Generación de Datos de Cambio de Coberturas Vegetales en la Sabana de Bogotá Mediante el Uso de Series De Tiempo con Imágenes Landsat e Imágenes Sintéticas Modis-Landsat Entre los Años 2007 y 2013

El sensor MODIS a bordo de los satélites TERRA y AQUA provee observaciones globales diarias que permiten monitorear cambios de superficie, pero dada su resolución espacial, de 250 a 1000 metros, dicho monitoreo en áreas altamente heterogéneas, como las áreas agrícolas, resultan a menudo inadecuados;...

Full description

Autores:
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2017
Institución:
Universidad Distrital Francisco José de Caldas
Repositorio:
RIUD: repositorio U. Distrital
Idioma:
spa
OAI Identifier:
oai:repository.udistrital.edu.co:11349/5778
Acceso en línea:
http://hdl.handle.net/11349/5778
Palabra clave:
Imágenes Sintéticas
Modis
Landsat
Series
Tiempo
Coberturas Vegetales
INGENIERÍA CATASTRAL Y GEODESIA - TESIS Y DISERTACIONES ACADÉMICAS
COBERTURA VEGETAL - BOGOTÁ (COLOMBIA) - MEDICIONES
PROCESAMIENTO DE IMÁGENES
ANÁLISIS DE SERIES DE TIEMPO
Synthetic Images
Modis
Landsat
Series
Time
Vegetable Coverings
Rights
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UDISTRITA2_9f80637a12935820f2d5fce5dca6bf0f
oai_identifier_str oai:repository.udistrital.edu.co:11349/5778
network_acronym_str UDISTRITA2
network_name_str RIUD: repositorio U. Distrital
repository_id_str
dc.title.spa.fl_str_mv Generación de Datos de Cambio de Coberturas Vegetales en la Sabana de Bogotá Mediante el Uso de Series De Tiempo con Imágenes Landsat e Imágenes Sintéticas Modis-Landsat Entre los Años 2007 y 2013
dc.title.titleenglish.spa.fl_str_mv Generation of Vegetation Cover Change Data in Sabana de Bogota Using Time Series With Landsat Images and Modis-Landsat Synthetic Images Between 2007 and 2013
title Generación de Datos de Cambio de Coberturas Vegetales en la Sabana de Bogotá Mediante el Uso de Series De Tiempo con Imágenes Landsat e Imágenes Sintéticas Modis-Landsat Entre los Años 2007 y 2013
spellingShingle Generación de Datos de Cambio de Coberturas Vegetales en la Sabana de Bogotá Mediante el Uso de Series De Tiempo con Imágenes Landsat e Imágenes Sintéticas Modis-Landsat Entre los Años 2007 y 2013
Imágenes Sintéticas
Modis
Landsat
Series
Tiempo
Coberturas Vegetales
INGENIERÍA CATASTRAL Y GEODESIA - TESIS Y DISERTACIONES ACADÉMICAS
COBERTURA VEGETAL - BOGOTÁ (COLOMBIA) - MEDICIONES
PROCESAMIENTO DE IMÁGENES
ANÁLISIS DE SERIES DE TIEMPO
Synthetic Images
Modis
Landsat
Series
Time
Vegetable Coverings
title_short Generación de Datos de Cambio de Coberturas Vegetales en la Sabana de Bogotá Mediante el Uso de Series De Tiempo con Imágenes Landsat e Imágenes Sintéticas Modis-Landsat Entre los Años 2007 y 2013
title_full Generación de Datos de Cambio de Coberturas Vegetales en la Sabana de Bogotá Mediante el Uso de Series De Tiempo con Imágenes Landsat e Imágenes Sintéticas Modis-Landsat Entre los Años 2007 y 2013
title_fullStr Generación de Datos de Cambio de Coberturas Vegetales en la Sabana de Bogotá Mediante el Uso de Series De Tiempo con Imágenes Landsat e Imágenes Sintéticas Modis-Landsat Entre los Años 2007 y 2013
title_full_unstemmed Generación de Datos de Cambio de Coberturas Vegetales en la Sabana de Bogotá Mediante el Uso de Series De Tiempo con Imágenes Landsat e Imágenes Sintéticas Modis-Landsat Entre los Años 2007 y 2013
title_sort Generación de Datos de Cambio de Coberturas Vegetales en la Sabana de Bogotá Mediante el Uso de Series De Tiempo con Imágenes Landsat e Imágenes Sintéticas Modis-Landsat Entre los Años 2007 y 2013
dc.contributor.advisor.spa.fl_str_mv Melo Martínez, Carlos Eduard
dc.subject.spa.fl_str_mv Imágenes Sintéticas
Modis
Landsat
Series
Tiempo
Coberturas Vegetales
topic Imágenes Sintéticas
Modis
Landsat
Series
Tiempo
Coberturas Vegetales
INGENIERÍA CATASTRAL Y GEODESIA - TESIS Y DISERTACIONES ACADÉMICAS
COBERTURA VEGETAL - BOGOTÁ (COLOMBIA) - MEDICIONES
PROCESAMIENTO DE IMÁGENES
ANÁLISIS DE SERIES DE TIEMPO
Synthetic Images
Modis
Landsat
Series
Time
Vegetable Coverings
dc.subject.lemb.spa.fl_str_mv INGENIERÍA CATASTRAL Y GEODESIA - TESIS Y DISERTACIONES ACADÉMICAS
COBERTURA VEGETAL - BOGOTÁ (COLOMBIA) - MEDICIONES
PROCESAMIENTO DE IMÁGENES
ANÁLISIS DE SERIES DE TIEMPO
dc.subject.keyword.spa.fl_str_mv Synthetic Images
Modis
Landsat
Series
Time
Vegetable Coverings
description El sensor MODIS a bordo de los satélites TERRA y AQUA provee observaciones globales diarias que permiten monitorear cambios de superficie, pero dada su resolución espacial, de 250 a 1000 metros, dicho monitoreo en áreas altamente heterogéneas, como las áreas agrícolas, resultan a menudo inadecuados; en contraste los datos del programa Landsat cuentan con una resolución espacial adecuada para estos propósitos, pero su resolución temporal de 16 días y la presencia de nubes y gaps para el caso del sensor ETM+, limita su uso en estudios de seguimiento y cambio multitemporal de coberturas. En Colombia los estudios para la cuantificación del cambio de coberturas se han realizado tradicionalmente mediante la comparación de interpretaciones visuales, comparación de mapas de coberturas y análisis de compuestos anuales de imágenes satelitales, pero aún no se han implementado rigurosamente trabajos relacionados con el análisis de series de tiempo y la implementación de imágenes satelitales simuladas para la detección de cambios y dinámicas de las coberturas. Con el fin de evaluar los mapas de cambio resultantes de las series de tiempo con imágenes satelitales Landsat y series de tiempo con imágenes simuladas Landsat-MODIS, con el fin de determinar cuál de los dos métodos brinda los mejores resultados en la cuantificación de los cambios y dinámicas de las coberturas de la Sabana de Bogotá entre los años 2007 y 2013.
publishDate 2017
dc.date.accessioned.none.fl_str_mv 2017-06-21T21:23:01Z
dc.date.available.none.fl_str_mv 2017-06-21T21:23:01Z
dc.date.created.spa.fl_str_mv 2017-05-09
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11349/5778
url http://hdl.handle.net/11349/5778
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv pdf
institution Universidad Distrital Francisco José de Caldas
bitstream.url.fl_str_mv http://repository.udistrital.edu.co/bitstream/11349/5778/7/ManriqueChac%c3%b3nLauraMelissa2017.pdf.jpg
http://repository.udistrital.edu.co/bitstream/11349/5778/3/license_url
http://repository.udistrital.edu.co/bitstream/11349/5778/4/license_text
http://repository.udistrital.edu.co/bitstream/11349/5778/5/license_rdf
http://repository.udistrital.edu.co/bitstream/11349/5778/6/license.txt
http://repository.udistrital.edu.co/bitstream/11349/5778/1/ManriqueChac%c3%b3nLauraMelissa2017.pdf
http://repository.udistrital.edu.co/bitstream/11349/5778/2/ManriqueChac%c3%b3nLauraMelissa2017Anexos.zip
bitstream.checksum.fl_str_mv 7a4f86ce37064e83a1c7407b17e7d405
924993ce0b3ba389f79f32a1b2735415
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
da5c6a3ca62d5dd4853000a60fee7083
1be1899c057e442bf70e0b70d68505ea
de8e6aeac9c6bfd9b08d946c0d723213
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Distrital - RIUD
repository.mail.fl_str_mv repositorio@udistrital.edu.co
_version_ 1803712688555032576
spelling Melo Martínez, Carlos EduardManrique Chacón, Laura MelissaZaraza Aguilera, Maicol Alejandro2017-06-21T21:23:01Z2017-06-21T21:23:01Z2017-05-09http://hdl.handle.net/11349/5778El sensor MODIS a bordo de los satélites TERRA y AQUA provee observaciones globales diarias que permiten monitorear cambios de superficie, pero dada su resolución espacial, de 250 a 1000 metros, dicho monitoreo en áreas altamente heterogéneas, como las áreas agrícolas, resultan a menudo inadecuados; en contraste los datos del programa Landsat cuentan con una resolución espacial adecuada para estos propósitos, pero su resolución temporal de 16 días y la presencia de nubes y gaps para el caso del sensor ETM+, limita su uso en estudios de seguimiento y cambio multitemporal de coberturas. En Colombia los estudios para la cuantificación del cambio de coberturas se han realizado tradicionalmente mediante la comparación de interpretaciones visuales, comparación de mapas de coberturas y análisis de compuestos anuales de imágenes satelitales, pero aún no se han implementado rigurosamente trabajos relacionados con el análisis de series de tiempo y la implementación de imágenes satelitales simuladas para la detección de cambios y dinámicas de las coberturas. Con el fin de evaluar los mapas de cambio resultantes de las series de tiempo con imágenes satelitales Landsat y series de tiempo con imágenes simuladas Landsat-MODIS, con el fin de determinar cuál de los dos métodos brinda los mejores resultados en la cuantificación de los cambios y dinámicas de las coberturas de la Sabana de Bogotá entre los años 2007 y 2013.The MODIS sensor onboard the TERRA and AQUA satellites provides global daily observations that allow monitoring of surface changes, but given its spatial resolution of 250 to 1000 meters, such monitoring in highly heterogeneous areas, such as agricultural areas, are often inadequate ; In contrast, the Landsat data has adequate spatial resolution for these purposes, but its temporal resolution of 16 days and the presence of clouds and gaps in the case of the ETM + sensor limits its use in multitemporal tracking and changeover studies . In Colombia the studies for the quantification of coverage changes have traditionally been carried out by comparing visual interpretations, comparing cover maps and analyzing annual composites of satellite images, but studies related to series analysis have not yet been rigorously implemented Of time and the implementation of simulated satellite images for the detection of changes and dynamics of the coverages. In order to evaluate the change maps resulting from time series with Landsat satellite images and time series with simulated Landsat-MODIS images, determining which of the two methods provides the best results in the quantification of the changes and dynamics of the Coverages of the Savannah of Bogotá between the years 2007 and 2013.pdfspaAtribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Imágenes SintéticasModisLandsatSeriesTiempoCoberturas VegetalesINGENIERÍA CATASTRAL Y GEODESIA - TESIS Y DISERTACIONES ACADÉMICASCOBERTURA VEGETAL - BOGOTÁ (COLOMBIA) - MEDICIONESPROCESAMIENTO DE IMÁGENESANÁLISIS DE SERIES DE TIEMPOSynthetic ImagesModisLandsatSeriesTimeVegetable CoveringsGeneración de Datos de Cambio de Coberturas Vegetales en la Sabana de Bogotá Mediante el Uso de Series De Tiempo con Imágenes Landsat e Imágenes Sintéticas Modis-Landsat Entre los Años 2007 y 2013Generation of Vegetation Cover Change Data in Sabana de Bogota Using Time Series With Landsat Images and Modis-Landsat Synthetic Images Between 2007 and 2013info:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fTHUMBNAILManriqueChacónLauraMelissa2017.pdf.jpgManriqueChacónLauraMelissa2017.pdf.jpgIM Thumbnailimage/jpeg6943http://repository.udistrital.edu.co/bitstream/11349/5778/7/ManriqueChac%c3%b3nLauraMelissa2017.pdf.jpg7a4f86ce37064e83a1c7407b17e7d405MD57open accessCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repository.udistrital.edu.co/bitstream/11349/5778/3/license_url924993ce0b3ba389f79f32a1b2735415MD53open accesslicense_textlicense_texttext/html; charset=utf-80http://repository.udistrital.edu.co/bitstream/11349/5778/4/license_textd41d8cd98f00b204e9800998ecf8427eMD54open accesslicense_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repository.udistrital.edu.co/bitstream/11349/5778/5/license_rdfd41d8cd98f00b204e9800998ecf8427eMD55open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-87163http://repository.udistrital.edu.co/bitstream/11349/5778/6/license.txtda5c6a3ca62d5dd4853000a60fee7083MD56open accessORIGINALManriqueChacónLauraMelissa2017.pdfManriqueChacónLauraMelissa2017.pdfTrabajo de Gradoapplication/pdf22125325http://repository.udistrital.edu.co/bitstream/11349/5778/1/ManriqueChac%c3%b3nLauraMelissa2017.pdf1be1899c057e442bf70e0b70d68505eaMD51open accessManriqueChacónLauraMelissa2017Anexos.zipManriqueChacónLauraMelissa2017Anexos.zipAnexosapplication/octet-stream51723http://repository.udistrital.edu.co/bitstream/11349/5778/2/ManriqueChac%c3%b3nLauraMelissa2017Anexos.zipde8e6aeac9c6bfd9b08d946c0d723213MD52open access11349/5778oai:repository.udistrital.edu.co:11349/57782023-06-13 12:25:01.711open accessRepositorio Institucional Universidad Distrital - RIUDrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyBERSBDT05URU5JRE9TIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgREUgTEEgVU5JVkVSU0lEQUQgRElTVFJJVEFMClTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIHVzbyBwYXJhIHB1YmxpY2FjacOzbiBkZSBvYnJhcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIChSSVVEKQoKQ29tbyB0aXR1bGFyKGVzKSBkZWwob3MpIGRlcmVjaG8ocykgZGUgYXV0b3IsIGNvbmZpZXJvIChlcmltb3MpIGEgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMgKGVuIGFkZWxhbnRlLCBMQSBVTklWRVJTSURBRCkgdW5hIGxpY2VuY2lhIHBhcmEgdXNvIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBpbnRlZ3JhcsOhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgKGVuIGFkZWxhbnRlLCBSSVVEKSwgZGUgYWN1ZXJkbyBhIGxhcyBzaWd1aWVudGVzIHJlZ2xhcywgbGFzIGN1YWxlcyBkZWNsYXJvIChhbW9zKSBjb25vY2VyIHkgYWNlcHRhcjoKCmEpCUVzdGFyw6EgdmlnZW50ZSBhIHBhcnRpciBkZSBsYSBmZWNoYSBlbiBxdWUgc2UgaW5jbHV5YSBlbiBlbCBSSVVEIHkgaGFzdGEgcG9yIHVuIHBsYXpvIGRlIGRpZXogKDEwKSBBw7FvcywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gcXVlIGR1cmUgZWwgZGVyZWNobyBQYXRyaW1vbmlhbCBkZWwgYXV0b3I7IGxhIGN1YWwgcG9kcsOhIGRhcnNlIHBvciB0ZXJtaW5hZGEgcHJldmlhIHNvbGljaXR1ZCBhIExBIFVOSVZFUlNJREFEIHBvciBlc2NyaXRvIGNvbiB1bmEgYW50ZWxhY2nDs24gZGUgZG9zICgyKSBtZXNlcyBhbnRlcyBkZWwgdmVuY2ltaWVudG8gZGVsIHBsYXpvIGluaWNpYWwgbyBlbCBkZSBzdShzKSBwcsOzcnJvZ2EocykuICAKCmIpCUxBIFVOSVZFUlNJREFEIHBvZHLDoSBwdWJsaWNhciBsYSBvYnJhIGVuIGxhcyBkaXN0aW50YXMgdmVyc2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVsIFJJVUQgKGRpZ2l0YWwsIGltcHJlc28sIGVsZWN0csOzbmljbyB1IG90cm8gbWVkaW8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikgTEEgVU5JVkVSU0lEQUQgbm8gc2Vyw6EgcmVzcG9uc2FibGUgZW4gZWwgZXZlbnRvIHF1ZSBlbCBkb2N1bWVudG8gYXBhcmV6Y2EgcmVmZXJlbmNpYWRvIGVuIG1vdG9yZXMgZGUgYsO6c3F1ZWRhIG8gcmVwb3NpdG9yaW9zIGRpZmVyZW50ZXMgYWwgUklVRCwgdW5hIHZleiBlbChvcykgYXV0b3IoZXMpIHNvbGljaXRlbiBzdSBlbGltaW5hY2nDs24gZGVsIFJJVUQsIGRhZG8gcXVlIGxhIG1pc21hIHNlcsOhIHB1YmxpY2FkYSBlbiBJbnRlcm5ldC4gCgpjKQlMYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIGxvcyBhdXRvcmVzIHJlbnVuY2lhbiBhIHJlY2liaXIgYmVuZWZpY2lvIGFsZ3VubyBwb3IgbGEgcHVibGljYWNpw7NuLCBkaXN0cmlidWNpw7NuLCBjb211bmljYWNpw7NuIHDDumJsaWNhIHkgY3VhbHF1aWVyIG90cm8gdXNvIHF1ZSBzZSBoYWdhIGVuIGxvcyB0w6lybWlub3MgZGUgbGEgcHJlc2VudGUgbGljZW5jaWEgeSBkZSBsYSBsaWNlbmNpYSBkZSB1c28gY29uIHF1ZSBzZSBwdWJsaWNhIChDcmVhdGl2ZSBDb21tb25zKS4KCmQpCUxvcyBjb250ZW5pZG9zIHB1YmxpY2Fkb3MgZW4gZWwgUklVRCBzb24gb2JyYShzKSBvcmlnaW5hbChlcykgc29icmUgbGEgY3VhbChlcykgZWwob3MpIGF1dG9yKGVzKSBjb21vIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IsIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgTEEgVU5JVkVSU0lEQUQgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gTEEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uCgplKQlMQSBVTklWRVJTSURBRCBwb2Ryw6EgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIG1heGltaXphciBsYSB2aXNpYmlsaWRhZCBlbCB1c28geSBlbCBpbXBhY3RvIGRlIGxhIHByb2R1Y2Npw7NuIGNpZW50w61maWNhLCBhcnTDrXN0aWNhIHkgYWNhZMOpbWljYSBlbiBsYSBjb211bmlkYWQgbG9jYWwsIG5hY2lvbmFsIG8gaW50ZXJuYWNpb25hbC4gCgoKZikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGNvbnZlcnRpciBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluIGRlIHN1IHByZXNlcnZhY2nDs24gZW4gZWwgdGllbXBvIHF1ZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGxhIGRlIHN1cyBwcsOzcnJvZ2FzLgoKCkNvbiBiYXNlIGVuIGxvIGFudGVyaW9yIGF1dG9yaXpvKGFtb3MpLCBhIGZhdm9yIGRlbCBSSVVEIHkgZGUgc3VzIHVzdWFyaW9zLCBsYSBwdWJsaWNhY2nDs24geSBjb25zdWx0YSBkZSBsYSBzaWd1aWVudGUgb2JyYToKClRpdHVsbyAJCkF1dG9yCUFwZWxsaWRvcwlOb21icmVzCjEJCQoyCQkKMwkJCiAKCmcpCUF1dG9yaXpvKGFtb3MpLCBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsb3MgbGl0ZXJhbGVzIGFudGVyaW9yZXMsIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgTEEgVU5JVkVSU0lEQUQsIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQsIGN1eW8gdGV4dG8gY29tcGxldG8gc2UgcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9yZXBvc2l0b3J5LnVkaXN0cml0YWwuZWR1LmNvLwoKaCkJQ29ub3pjbyhjZW1vcykgeSBhY2VwdG8oYW1vcykgcXVlIG90b3JnbyhhbW9zKSB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIChoZW1vcykgb2J0ZW5pZG8gdW5hIGNvcGlhLgoKaSkJTWFuaWZpZXN0byhhbW9zKSBtaSAobnVlc3RybykgdG90YWwgYWN1ZXJkbyBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIHVzbyB5IHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHF1ZSBzZSBkZXNjcmliZW4geSBleHBsaWNhbiBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8uCgpqKQlDb25vemNvKGNlbW9zKSBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSAgTEEgVU5JVkVSU0lEQUQ7IGVuIGNvbmNyZXRvLCBlbCBBY3VlcmRvIDAwNCBkZSAyMDEyIGRlbCBDU1UsIEFjdWVyZG8gMDIzIGRlIDIwMTIgZGVsIENTVSBzb2JyZSBQb2zDrXRpY2EgRWRpdG9yaWFsLCBBY3VlcmRvIDAyNiAgZGVsIDMxIGRlIGp1bGlvIGRlIDIwMTIgc29icmUgZWwgcHJvY2VkaW1pZW50byBwYXJhIGxhIHB1YmxpY2FjacOzbiBkZSB0ZXNpcyBkZSBwb3N0Z3JhZG8gZGUgbG9zIGVzdHVkaWFudGVzIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzLCAgQWN1ZXJkbyAwMzAgZGVsIDAzIGRlIGRpY2llbWJyZSBkZSAyMDEzIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBjcmVhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsIEFjdWVyZG8gMDM4IGRlIDIwMTUgMjAxNSDigJxwb3IgZWwgY3VhbCBzZSBtb2RpZmljYSBlbCBBY3VlcmRvIDAzMSBkZSAyMDE0IGRlIDIwMTQgcXVlIHJlZ2xhbWVudGEgZWwgdHJhYmFqbyBkZSBncmFkbyBwYXJhIGxvcyBlc3R1ZGlhbnRlcyBkZSBwcmVncmFkbyBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IHNlIGRpY3RhbiBvdHJhcyBkaXJlY3RyaWNlc+KAnSB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0bywgZXNwZWNpYWxtZW50ZSBsYSBsZXkgMjMgZGUgMTk4MiwgbGEgbGV5IDQ0IGRlIDE5OTMgeSBsYSBkZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLiBFc3RvcyBkb2N1bWVudG9zIHBvZHLDoW4gc2VyIGNvbnN1bHRhZG9zIHkgZGVzY2FyZ2Fkb3MgZW4gZWwgcG9ydGFsIHdlYiBkZSBsYSBiaWJsaW90ZWNhIGh0dHA6Ly9zaXN0ZW1hZGViaWJsaW90ZWNhcy51ZGlzdHJpdGFsLmVkdS5jby8gIAoKaykJQWNlcHRvKGFtb3MpIHF1ZSBMQSBVTklWRVJTSURBRCBubyBzZSByZXNwb25zYWJpbGl6YSBwb3IgbGFzIGluZnJhY2Npb25lcyBhIGxhIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBvIERlcmVjaG9zIGRlIEF1dG9yIGNhdXNhZGFzIHBvciBsb3MgdGl0dWxhcmVzIGRlIGxhIHByZXNlbnRlIExpY2VuY2lhIHkgZGVjbGFyYW1vcyBxdWUgbWFudGVuZHLDqSAoZW1vcykgaW5kZW1uZSBhIExBIFVOSVZFUlNJREFEIHBvciBsYXMgcmVjbGFtYWNpb25lcyBsZWdhbGVzIGRlIGN1YWxxdWllciB0aXBvIHF1ZSBsbGVnYXJlbiBhIHByZXNlbnRhcnNlIHBvciB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGEgbGEgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gZGUgQXV0b3IgcmVsYWNpb25hZG9zIGNvbiBsb3MgZG9jdW1lbnRvcyByZWdpc3RyYWRvcyBlbiBlbCBSSVVELgoKbCkJRWwgKGxvcykgYXV0b3IoZXMpIG1hbmlmaWVzdGEobW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCwgZGUgZXhjbHVzaXZhIGF1dG9yw61hLCB5IHNlIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zOyBkZSB0YWwgc3VlcnRlLCBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhLCBlbCAobG9zKSBlc3R1ZGlhbnRlKHMpIOKAkyBhdXRvcihlcykgYXN1bWlyw6EobikgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgeSBzYWxkcsOhKG4pIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zLiBQYXJhIHRvZG9zIGxvcyBlZmVjdG9zLCBMQSBVTklWRVJTSURBRCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAgIAoKCm0pCUVsIChsb3MpIGF1dG9yKGVzKSBtYW5pZmllc3RhKG1vcykgcXVlIGNvbm96Y28oY2Vtb3MpIGxhIGF1dG9ub23DrWEgeSBsb3MgZGVyZWNob3MsIHF1ZSBwb3NlZShtb3MpIHNvYnJlIGxhIG9icmEgeSwgY29tbyB0YWwsIGVzIChzb21vcykgcmVzcG9uc2FibGUocykgZGVsIGFsY2FuY2UganVyw61kaWNvIHkgbGVnYWwsIGRlIGVzY29nZXIgbGEgb3BjacOzbiBkZSBsYSBwdWJsaWNhY2nDs24gbyBkZSByZXN0cmljY2nDs24gZGUgbGEgcHVibGljYWNpw7NuIGRlbCBkb2N1bWVudG8gcmVnaXN0cmFkbyBlbiBlbCBSSVVELgoKCgoKU0kgRUwgRE9DVU1FTlRPIFNFIEJBU0EgRU4gVU4gVFJBQkFKTyBRVUUgSEEgU0lETyBQQVRST0NJTkFETyBPIEFQT1lBRE8gUE9SIFVOQSBBR0VOQ0lBIE8gVU5BIE9SR0FOSVpBQ0nDk04sIENPTiBFWENFUENJw5NOIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTCBGUkFOQ0lTQ08gSk9TRSBERSBDQUxEQVMsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgCkRFUkVDSE9TIFkgT0JMSUdBQ0lPTkVTIFJFUVVFUklET1MgUE9SIEVMIFJFU1BFQ1RJVk8gQ09OVFJBVE8gTyBBQ1VFUkRPLgoKCgoKCgoKCgoKCgoKCgoKCgoKCgpFbiBjb25zdGFuY2lhIGRlIGxvIGFudGVyaW9yLCBmaXJtbyhhbW9zKSBlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGVuIGxhIGNpdWRhZCBkZSBCb2dvdMOhLCBELkMuLCBhIGxvcyAKCgpGSVJNQSBERSBMT1MgVElUVUxBUkVTIERFIERFUkVDSE9TIERFIEFVVE9SCgpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwoKCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIChkZSBsb3MpIEF1dG9yKGVzKToKCkF1dG9yCUNvcnJlbyBFbGVjdHLDs25pY28gCjEJCjIJCjMJCgpOb21icmUgZGUgRGlyZWN0b3IoZXMpIGRlIEdyYWRvOgoKMQkKMgkKMwkKCk5vbWJyZSBGYWN1bHRhZCB5IFByb3llY3RvIEN1cnJpY3VsYXI6CgpGYWN1bHRhZAlQcm95ZWN0byBDdXJyaWN1bGFyCgkKCgoKCgoKCk5vdGE6IEVuIGNhc28gcXVlIG5vIGVzdMOpIGRlIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgeSBtYW5pZmllc3RlIGFsZ3VuYSByZXN0cmljY2nDs24gc29icmUgbGEgb2JyYSwganVzdGlmaXF1ZSBsb3MgbW90aXZvcyBwb3IgbG9zIGN1YWxlcyBlbCBkb2N1bWVudG8geSBzdXMgYW5leG9zIG5vIHB1ZWRlbiBzZXIgcHVibGljYWRvcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIFJJVUQuCgoKU2kgcmVxdWllcmUgbcOhcyBlc3BhY2lvLCBwdWVkZSBhbmV4YXIgdW5hIGNvcGlhIHNpbWlsYXIgYSBlc3RhIGhvamEKCgo=