHkgbG9zIGRlcmVjaG9zLCBxdWUgcG9zZWUobW9zKSBzb2JyZSBsYSBvYnJhIHksIGNvbW8gdGFsLCBlcyAoc29tb3MpIHJlc3BvbnNhYmxlKHMpIGRlbCBhbGNhbmNlIGp1csOtZGljbyB5IGxlZ2FsLCBkZSBlc2NvZ2VyIGxhIG9wY2nDs24gZGUgbGEgcHVibGljYWNpw7NuIG8gZGUgcmVzdHJpY2Npw7NuIGRlIGxhIHB1YmxpY2FjacOzbiBkZWwgZG9jdW1lbnRvIHJlZ2lzdHJhZG8gZW4gZWwgUklVRC4KCgoKCgoKU0kgRUwgRE9DVU1FTlRPIFNFIEJBU0EgRU4gVU4gVFJBQkFKTyBRVUUgSEEgU0lETyBQQVRST0NJTkFETyBPIEFQT1lBRE8gUE9SIFVOQSBBR0VOQ0lBIE8gVU5BIE9SR0FOSVpBQ0nDk04sIENPTiBFWENFUENJw5NOIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTCBGUkFOQ0lTQ08gSk9TRSBERSBDQUxEQVMsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MKREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uCgoKCgoKCgoKCgoKCgoKCgoKCgoKCkVuIGNvbnN0YW5jaWEgZGUgbG8gYW50ZXJpb3IsIGZpcm1vKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50bywgZW4gbGEgY2l1ZGFkIGRlIEJvZ290w6EsIEQuQy4sIGEgbG9zCgoKRklSTUEgREUgTE9TIFRJVFVMQVJFUyBERSBERVJFQ0hPUyBERSBBVVRPUgoKX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwoKCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIChkZSBsb3MpIEF1dG9yKGVzKToKCkF1dG9yCSAgICAgIENvcnJlbyBFbGVjdHLDs25pY28KCjEKCjIKCjMKCk5vbWJyZSBkZSBEaXJlY3RvcihlcykgZGUgR3JhZG86CgoxCgoyCgozCgpOb21icmUgRmFjdWx0YWQgeSBQcm95ZWN0byBDdXJyaWN1bGFyOgoKRmFjdWx0YWQJUHJveWVjdG8gQ3VycmljdWxhcgoKCgoKCgoKCk5vdGE6IEVuIGNhc28gcXVlIG5vIGVzdMOpIGRlIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgeSBtYW5pZmllc3RlIGFsZ3VuYSByZXN0cmljY2nDs24gc29icmUgbGEgb2JyYSwganVzdGlmaXF1ZSBsb3MgbW90aXZvcyBwb3IgbG9zIGN1YWxlcyBlbCBkb2N1bWVudG8geSBzdXMgYW5leG9zIG5vIHB1ZWRlbiBzZXIgcHVibGljYWRvcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIFJJVUQuCgoKU2kgcmVxdWllcmUgbcOhcyBlc3BhY2lvLCBwdWVkZSBhbmV4YXIgdW5hIGNvcGlhIHNpbWlsYXIgYSBlc3RhIGhvamEK