Sobre polinomios ortogonales con producto interno de sóbolev
Los polinomios ortogonales son una teoría importante de las matemáticas, aparecen por primera vez a finales del siglo XVIII y desde ese entonces, adquieren una gran importancia, convirtiéndose en el centro de considerables estudios en las áreas de mecánica cuántica, estadística y matemáticas. En el...
- Autores:
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2019
- Institución:
- Universidad Distrital Francisco José de Caldas
- Repositorio:
- RIUD: repositorio U. Distrital
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udistrital.edu.co:11349/23759
- Acceso en línea:
- http://hdl.handle.net/11349/23759
- Palabra clave:
- Polinomio
Ortogonal
Sóbolev
Aproximación
Matemáticas - Tesis y disertaciones académica
Teoría de polinomios
Formulación matemática
Matemáticas - Enseñanza
Polynomial
Orthogonal
Sobolev
Approximation
- Rights
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
Summary: | Los polinomios ortogonales son una teoría importante de las matemáticas, aparecen por primera vez a finales del siglo XVIII y desde ese entonces, adquieren una gran importancia, convirtiéndose en el centro de considerables estudios en las áreas de mecánica cuántica, estadística y matemáticas. En el presente trabajo se realiza el estudio del artículo “Orthogonal polynomials on Sobolev spaces: old and new directions” de F. Marcellan, M. Alfaro y M.L. Rezola; en donde se elabora, una síntesis teórica que argumente la teoría utilizada en este artículo, y se interpreta y extiende las demostraciones de aproximación de funciones en el sentido de mínimos cuadrados por polinomios ortogonales con un producto interno de Sóbolev. |
---|