Estudio de una Ecuación de Onda Semilineal
El presente trabajo de grado en modalidad-investigación consiste en aprender algunas técnicas para resolver problemas de ecuaciones diferenciales para contribuir en el proyecto de investigación institucionalizado “Soluciones Débiles a la Ecuación de Onda Semilineal” de código 4-45-525-16. En este tr...
- Autores:
-
Rodriguez Avellaneda, Fernando
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2017
- Institución:
- Universidad Distrital Francisco José de Caldas
- Repositorio:
- RIUD: repositorio U. Distrital
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udistrital.edu.co:11349/5581
- Acceso en línea:
- http://hdl.handle.net/11349/5581
- Palabra clave:
- Ecuación de Onda
Ecuaciones Diferenciales Semilineales
Browder-Göhde-Kirk
Integral de Lebesgue
Matemáticas - Tesis y disertaciones académicas
Ecuaciones ondulatorias
Integrales de Lebesgue
Espacio de Sobolev
Wave Equation
Semilineal Differential Equations
Browder-Göhde-Kirk
Integral of Lebesgue
- Rights
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UDISTRITA2_7d9fa29edfcd579e33c921a764cddfbd |
---|---|
oai_identifier_str |
oai:repository.udistrital.edu.co:11349/5581 |
network_acronym_str |
UDISTRITA2 |
network_name_str |
RIUD: repositorio U. Distrital |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio de una Ecuación de Onda Semilineal |
dc.title.titleenglish.spa.fl_str_mv |
Study of a Semilineal Wave Equation |
title |
Estudio de una Ecuación de Onda Semilineal |
spellingShingle |
Estudio de una Ecuación de Onda Semilineal Ecuación de Onda Ecuaciones Diferenciales Semilineales Browder-Göhde-Kirk Integral de Lebesgue Matemáticas - Tesis y disertaciones académicas Ecuaciones ondulatorias Integrales de Lebesgue Espacio de Sobolev Wave Equation Semilineal Differential Equations Browder-Göhde-Kirk Integral of Lebesgue |
title_short |
Estudio de una Ecuación de Onda Semilineal |
title_full |
Estudio de una Ecuación de Onda Semilineal |
title_fullStr |
Estudio de una Ecuación de Onda Semilineal |
title_full_unstemmed |
Estudio de una Ecuación de Onda Semilineal |
title_sort |
Estudio de una Ecuación de Onda Semilineal |
dc.creator.fl_str_mv |
Rodriguez Avellaneda, Fernando |
dc.contributor.advisor.spa.fl_str_mv |
Sanjuán Cuéllar, Álvaro Arturo |
dc.contributor.author.spa.fl_str_mv |
Rodriguez Avellaneda, Fernando |
dc.subject.spa.fl_str_mv |
Ecuación de Onda Ecuaciones Diferenciales Semilineales Browder-Göhde-Kirk Integral de Lebesgue |
topic |
Ecuación de Onda Ecuaciones Diferenciales Semilineales Browder-Göhde-Kirk Integral de Lebesgue Matemáticas - Tesis y disertaciones académicas Ecuaciones ondulatorias Integrales de Lebesgue Espacio de Sobolev Wave Equation Semilineal Differential Equations Browder-Göhde-Kirk Integral of Lebesgue |
dc.subject.lemb.spa.fl_str_mv |
Matemáticas - Tesis y disertaciones académicas Ecuaciones ondulatorias Integrales de Lebesgue Espacio de Sobolev |
dc.subject.keyword.spa.fl_str_mv |
Wave Equation Semilineal Differential Equations Browder-Göhde-Kirk Integral of Lebesgue |
description |
El presente trabajo de grado en modalidad-investigación consiste en aprender algunas técnicas para resolver problemas de ecuaciones diferenciales para contribuir en el proyecto de investigación institucionalizado “Soluciones Débiles a la Ecuación de Onda Semilineal” de código 4-45-525-16. En este trabajo se estudia concretamente la existencia de soluciones periódicas débiles a la ecuación de onda semilineal cuando el periodo es pi sobre raiz de dos. |
publishDate |
2017 |
dc.date.accessioned.none.fl_str_mv |
2017-05-23T20:55:20Z |
dc.date.available.none.fl_str_mv |
2017-05-23T20:55:20Z |
dc.date.created.spa.fl_str_mv |
2017-02-17 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11349/5581 |
url |
http://hdl.handle.net/11349/5581 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.rights.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.acceso.spa.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
pdf |
institution |
Universidad Distrital Francisco José de Caldas |
bitstream.url.fl_str_mv |
https://repository.udistrital.edu.co/bitstreams/67e66ea1-9275-4114-97f3-7bf71bffd549/download https://repository.udistrital.edu.co/bitstreams/6cde2b8e-e5b0-4b94-85df-003d92de48a6/download https://repository.udistrital.edu.co/bitstreams/d38820e1-e15f-44da-94eb-73ec3beeb67f/download https://repository.udistrital.edu.co/bitstreams/859942e1-499d-4a22-83ba-163e744af666/download https://repository.udistrital.edu.co/bitstreams/d69cd9b3-edcb-460a-a4d7-1193cf83e327/download https://repository.udistrital.edu.co/bitstreams/168cfff4-1535-47f1-9d3d-23237800c609/download |
bitstream.checksum.fl_str_mv |
e356bec3ca204a72687a757edd899acb 31349795cdff843e9cf940973391c5dd 6f1da3ff281999354d4abd56d1551468 d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e da5c6a3ca62d5dd4853000a60fee7083 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Distrital |
repository.mail.fl_str_mv |
repositorio@udistrital.edu.co |
_version_ |
1837007058502680576 |
spelling |
Sanjuán Cuéllar, Álvaro ArturoRodriguez Avellaneda, Fernando2017-05-23T20:55:20Z2017-05-23T20:55:20Z2017-02-17http://hdl.handle.net/11349/5581El presente trabajo de grado en modalidad-investigación consiste en aprender algunas técnicas para resolver problemas de ecuaciones diferenciales para contribuir en el proyecto de investigación institucionalizado “Soluciones Débiles a la Ecuación de Onda Semilineal” de código 4-45-525-16. En este trabajo se estudia concretamente la existencia de soluciones periódicas débiles a la ecuación de onda semilineal cuando el periodo es pi sobre raiz de dos.This research work is for learn some techniques for solving differential equations and to contribute to the research project institutionalized "Soluciones Débiles a la Ecuación de Onda Semilineal" with code 4-45-525-16. In this paper we study the existence of weak periodic solutions to the semilineal wave equation when the period is an irrational multiple of pi.pdfspaAtribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Ecuación de OndaEcuaciones Diferenciales SemilinealesBrowder-Göhde-KirkIntegral de LebesgueMatemáticas - Tesis y disertaciones académicasEcuaciones ondulatoriasIntegrales de LebesgueEspacio de SobolevWave EquationSemilineal Differential EquationsBrowder-Göhde-KirkIntegral of LebesgueEstudio de una Ecuación de Onda SemilinealStudy of a Semilineal Wave Equationinfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fTHUMBNAILRodriguezAvellanedaFernando2017.pdf.jpgRodriguezAvellanedaFernando2017.pdf.jpgIM Thumbnailimage/jpeg5971https://repository.udistrital.edu.co/bitstreams/67e66ea1-9275-4114-97f3-7bf71bffd549/downloade356bec3ca204a72687a757edd899acbMD56ORIGINALRodriguezAvellanedaFernando2017.pdfRodriguezAvellanedaFernando2017.pdfTrabajo de Gradoapplication/pdf1479353https://repository.udistrital.edu.co/bitstreams/6cde2b8e-e5b0-4b94-85df-003d92de48a6/download31349795cdff843e9cf940973391c5ddMD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-846https://repository.udistrital.edu.co/bitstreams/d38820e1-e15f-44da-94eb-73ec3beeb67f/download6f1da3ff281999354d4abd56d1551468MD52license_textlicense_texttext/html; charset=utf-80https://repository.udistrital.edu.co/bitstreams/859942e1-499d-4a22-83ba-163e744af666/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://repository.udistrital.edu.co/bitstreams/d69cd9b3-edcb-460a-a4d7-1193cf83e327/downloadd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-87163https://repository.udistrital.edu.co/bitstreams/168cfff4-1535-47f1-9d3d-23237800c609/downloadda5c6a3ca62d5dd4853000a60fee7083MD5511349/5581oai:repository.udistrital.edu.co:11349/55812023-10-03 10:31:57.218http://creativecommons.org/licenses/by-nc-nd/4.0/Atribución-NoComercial-SinDerivadas 4.0 Internacionalopen.accesshttps://repository.udistrital.edu.coRepositorio Universidad Distritalrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyBERSBDT05URU5JRE9TIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgREUgTEEgVU5JVkVSU0lEQUQgRElTVFJJVEFMClTDqXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIHVzbyBwYXJhIHB1YmxpY2FjacOzbiBkZSBvYnJhcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIChSSVVEKQoKQ29tbyB0aXR1bGFyKGVzKSBkZWwob3MpIGRlcmVjaG8ocykgZGUgYXV0b3IsIGNvbmZpZXJvIChlcmltb3MpIGEgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMgKGVuIGFkZWxhbnRlLCBMQSBVTklWRVJTSURBRCkgdW5hIGxpY2VuY2lhIHBhcmEgdXNvIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBpbnRlZ3JhcsOhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgKGVuIGFkZWxhbnRlLCBSSVVEKSwgZGUgYWN1ZXJkbyBhIGxhcyBzaWd1aWVudGVzIHJlZ2xhcywgbGFzIGN1YWxlcyBkZWNsYXJvIChhbW9zKSBjb25vY2VyIHkgYWNlcHRhcjoKCmEpCUVzdGFyw6EgdmlnZW50ZSBhIHBhcnRpciBkZSBsYSBmZWNoYSBlbiBxdWUgc2UgaW5jbHV5YSBlbiBlbCBSSVVEIHkgaGFzdGEgcG9yIHVuIHBsYXpvIGRlIGRpZXogKDEwKSBBw7FvcywgcHJvcnJvZ2FibGUgaW5kZWZpbmlkYW1lbnRlIHBvciBlbCB0aWVtcG8gcXVlIGR1cmUgZWwgZGVyZWNobyBQYXRyaW1vbmlhbCBkZWwgYXV0b3I7IGxhIGN1YWwgcG9kcsOhIGRhcnNlIHBvciB0ZXJtaW5hZGEgcHJldmlhIHNvbGljaXR1ZCBhIExBIFVOSVZFUlNJREFEIHBvciBlc2NyaXRvIGNvbiB1bmEgYW50ZWxhY2nDs24gZGUgZG9zICgyKSBtZXNlcyBhbnRlcyBkZWwgdmVuY2ltaWVudG8gZGVsIHBsYXpvIGluaWNpYWwgbyBlbCBkZSBzdShzKSBwcsOzcnJvZ2EocykuICAKCmIpCUxBIFVOSVZFUlNJREFEIHBvZHLDoSBwdWJsaWNhciBsYSBvYnJhIGVuIGxhcyBkaXN0aW50YXMgdmVyc2lvbmVzIHJlcXVlcmlkYXMgcG9yIGVsIFJJVUQgKGRpZ2l0YWwsIGltcHJlc28sIGVsZWN0csOzbmljbyB1IG90cm8gbWVkaW8gY29ub2NpZG8gbyBwb3IgY29ub2NlcikgTEEgVU5JVkVSU0lEQUQgbm8gc2Vyw6EgcmVzcG9uc2FibGUgZW4gZWwgZXZlbnRvIHF1ZSBlbCBkb2N1bWVudG8gYXBhcmV6Y2EgcmVmZXJlbmNpYWRvIGVuIG1vdG9yZXMgZGUgYsO6c3F1ZWRhIG8gcmVwb3NpdG9yaW9zIGRpZmVyZW50ZXMgYWwgUklVRCwgdW5hIHZleiBlbChvcykgYXV0b3IoZXMpIHNvbGljaXRlbiBzdSBlbGltaW5hY2nDs24gZGVsIFJJVUQsIGRhZG8gcXVlIGxhIG1pc21hIHNlcsOhIHB1YmxpY2FkYSBlbiBJbnRlcm5ldC4gCgpjKQlMYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIGxvcyBhdXRvcmVzIHJlbnVuY2lhbiBhIHJlY2liaXIgYmVuZWZpY2lvIGFsZ3VubyBwb3IgbGEgcHVibGljYWNpw7NuLCBkaXN0cmlidWNpw7NuLCBjb211bmljYWNpw7NuIHDDumJsaWNhIHkgY3VhbHF1aWVyIG90cm8gdXNvIHF1ZSBzZSBoYWdhIGVuIGxvcyB0w6lybWlub3MgZGUgbGEgcHJlc2VudGUgbGljZW5jaWEgeSBkZSBsYSBsaWNlbmNpYSBkZSB1c28gY29uIHF1ZSBzZSBwdWJsaWNhIChDcmVhdGl2ZSBDb21tb25zKS4KCmQpCUxvcyBjb250ZW5pZG9zIHB1YmxpY2Fkb3MgZW4gZWwgUklVRCBzb24gb2JyYShzKSBvcmlnaW5hbChlcykgc29icmUgbGEgY3VhbChlcykgZWwob3MpIGF1dG9yKGVzKSBjb21vIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgZGUgYXV0b3IsIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgTEEgVU5JVkVSU0lEQUQgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gTEEgVU5JVkVSU0lEQUQgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uCgplKQlMQSBVTklWRVJTSURBRCBwb2Ryw6EgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIG1heGltaXphciBsYSB2aXNpYmlsaWRhZCBlbCB1c28geSBlbCBpbXBhY3RvIGRlIGxhIHByb2R1Y2Npw7NuIGNpZW50w61maWNhLCBhcnTDrXN0aWNhIHkgYWNhZMOpbWljYSBlbiBsYSBjb211bmlkYWQgbG9jYWwsIG5hY2lvbmFsIG8gaW50ZXJuYWNpb25hbC4gCgoKZikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGNvbnZlcnRpciBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluIGRlIHN1IHByZXNlcnZhY2nDs24gZW4gZWwgdGllbXBvIHF1ZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGxhIGRlIHN1cyBwcsOzcnJvZ2FzLgoKCkNvbiBiYXNlIGVuIGxvIGFudGVyaW9yIGF1dG9yaXpvKGFtb3MpLCBhIGZhdm9yIGRlbCBSSVVEIHkgZGUgc3VzIHVzdWFyaW9zLCBsYSBwdWJsaWNhY2nDs24geSBjb25zdWx0YSBkZSBsYSBzaWd1aWVudGUgb2JyYToKClRpdHVsbyAJCkF1dG9yCUFwZWxsaWRvcwlOb21icmVzCjEJCQoyCQkKMwkJCiAKCmcpCUF1dG9yaXpvKGFtb3MpLCBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsb3MgbGl0ZXJhbGVzIGFudGVyaW9yZXMsIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgTEEgVU5JVkVSU0lEQUQsIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQsIGN1eW8gdGV4dG8gY29tcGxldG8gc2UgcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9yZXBvc2l0b3J5LnVkaXN0cml0YWwuZWR1LmNvLwoKaCkJQ29ub3pjbyhjZW1vcykgeSBhY2VwdG8oYW1vcykgcXVlIG90b3JnbyhhbW9zKSB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIChoZW1vcykgb2J0ZW5pZG8gdW5hIGNvcGlhLgoKaSkJTWFuaWZpZXN0byhhbW9zKSBtaSAobnVlc3RybykgdG90YWwgYWN1ZXJkbyBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIHVzbyB5IHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHF1ZSBzZSBkZXNjcmliZW4geSBleHBsaWNhbiBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8uCgpqKQlDb25vemNvKGNlbW9zKSBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSAgTEEgVU5JVkVSU0lEQUQ7IGVuIGNvbmNyZXRvLCBlbCBBY3VlcmRvIDAwNCBkZSAyMDEyIGRlbCBDU1UsIEFjdWVyZG8gMDIzIGRlIDIwMTIgZGVsIENTVSBzb2JyZSBQb2zDrXRpY2EgRWRpdG9yaWFsLCBBY3VlcmRvIDAyNiAgZGVsIDMxIGRlIGp1bGlvIGRlIDIwMTIgc29icmUgZWwgcHJvY2VkaW1pZW50byBwYXJhIGxhIHB1YmxpY2FjacOzbiBkZSB0ZXNpcyBkZSBwb3N0Z3JhZG8gZGUgbG9zIGVzdHVkaWFudGVzIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzLCAgQWN1ZXJkbyAwMzAgZGVsIDAzIGRlIGRpY2llbWJyZSBkZSAyMDEzIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBjcmVhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsIEFjdWVyZG8gMDM4IGRlIDIwMTUgMjAxNSDigJxwb3IgZWwgY3VhbCBzZSBtb2RpZmljYSBlbCBBY3VlcmRvIDAzMSBkZSAyMDE0IGRlIDIwMTQgcXVlIHJlZ2xhbWVudGEgZWwgdHJhYmFqbyBkZSBncmFkbyBwYXJhIGxvcyBlc3R1ZGlhbnRlcyBkZSBwcmVncmFkbyBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IHNlIGRpY3RhbiBvdHJhcyBkaXJlY3RyaWNlc+KAnSB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0bywgZXNwZWNpYWxtZW50ZSBsYSBsZXkgMjMgZGUgMTk4MiwgbGEgbGV5IDQ0IGRlIDE5OTMgeSBsYSBkZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLiBFc3RvcyBkb2N1bWVudG9zIHBvZHLDoW4gc2VyIGNvbnN1bHRhZG9zIHkgZGVzY2FyZ2Fkb3MgZW4gZWwgcG9ydGFsIHdlYiBkZSBsYSBiaWJsaW90ZWNhIGh0dHA6Ly9zaXN0ZW1hZGViaWJsaW90ZWNhcy51ZGlzdHJpdGFsLmVkdS5jby8gIAoKaykJQWNlcHRvKGFtb3MpIHF1ZSBMQSBVTklWRVJTSURBRCBubyBzZSByZXNwb25zYWJpbGl6YSBwb3IgbGFzIGluZnJhY2Npb25lcyBhIGxhIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBvIERlcmVjaG9zIGRlIEF1dG9yIGNhdXNhZGFzIHBvciBsb3MgdGl0dWxhcmVzIGRlIGxhIHByZXNlbnRlIExpY2VuY2lhIHkgZGVjbGFyYW1vcyBxdWUgbWFudGVuZHLDqSAoZW1vcykgaW5kZW1uZSBhIExBIFVOSVZFUlNJREFEIHBvciBsYXMgcmVjbGFtYWNpb25lcyBsZWdhbGVzIGRlIGN1YWxxdWllciB0aXBvIHF1ZSBsbGVnYXJlbiBhIHByZXNlbnRhcnNlIHBvciB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGEgbGEgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gZGUgQXV0b3IgcmVsYWNpb25hZG9zIGNvbiBsb3MgZG9jdW1lbnRvcyByZWdpc3RyYWRvcyBlbiBlbCBSSVVELgoKbCkJRWwgKGxvcykgYXV0b3IoZXMpIG1hbmlmaWVzdGEobW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCwgZGUgZXhjbHVzaXZhIGF1dG9yw61hLCB5IHNlIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zOyBkZSB0YWwgc3VlcnRlLCBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhLCBlbCAobG9zKSBlc3R1ZGlhbnRlKHMpIOKAkyBhdXRvcihlcykgYXN1bWlyw6EobikgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgeSBzYWxkcsOhKG4pIGVuIGRlZmVuc2EgZGUgbG9zIGRlcmVjaG9zIGFxdcOtIGF1dG9yaXphZG9zLiBQYXJhIHRvZG9zIGxvcyBlZmVjdG9zLCBMQSBVTklWRVJTSURBRCBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlLiAgIAoKCm0pCUVsIChsb3MpIGF1dG9yKGVzKSBtYW5pZmllc3RhKG1vcykgcXVlIGNvbm96Y28oY2Vtb3MpIGxhIGF1dG9ub23DrWEgeSBsb3MgZGVyZWNob3MsIHF1ZSBwb3NlZShtb3MpIHNvYnJlIGxhIG9icmEgeSwgY29tbyB0YWwsIGVzIChzb21vcykgcmVzcG9uc2FibGUocykgZGVsIGFsY2FuY2UganVyw61kaWNvIHkgbGVnYWwsIGRlIGVzY29nZXIgbGEgb3BjacOzbiBkZSBsYSBwdWJsaWNhY2nDs24gbyBkZSByZXN0cmljY2nDs24gZGUgbGEgcHVibGljYWNpw7NuIGRlbCBkb2N1bWVudG8gcmVnaXN0cmFkbyBlbiBlbCBSSVVELgoKCgoKU0kgRUwgRE9DVU1FTlRPIFNFIEJBU0EgRU4gVU4gVFJBQkFKTyBRVUUgSEEgU0lETyBQQVRST0NJTkFETyBPIEFQT1lBRE8gUE9SIFVOQSBBR0VOQ0lBIE8gVU5BIE9SR0FOSVpBQ0nDk04sIENPTiBFWENFUENJw5NOIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTCBGUkFOQ0lTQ08gSk9TRSBERSBDQUxEQVMsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgCkRFUkVDSE9TIFkgT0JMSUdBQ0lPTkVTIFJFUVVFUklET1MgUE9SIEVMIFJFU1BFQ1RJVk8gQ09OVFJBVE8gTyBBQ1VFUkRPLgoKCgoKCgoKCgoKCgoKCgoKCgoKCgpFbiBjb25zdGFuY2lhIGRlIGxvIGFudGVyaW9yLCBmaXJtbyhhbW9zKSBlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGVuIGxhIGNpdWRhZCBkZSBCb2dvdMOhLCBELkMuLCBhIGxvcyAKCgpGSVJNQSBERSBMT1MgVElUVUxBUkVTIERFIERFUkVDSE9TIERFIEFVVE9SCgpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwoKCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIChkZSBsb3MpIEF1dG9yKGVzKToKCkF1dG9yCUNvcnJlbyBFbGVjdHLDs25pY28gCjEJCjIJCjMJCgpOb21icmUgZGUgRGlyZWN0b3IoZXMpIGRlIEdyYWRvOgoKMQkKMgkKMwkKCk5vbWJyZSBGYWN1bHRhZCB5IFByb3llY3RvIEN1cnJpY3VsYXI6CgpGYWN1bHRhZAlQcm95ZWN0byBDdXJyaWN1bGFyCgkKCgoKCgoKCk5vdGE6IEVuIGNhc28gcXVlIG5vIGVzdMOpIGRlIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgeSBtYW5pZmllc3RlIGFsZ3VuYSByZXN0cmljY2nDs24gc29icmUgbGEgb2JyYSwganVzdGlmaXF1ZSBsb3MgbW90aXZvcyBwb3IgbG9zIGN1YWxlcyBlbCBkb2N1bWVudG8geSBzdXMgYW5leG9zIG5vIHB1ZWRlbiBzZXIgcHVibGljYWRvcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIFJJVUQuCgoKU2kgcmVxdWllcmUgbcOhcyBlc3BhY2lvLCBwdWVkZSBhbmV4YXIgdW5hIGNvcGlhIHNpbWlsYXIgYSBlc3RhIGhvamEKCgo= |