Obtención de las ecuaciones para estimar caudales del río Cabrera en las estaciones San Alfonso, Carrasposo, El Tomo y Puente Venado (Huila) con base en la metodología de Regresión y Transferencia.

El siguiente trabajo tiene como fin estimar ecuaciones generales en lugares específicos donde no se cuenta con estaciones localizadas estratégicamente con base en la metodología de Regresión y Transferencia, por tanto no se tiene una idea clara del valor real de los caudales circulantes y por consig...

Full description

Autores:
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2015
Institución:
Universidad Distrital Francisco José de Caldas
Repositorio:
RIUD: repositorio U. Distrital
Idioma:
spa
OAI Identifier:
oai:repository.udistrital.edu.co:11349/2387
Acceso en línea:
http://hdl.handle.net/11349/2387
Palabra clave:
Regresion
Transferencia
Caudal
Ecuacion
Regression
Transfer
Flow
Equation
Rights
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UDISTRITA2_7cda3b2f43561d6c354ee062bfe7a85e
oai_identifier_str oai:repository.udistrital.edu.co:11349/2387
network_acronym_str UDISTRITA2
network_name_str RIUD: repositorio U. Distrital
repository_id_str
dc.title.spa.fl_str_mv Obtención de las ecuaciones para estimar caudales del río Cabrera en las estaciones San Alfonso, Carrasposo, El Tomo y Puente Venado (Huila) con base en la metodología de Regresión y Transferencia.
dc.title.titleenglish.spa.fl_str_mv Obtaining equations to estimate flows of the river Cabrera stations St. Alphonsus, hoarse, Volume and Bridge Venado (Huila) based on the regression methodology and Transfer.
title Obtención de las ecuaciones para estimar caudales del río Cabrera en las estaciones San Alfonso, Carrasposo, El Tomo y Puente Venado (Huila) con base en la metodología de Regresión y Transferencia.
spellingShingle Obtención de las ecuaciones para estimar caudales del río Cabrera en las estaciones San Alfonso, Carrasposo, El Tomo y Puente Venado (Huila) con base en la metodología de Regresión y Transferencia.
Regresion
Transferencia
Caudal
Ecuacion
Regression
Transfer
Flow
Equation
title_short Obtención de las ecuaciones para estimar caudales del río Cabrera en las estaciones San Alfonso, Carrasposo, El Tomo y Puente Venado (Huila) con base en la metodología de Regresión y Transferencia.
title_full Obtención de las ecuaciones para estimar caudales del río Cabrera en las estaciones San Alfonso, Carrasposo, El Tomo y Puente Venado (Huila) con base en la metodología de Regresión y Transferencia.
title_fullStr Obtención de las ecuaciones para estimar caudales del río Cabrera en las estaciones San Alfonso, Carrasposo, El Tomo y Puente Venado (Huila) con base en la metodología de Regresión y Transferencia.
title_full_unstemmed Obtención de las ecuaciones para estimar caudales del río Cabrera en las estaciones San Alfonso, Carrasposo, El Tomo y Puente Venado (Huila) con base en la metodología de Regresión y Transferencia.
title_sort Obtención de las ecuaciones para estimar caudales del río Cabrera en las estaciones San Alfonso, Carrasposo, El Tomo y Puente Venado (Huila) con base en la metodología de Regresión y Transferencia.
dc.contributor.advisor.spa.fl_str_mv Gonzalez Casas, Fernando
dc.subject.spa.fl_str_mv Regresion
Transferencia
Caudal
Ecuacion
topic Regresion
Transferencia
Caudal
Ecuacion
Regression
Transfer
Flow
Equation
dc.subject.keyword.spa.fl_str_mv Regression
Transfer
Flow
Equation
description El siguiente trabajo tiene como fin estimar ecuaciones generales en lugares específicos donde no se cuenta con estaciones localizadas estratégicamente con base en la metodología de Regresión y Transferencia, por tanto no se tiene una idea clara del valor real de los caudales circulantes y por consiguiente establecer ecuaciones para la determinación de caudales para el cauce en del rió Cabrera. Se pretende enfocar esta metodología en el área de la Ingeniería Civil, dando un aporte de estimación de caudales con el fin de que se pueda incluir en los cálculos y utilizarlos para la obtención más rápida de caudales en zonas desconocidas y así reducir el tiempo de procesamiento de datos y aprovecharlo en la ejecución.
publishDate 2015
dc.date.accessioned.none.fl_str_mv 2015-11-19T20:24:59Z
dc.date.available.none.fl_str_mv 2015-11-19T20:24:59Z
dc.date.created.spa.fl_str_mv 2015-10-14
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11349/2387
url http://hdl.handle.net/11349/2387
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.*.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.acceso.spa.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv pdf
institution Universidad Distrital Francisco José de Caldas
bitstream.url.fl_str_mv http://repository.udistrital.edu.co/bitstream/11349/2387/10/LopezPatarroyoTeresa2015.pdf.jpg
http://repository.udistrital.edu.co/bitstream/11349/2387/6/license_url
http://repository.udistrital.edu.co/bitstream/11349/2387/7/license_text
http://repository.udistrital.edu.co/bitstream/11349/2387/8/license_rdf
http://repository.udistrital.edu.co/bitstream/11349/2387/9/license.txt
http://repository.udistrital.edu.co/bitstream/11349/2387/1/LopezPatarroyoTeresa2015.pdf
bitstream.checksum.fl_str_mv 98d82c8fa9e1d1d64cdfffcbc90925c5
321f3992dd3875151d8801b773ab32ed
b18490b683feec5c1117e8365a854d4c
38cb62ef53e6f513db2fb7e337df6485
b204d61d4cc8bf0ee3a2b0e84c5755dd
8b6e638bbc667006f93fdb80ef3be572
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Distrital - RIUD
repository.mail.fl_str_mv repositorio@udistrital.edu.co
_version_ 1814111091593052160
spelling Gonzalez Casas, FernandoLopez Patarroyo, TeresaFonseca Gámez, Celso2015-11-19T20:24:59Z2015-11-19T20:24:59Z2015-10-14http://hdl.handle.net/11349/2387El siguiente trabajo tiene como fin estimar ecuaciones generales en lugares específicos donde no se cuenta con estaciones localizadas estratégicamente con base en la metodología de Regresión y Transferencia, por tanto no se tiene una idea clara del valor real de los caudales circulantes y por consiguiente establecer ecuaciones para la determinación de caudales para el cauce en del rió Cabrera. Se pretende enfocar esta metodología en el área de la Ingeniería Civil, dando un aporte de estimación de caudales con el fin de que se pueda incluir en los cálculos y utilizarlos para la obtención más rápida de caudales en zonas desconocidas y así reducir el tiempo de procesamiento de datos y aprovecharlo en la ejecución.The following paper aims to estimate general equations in specific places where you do not have strategically located based on the methodology of Regression and Transfer stations so you do not have a clear idea of the real value of the circulating flows and therefore establish equations for determining flow rates for the channel in the river Cabrera. It intends to focus this methodology in the field of Civil Engineering, giving a contribution to estimate flow rates so that it can be included in the calculations and use them for faster delivery of flows in unfamiliar areas and to reduce processing time data and use it in execution.pdfspaAtribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2RegresionTransferenciaCaudalEcuacionRegressionTransferFlowEquationObtención de las ecuaciones para estimar caudales del río Cabrera en las estaciones San Alfonso, Carrasposo, El Tomo y Puente Venado (Huila) con base en la metodología de Regresión y Transferencia.Obtaining equations to estimate flows of the river Cabrera stations St. Alphonsus, hoarse, Volume and Bridge Venado (Huila) based on the regression methodology and Transfer.info:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fTHUMBNAILLopezPatarroyoTeresa2015.pdf.jpgLopezPatarroyoTeresa2015.pdf.jpgIM Thumbnailimage/jpeg7348http://repository.udistrital.edu.co/bitstream/11349/2387/10/LopezPatarroyoTeresa2015.pdf.jpg98d82c8fa9e1d1d64cdfffcbc90925c5MD510open accessCC-LICENSElicense_urllicense_urltext/plain; charset=utf-843http://repository.udistrital.edu.co/bitstream/11349/2387/6/license_url321f3992dd3875151d8801b773ab32edMD56open accesslicense_textlicense_texttext/html; charset=utf-821222http://repository.udistrital.edu.co/bitstream/11349/2387/7/license_textb18490b683feec5c1117e8365a854d4cMD57open accesslicense_rdflicense_rdfapplication/rdf+xml; charset=utf-819874http://repository.udistrital.edu.co/bitstream/11349/2387/8/license_rdf38cb62ef53e6f513db2fb7e337df6485MD58open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-85896http://repository.udistrital.edu.co/bitstream/11349/2387/9/license.txtb204d61d4cc8bf0ee3a2b0e84c5755ddMD59open accessORIGINALLopezPatarroyoTeresa2015.pdfLopezPatarroyoTeresa2015.pdfapplication/pdf38984679http://repository.udistrital.edu.co/bitstream/11349/2387/1/LopezPatarroyoTeresa2015.pdf8b6e638bbc667006f93fdb80ef3be572MD51open access11349/2387oai:repository.udistrital.edu.co:11349/23872023-06-13 12:37:03.826open accessRepositorio Institucional Universidad Distrital - RIUDrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyAgREUgQ09OVEVOSURPUyBFTiBFTCBSRVBPU0lUT1JJTyBJTlNUSVRVQ0lPTkFMIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTApUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gIHBhcmEgcHVibGljYWNpw7NuIGRlIG9icmFzIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMgUklVRC4KCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCAgY29uZmllcm8gKGVyaW1vcykgYSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB1bmEgbGljZW5jaWEgcGFyYSB1c28gIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSAgaW50ZWdyYXLDoSAgZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBhY3VlcmRvIGEgbGFzIHNpZ3VpZW50ZXMgcmVnbGFzLCAgbGFzIGN1YWxlcyBkZWNsYXJvIChhbW9zKSBjb25vY2VyIHkgYWNlcHRhcjoKCmEpIEVzdGFyw6EgdmlnZW50ZSBhIHBhcnRpciBkZSBsYSBmZWNoYSAgZW4gcXVlIHNlIGluY2x1eWEgIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgeSBoYXN0YSAgcG9yIHVuIHBsYXpvIGRlICBkaWV6ICgxMCkgIEHDsW9zLCAgcHJvcnJvZ2FibGUgIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyAgbGEgY3VhbCBwb2Ryw6EgICBkYXJzZSAgcG9yIHRlcm1pbmFkYSAgcHJldmlhICBzb2xpY2l0dWQgICBhIGxhIFVuaXZlcnNpZGFkIHBvciBlc2NyaXRvIGNvbiB1bmEgYW50ZWxhY2nDs24gZGUgZG9zICgyKSBtZXNlcyBhbnRlcyBkZWwgdmVuY2ltaWVudG8gZGVsIHBsYXpvICBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLiAgCgpiKSBMYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyBwb2Ryw6EgIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSAgcG9yIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsICBMYSBVbml2ZXJzaWRhZCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsICBkb2N1bWVudG8gYXBhcmV6Y2EgcmVmZXJlbmNpYWRvIGVuIG1vdG9yZXMgZGUgYsO6c3F1ZWRhIG8gcmVwb3NpdG9yaW9zICBkaWZlcmVudGVzIGFsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHVuYSB2ZXogZWwob3MpIGF1dG9yKGVzKSAgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUmVwb3NpdG9yaW8gZGUgbGEgVW5pdmVyc2lkYWQsIGRhZG8gcXVlICBsYSBtaXNtYSBzZXLDoSBwdWJsaWNhZGEgZW4gIEludGVybmV0LiAKCmMpIExhIGF1dG9yaXphY2nDs24gc2UgaGFjZSBhIHTDrXR1bG8gZ3JhdHVpdG8sIHBvciBsbyB0YW50bywgbG9zIGF1dG9yZXMgcmVudW5jaWFuIGEgcmVjaWJpciBiZW5lZmljaW8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gIHDDumJsaWNhIHkgY3VhbHF1aWVyIG90cm8gdXNvIHF1ZSBzZSBoYWdhIGVuIGxvcyB0w6lybWlub3MgZGUgbGEgcHJlc2VudGUgbGljZW5jaWEgeSBkZSBsYSBsaWNlbmNpYSAgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKSBMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgc29uICBvYnJhKHMpIG9yaWdpbmFsKGVzKSBzb2JyZSBsYSAgY3VhbChlcykgIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zICBkZXJlY2hvcyBkZSBhdXRvciwgYXN1bWVuIHRvdGFsIHJlc3BvbnNhYmlsaWRhZCBwb3IgZWwgY29udGVuaWRvIGRlIHN1IG9icmEgYW50ZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IGFudGUgdGVyY2Vyb3MuIEVuIHRvZG8gY2FzbyBsYSBVbml2ZXJzaWRhZCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkgTGEgIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHBvZHLDoSAgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIG1heGltaXphciBsYSB2aXNpYmlsaWRhZCBlbCB1c28geSBlbCBpbXBhY3RvIGRlIGxhIHByb2R1Y2Npw7NuIGNpZW50w61maWNhLCBhcnTDrXN0aWNhIHkgYWNhZMOpbWljYSBlbiBsYSBjb211bmlkYWQgbG9jYWwsIG5hY2lvbmFsIG8gaW50ZXJuYWNpb25hbC4gCgpmKSBMYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyBwb2Ryw6EgY29udmVydGlyIGxhIG9icmEgIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluICBkZSBzdSBwcmVzZXJ2YWNpw7NuIGVuIGVsIHRpZW1wbyBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgeSBsYSBkZSBzdXMgcHLDs3Jyb2dhcy4KQ29uIGJhc2UgZW4gbG8gYW50ZXJpb3IgYXV0b3JpesOzIGxhIHB1YmxpY2FjacOzbiB5IGNvbnN1bHRhIGRlIGxhIG9icmEgIHRpdHVsYWRhIF9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18KCiBBIGZhdm9yIGRlbCAgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5ICBkZSBzdXMgdXN1YXJpb3MsICAgY3V5byhzKSAgYXV0b3IoZXMpIHNvbjogCkF1dG9yCUFwZWxsaWRvcwlOb21icmVzCjEJCQoyCQkKMwkJCgphKSBBdXRvcml6byBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGF1dG9yaXphZG9zIGVuIGxvcyBsaXRlcmFsZXMgYW50ZXJpb3JlcywgIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMgZW4gbGFzIOKAnENvbmRpY2lvbmVzIGRlIHVzbyBkZSBlc3RyaWN0byBjdW1wbGltaWVudG/igJ0gZGUgbG9zIHJlY3Vyc29zIHB1YmxpY2Fkb3MgZW4gUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBSSVVELCBjdXlvIHRleHRvIGNvbXBsZXRvIHNlIHB1ZWRlIGNvbnN1bHRhciBlbiBodHRwOi8vcmVwb3NpdG9yeS51ZGlzdHJpdGFsLmVkdS5jby8KCmIpIENvbm96Y28geSBhY2VwdG8gcXVlIG90b3JnbyB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIG9idGVuaWRvIHVuYSBjb3BpYS4KCmMpICBNYW5pZmllc3RvIG1pIHRvdGFsIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSB1c28geSBwdWJsaWNhY2nDs24gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyBxdWUgc2UgZGVzY3JpYmVuIHkgZXhwbGljYW4gZW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvLgoKZykgUXVlIGNvbm96Y28gICBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyByZWxhdGl2byBhIHByb3BpZWRhZCAgaW50ZWxlY3R1YWwgcmVndWxhZGEgcG9yIGVsIEFjdWVyZG8gMDA0IGRlIDIwMTIgZGVsIENTVSwgQWN1ZXJkbyAwMjMgZGUgMjAxMiBkZWwgQ1NVIHNvYnJlIFBvbMOtdGljYSBFZGl0b3JpYWwsIEFjdWVyZG8gMDI2ICBkZWwgMzEgZGUganVsaW8gZGUgMjAxMiBzb2JyZSBlbCBwcm9jZWRpbWllbnRvIHBhcmEgbGEgcHVibGljYWNpw7NuIGRlIHRlc2lzIGRlIHBvc3RncmFkbyBkZSBsb3MgZXN0dWRpYW50ZXMgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsICBBY3VlcmRvIDAzMCBkZWwgMDMgZGUgZGljaWVtYnJlIGRlIDIwMTMgcG9yIG1lZGlvIGRlbCBjdWFsIHNlIGNyZWEgZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0by4gRXN0b3MgZG9jdW1lbnRvcyBwb2Ryw6FuIHNlciBjb25zdWx0YWRvcyB5IGRlc2NhcmdhZG9zIGVuIGVsIHBvcnRhbCB3ZWIgZGUgbGEgYmlibGlvdGVjYSBodHRwOi8vc2lzdGVtYWRlYmlibGlvdGVjYXMudWRpc3RyaXRhbC5lZHUuY28vICAKClNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBESVNUUklUQUwgRlJBTkNJU0NPIEpPU0UgREUgQ0FMREFTLCBMT1MgQVVUT1JFUyBHQVJBTlRJWkFOIFFVRSBTRSBIQSBDVU1QTElETyBDT04gTE9TIApERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KRW4gY29uc3RhbmNpYSBkZSBsbyBhbnRlcmlvciwgZmlybW8gKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50byBhIGxvcyAKCkZJUk1BIERFIExPUyBUSVRVTEFSRVMgREUgREVSRUNIT1MgREUgQVVUT1IKCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIEF1dG9yIChlcyk6CkF1dG9yCUNvcnJlbyBFbGVjdHLDs25pY28gCjEJCjIJCjMJCgpOb3RhOiBFbiBjYXNvIHF1ZSBubyBlc3TDqSBkZSBhY3VlcmRvIGNvbiBsYXMgY29uZGljaW9uZXMgZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIGp1c3RpZmlxdWUgbG9zIG1vdGl2b3MgcG9yIGxvcyBjdWFsZXMgZWwgZG9jdW1lbnRvIHkgc3VzIGFuZXhvcyBubyBwdWVkZW4gc2VyIHB1YmxpY2Fkb3MgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyBSSVVECg==