Development of an alternative method for multispectral image segmentation based on cartesian complexes and its associated oriented matroids

En el análisis de imágenes digitales, una estrategia utilizada para abordar las propiedades espaciales y topológicas es definir objetos de imagen, como se les conoce en la comunidad de percepción remota, que agrupen píxeles como elementos más gruesos del espacio geométrico o superpíxeles. Este proce...

Full description

Autores:
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2019
Institución:
Universidad Distrital Francisco José de Caldas
Repositorio:
RIUD: repositorio U. Distrital
Idioma:
spa
OAI Identifier:
oai:repository.udistrital.edu.co:11349/14486
Acceso en línea:
http://hdl.handle.net/11349/14486
Palabra clave:
Complejo cartesiano
Espacio localmente finito
Matroide orientado
Segmentación de imagen
Doctorado en Ingeniería - Tesis y disertaciones académicas
Segmentación de imágenes
Procesamiento digital de imágenes
Procesamiento de imágenes
Cartesian complexes
Image segmentation
Locally finite spaces
Oriented matroids
Rights
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
Description
Summary:En el análisis de imágenes digitales, una estrategia utilizada para abordar las propiedades espaciales y topológicas es definir objetos de imagen, como se les conoce en la comunidad de percepción remota, que agrupen píxeles como elementos más gruesos del espacio geométrico o superpíxeles. Este proceso se conoce como segmentación de imágenes. En este proceso es común agrupar píxeles cercanos usando grafos (a, b)-conectados como definiciones de vecindad. Tal enfoque, sin embargo, no puede cumplir algunos axiomas topológicos necesarios para asegurar una representación correcta de las relaciones de conexión. Los límites de superpíxeles pueden presentar ambigüedades debido a que los contornos unidimensionales están representados por píxeles, los cuales son bidimensionales. La complejidad inherente de los algoritmos de segmentación, además del gran volumen de datos típico de las imágenes de alta resolución, hacen que se requieran considerables recursos informáticos. Como resultado de lo anterior, los algoritmos geométricos tradicionalmente utilizados para la segmentación de imágenes funcionan con base en entidades bidimensionales (es decir, no hay entidades de 0 o 1 dimensiones para construir los límites) y, por lo tanto, toman decisiones con base en relaciones topológicas representadas ambiguamente. Esta investigación logró diseñar conceptualmente e implementar computacionalmente un método alternativo para la segmentación de imágenes multiespectrales basado en los espacios axiomáticos localmente finitos (ALFS, por su sigla en inglés) proporcionados por los complejos cartesianos, y el cual toma en cuenta las propiedades topológicas y geométricas. Este modelo de representación alternativa proporciona un espacio geométrico que cumple con la topología digital T0 libre de ambigüedades topológicas, sobre el cual se construye una nueva forma de segmentar datos de imágenes. El modelo propuesto se desarrolla e implementa de tal manera que el subconjunto requerido de características geométricas se transforman en estructuras combinatorias las cuales codifican las características topológicas y geométricas presentes en los semiespacios combinatorios usando su matroide orientado asociado. El enfoque propuesto utiliza una arquitectura por capas la cual va desde un nivel físico, pasando luego por un nivel lógico de abstracción geoespacial y luego a través del nivel lógico complejo cartesiano. Además, existe una capa de matroides orientados compuesta por elementos conceptuales en términos de combinatoria que codifican características relevantes para la segmentación de imágenes multiespectrales. Primero, se lleva a cabo una tarea de detección de bordes usando un análisis de textura y cálculo de gradiente orientado multi-escala, luego un análisis de afinidad espectral que incluye la aplicación de filtros derivativos orientados para obtener finalmente un mapa de probabilidad de límite usando un espacio complejo cartesiano en lugar de la representación de imagen convencional basada en píxeles. De esta manera, se construye un marco computacional mediante el cual es posible la representación de una imagen digital multiespectral de una manera que explícitamente toma en cuenta las propiedades topológicas para una mejor segmentación de imágenes. La evaluación de exactitud de los límites producidos por el enfoque propuesto se llevó a cabo a través de dos estratégias de validación: (1) generalización de escala de los segmentos para llevarlos a la escala de la verdad de terreno de segmentación disponible y (2) comparación entre los resultados obtenidos a partir del enfoque propuesto y a partir de superpixeles convencionales. Los resultados muestran que, aparte de la representación de píxeles convencional, es posible segmentar una imagen con base en un espacio digital topológicamente correcto, al mismo tiempo que se aprovechan las características combinatorias de sus matroides orientados asociados. Si bien es cierto que la precisión producida a partir de complejos cartesianos aún no supera la obtenida a partir del enfoque convencional basado en píxeles, el enfoque propuesto por esta investigación logra una mejor cobertura y precisión promedio. Esto permite afirmar que el modelo propuesto e implementado como parte de la investigación aquí presentada constituye una alternativa confiable para la segmentación de imágenes multiespectrales. Se pudo confirmar que el uso de los espacios axiomáticos localmente finitos y sus matroides asociados permite una segmentación topológico-geométrica de la imagen.