Análisis bioinformático de cuatro flavonoides (3,5 dihidroxi-6,7,8-trimetoxiflavona, alpinona-izalpinina y rhamnocitrina) como posible tratamiento para el Alzheimer

Las enfermedades catalogadas como demencia, entre ellas la enfermedad de Alzheimer, afecta cada vez más a las personas en el mundo, afectando su cognición. Poco se sabe de la fisiopatología de la enfermedad, hasta el momento existen dos hipótesis, la hipótesis amiloide y la hipótesis colinérgica, el...

Full description

Autores:
Osorio Caviedes, Jammie Camila
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad Distrital Francisco José de Caldas
Repositorio:
RIUD: repositorio U. Distrital
Idioma:
spa
OAI Identifier:
oai:repository.udistrital.edu.co:11349/93710
Acceso en línea:
http://hdl.handle.net/11349/93710
Palabra clave:
Acoplamiento molecular
Tratamiento
Enfermedad de Alzheimer
Herramientas computacionales
Licenciatura en Biología -- Tesis y disertaciones académicas
Molecular docking computational tools
Treatment
Alzheimer's disease
Computational tools
Rights
License
Abierto (Texto Completo)
id UDISTRITA2_7b3da95454130e20cb9283ed97ddabe5
oai_identifier_str oai:repository.udistrital.edu.co:11349/93710
network_acronym_str UDISTRITA2
network_name_str RIUD: repositorio U. Distrital
repository_id_str
dc.title.none.fl_str_mv Análisis bioinformático de cuatro flavonoides (3,5 dihidroxi-6,7,8-trimetoxiflavona, alpinona-izalpinina y rhamnocitrina) como posible tratamiento para el Alzheimer
dc.title.titleenglish.none.fl_str_mv Bioinformatic analysis of four flavonoids (3,5-dihydroxi-6,7,8-timethovyflavone, alpinone-izalpinine and rhamnocitrine) as possible treatment for Alzheimer's disease
title Análisis bioinformático de cuatro flavonoides (3,5 dihidroxi-6,7,8-trimetoxiflavona, alpinona-izalpinina y rhamnocitrina) como posible tratamiento para el Alzheimer
spellingShingle Análisis bioinformático de cuatro flavonoides (3,5 dihidroxi-6,7,8-trimetoxiflavona, alpinona-izalpinina y rhamnocitrina) como posible tratamiento para el Alzheimer
Acoplamiento molecular
Tratamiento
Enfermedad de Alzheimer
Herramientas computacionales
Licenciatura en Biología -- Tesis y disertaciones académicas
Molecular docking computational tools
Treatment
Alzheimer's disease
Computational tools
title_short Análisis bioinformático de cuatro flavonoides (3,5 dihidroxi-6,7,8-trimetoxiflavona, alpinona-izalpinina y rhamnocitrina) como posible tratamiento para el Alzheimer
title_full Análisis bioinformático de cuatro flavonoides (3,5 dihidroxi-6,7,8-trimetoxiflavona, alpinona-izalpinina y rhamnocitrina) como posible tratamiento para el Alzheimer
title_fullStr Análisis bioinformático de cuatro flavonoides (3,5 dihidroxi-6,7,8-trimetoxiflavona, alpinona-izalpinina y rhamnocitrina) como posible tratamiento para el Alzheimer
title_full_unstemmed Análisis bioinformático de cuatro flavonoides (3,5 dihidroxi-6,7,8-trimetoxiflavona, alpinona-izalpinina y rhamnocitrina) como posible tratamiento para el Alzheimer
title_sort Análisis bioinformático de cuatro flavonoides (3,5 dihidroxi-6,7,8-trimetoxiflavona, alpinona-izalpinina y rhamnocitrina) como posible tratamiento para el Alzheimer
dc.creator.fl_str_mv Osorio Caviedes, Jammie Camila
dc.contributor.advisor.none.fl_str_mv Mahecha Jiménez, Oscar Javier
Rodríguez López, Edwin Alexander
dc.contributor.author.none.fl_str_mv Osorio Caviedes, Jammie Camila
dc.contributor.orcid.none.fl_str_mv Mahecha Jiménez, Oscar Javier [0000-0002-8682-0020]
dc.subject.none.fl_str_mv Acoplamiento molecular
Tratamiento
Enfermedad de Alzheimer
Herramientas computacionales
topic Acoplamiento molecular
Tratamiento
Enfermedad de Alzheimer
Herramientas computacionales
Licenciatura en Biología -- Tesis y disertaciones académicas
Molecular docking computational tools
Treatment
Alzheimer's disease
Computational tools
dc.subject.lemb.none.fl_str_mv Licenciatura en Biología -- Tesis y disertaciones académicas
dc.subject.keyword.none.fl_str_mv Molecular docking computational tools
Treatment
Alzheimer's disease
Computational tools
description Las enfermedades catalogadas como demencia, entre ellas la enfermedad de Alzheimer, afecta cada vez más a las personas en el mundo, afectando su cognición. Poco se sabe de la fisiopatología de la enfermedad, hasta el momento existen dos hipótesis, la hipótesis amiloide y la hipótesis colinérgica, el desconocimiento de esto ha llevado a que los tratamientos actuales para la enfermedad, sólo sean tratamientos sintomáticos. Esta investigación se centró en el análisis in silico de cuatro flavonoides para evaluar su actividad inhibitoria sobre las enzimas Acetilcolinesterasa y Butirilcolinesterasa, esto se hizo utilizando herramientas computacionales, como AutoDock tools y servidores en línea. Los resultados mostraron que los ligandos tuvieron mayor interacción con la Acetylcolinestera, en cuanto al tipo de interacciones se evidenció la que la mayoría de interacciones fueron de tipo Pi-Pi Stacked.
publishDate 2024
dc.date.created.none.fl_str_mv 2024-08-06
dc.date.accessioned.none.fl_str_mv 2025-03-16T21:19:00Z
dc.date.available.none.fl_str_mv 2025-03-16T21:19:00Z
dc.type.none.fl_str_mv bachelorThesis
dc.type.degree.none.fl_str_mv Investigación-Innovación
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/11349/93710
url http://hdl.handle.net/11349/93710
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.references.none.fl_str_mv Bekdash, A. Rola. (2021). The Cholinergic System, the Adrenergic System and the Neuropathology of Alzhermer´s disease. Int. J. Mol. Sci. 22(3), 1273; https://doi.org/10.3390/ijms22031273
Calabrò M, Rinaldi C, Santoro G, Crisafulli C. (2020). The biological pathways of Alzheimer disease: a review. AIMS Neurosci. doi: 10.3934/Neuroscience.2021005. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7815481/#box1
Chen, Deliang., Oezguen, Numan., Urvill, Petri., Ferguson, Colin., Dann, M. Sara & Savidge, C. Tor (2016). Regulation of protein-ligand binding affinity by hydrogen bond pairing
Cox, B. Philip & Grupta Rishi. (2022). Contemporary Computational Applications and Tools in Drug Discovery. ACS Medicinal Chemistry Letters. https://doi.org/10.1021/acsmedchemlett.1c00662.
Daina, Antoine., Michielin, Oliver & Zoete, Vicent. (2017). SwissADME: a free web tools to evaluate pharmacokinetiics, druglikeness and medicinal chemistry friendliness of small molecules. Scientific Reports. 7 (1). doi:10.1038/srep42717
Dhakal, Ashwin., McKay, Cole., Tanner, J. Jhon & Cheng, Jianlin. (2021). Artificial intelligence in the prediction of protein-ligand interaction: recent advances and future directions. Briefings in Bioinformatics.
Darvesh, Suktan., Hopkins, A, David & Geula, Changiz. (2003). Neurobiology of Butyrylcholinesterase. DOI: 10.1038/nrn1035
Dwomoh, Louis., Tejada, S. Gonzalo & Tobin, B. Andrew. (2022). Targeting the M1 muscarinic acetylcholine receptor in Alzheimer´s disease. Neuronal Signaling. 6 NS20210004 https://doi.org/10.1042/NS20210004
Ferreira-Vieira., Guimaraes, M. Isabella., Silva, R. Flavia & Ribeiro, M. Fabiola. (2016). Alzheimer´s disease: targeting the cholinergic system. Current neuropharmacology 4(1): 101–115. doi: 10.2174/1570159X13666150716165726
Fontana, C. Igor., Zimmer, R. Aline., Rocha, S. Andreia., Gossman, Grace., Souza, O. Diogo., Lourenco, V. Mychael., Ferreira, T. Sergio & Zimmer, R. Eduardo. (2020). Amyloid-β oligomers in celular models of Alzheimer´s disease. Journal of Neurochemistry. DOI: 10.1111/jnc.15030
Gauthier, Serge., Webster, Claire., Stjjn, Servaes., Morais, A. José & Rosa-Neto, Pedro. (2022). World Alzheimer Report. Life after diagnosis: Navigating treatment, care and support. Alzheimer´s Disease International. https://www.alzint.org/u/World-Alzheimer Report-2022.pdf
Gonzáles, Eduardo., Ramirez, Jesús., Hernández, Jorge & Carballo, Alna. (2023). Ginkgo biloba: Antioxidant Activity and In Silico Central Nerveus System Potential. Curr. Issues Mol. Bio.
Guo, Yanjun., Wang, Qinqiu & Xu, Chengfu. (2020). Functions of amyloid precursor in metabolic disease. Metabolics 154454. DOI: https://doi.org/10.1016/j.metabol.2020.154454
Hall, M. Chloe., Moeendarbary, Emad & Sheridan, K. Sheridan. (2020). Mechanobiology of the brain in ageing and Alzheimer´s disease. European Journal of Neuroscience. DOI: 10.1111/ejn.14766
Kim, W. Gwang, Park, Kwangsung., Kim, Yun-Hyeon & Jeong, Woo-Gwang. (2023). Increased Hippocampal-Inferior Temporal Gyrus White Matter Connectivity following Donepezil Treatment in Patients with early Alzheimer´s Disease: A difusión Tensor probabilistic Tractography study. Journal of Clinical Medicine. p 2.
Knopman, D. S., Amieva, H., Petersen, R. C., Chételat, G., Holtzman, D. M., Hyman, B. T., … Jones, D. T. (2021). Alzheimer disease. Nature Reviews Disease Primers, 7(1). doi:10.1038/s41572-021-00269-y https://sci-hub.se/https://doi.org/10.1038/s41572- 021-00269-y
Li, Hong Chun., Luo, Ke-Xue., Wang, Jie-Sheng & Wang, Quin-Xian. (2020). Extrapyramidal side effect of donepezil hydrochloride in an elderly patient. Medicine. doi:10.1097/md.0000000000019443
Li, Jiao., Sun, Min & Li, Chen. (2022). Protective Effects of Flavonoids against Alzheimer´s Disease: Pathological Hypothesis, Potential Targets, and Structure-Activity Relationship. Int J Mol Sci. doi: 10.3390/ijms231710020
Liu, Jinping., Chang, Lirong.,Song, Yizhi., Li, Hui & Wu, Yan. (2019). The role of NMDA receptor in Alzheimer´s disease. Frintiers in Neuroscience. 13. https://doi.org/10.3389/fnins.2019.00043
López, Juana Andrea., Luque, Miriam., Campos, Cynthia., Gutierres, Antonia & Vargas, David. (2023). Agregación y propagación de Aβ en modelos transgénicos de la enfermedad de Alzheimer. Anales Ranm. DOI: 10.32440/ar.2023.140.01.rev05
Makarian, Makar., Gonzales, Michael., Salvador, M. Stephanie., Lorzadeh, Shahrok., Hudson, K. Paula & Pecic, Stevan. (2022). Synthesis, kinetic evaluation and molecular docking studies of donepezil-based acetylcholinesterase inhibitor. Journal of Molecular Structure. P 1.
Marucci, Gabriella., Buccioni, Michela., Ben, D. Diego., Lambertucci., Volpini, Rosaria & Amenta, Francesco. (2021). Effucacy of acetylcholinesterase inhibitors in Alzheimer´s disease. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2020.108352
McNutt, T. Andrew., Francoeur, Paul., Aggarwal, Rishal., Masuda, Tomohide., Meli, Rocco., Ragoza, Matthew., Sunseri, Jocelyn & Koes, Ryan David. (2021). GNINA 1.0: 36 molecular docking with Deep learning. J Cheminform 13, 43. https://doi.org/10.1186/s13321-021-00522-2
Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791.
Pardo, Terasa., Gonzales, Anabel., Rivas, Antonio., García, Victoria., García, Francisco., Ramos, Juan & Melguizo, Lucía. (2022). Therapeutic approach to Alzheimer´s Disease: Current Treatments and new perspective. Pharmaceutics. https://doi.org/10.3390/pharmaceutics14061117
Parvin Babaei. (2021). NMDA and AMPA receptors dysregulation in Alzheimer´s disease.European Journal of Pharmacology. 174310. https://doi.org/10.1016/j.ejphar.2021.174310
Peitzika, Chrysovalanti-Stergiani & Pontiki, Eleni. (2023). A review on recent approaches on molecular docking of novel compounds targeting Acetylcholinesterase in Alzheimer´s disease. Molecules. 1084. https://doi.org/10.3390/molecules28031084
Pooladgar, Parham., Sakhabakhsh Mehdi., Taghva, Arsia & Saeed, Soleiman, Meigooni. (2022). Donepezil beyond Alzheimer´s disease? A narrative review of therapeutics potentials of donepezil in different disease. Irian Journal of Pharmaceutical Research.
Sadeghi, Morteza., Seyedebrahimi, Seyedehmasoumeth., Ghanadian, Mustafa & Miroliaeli, Mehran. (2024). Identification of cholinesterases inhibitors from flavonoids for posible treatment of Alzheimer´s disease: In silico and in vitro approaches. Current Research in Structural Biology. 2665-928X, https://doi.org/10.1016/j.crstbi.2024.100146
Samanta, Sourav., Ramesh, Madhu & Govindaraju, Thimmaiah. (2022). Alzheimer´s is a Multifactorial Disease. Govindaraju Thimmaiah (Ed.). Alzheimer´s Disease. (p. 1). Royal Society of Chemistry.
Sarmiento, Juan & Wilches, Leydi. (2021). Estudio in silico de moléculas de origen natural con potencial actividad inhibitoria sobre la enzima acetilcolinesterasa. Universidad de Cartagena.
Silman, Israel. (2020). The multiple biological roles of the cholinesterases. Progress in biophysics and molecular biology. 0079-6107, https://doi.org/10.1016/j.pbiomolbio.2020.12.001
Sinski, Jakub., Pichlerova, Karoline & Hanes, Josef. (2021). Tau protein interaction partners and their roles in Alzhaimer´s disease and other Tauopathies. International Journal of Molecular Sciences. 22(17), 9207; https://doi.org/10.3390/ijms22179207
Stanzione, Francesca., Giangreco, Ilenia & Cole, Jason. (2021). Use of molecular docking computational tools in drug Discovery. Progress in medical chemistry. 273-343. doi:10.1016/bs.pmch.2021.01.004
Suprijino, Maria., Sujuti, Hidayat., Kurnia, D. & Widjanarko, Banbang. (2020). Absorption, distribution, metabolism, excretion and toxicity evaluation of Papua red fruit flavonoids through a computational study. IOP Conference Series: Earth and Enviromental Science. 475 012078. DOI 10.1088/1755-1315/475/1/012078
Tao, Xuan., Huang, Yukun., Wang, Chong., Chen, Fang., Yang, Lingling., Li, Ling., Che, Zhenming & Chen, Xianggui. (2019). Recent developments in molecular docking technology applied in food science: a review. International Journal of Food Science & Technology. https://doi.org/10.1111/ijfs.14325
Terry, V. Alvin., Jones, Keri & Bertrand, Daniel. (2023). Nicotinic acetylcholine receptors in neurological and psychiatric disease. Pharmacological Research. Vol. 191. 1043-6618, https://doi.org/10.1016/j.phrs.2023.106764.
The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC.
Wang, Guimin & Zhu, Weiliang. (2016). Molecular Docking for drug discobery and development: a widely used approach but far from perfec. Future Medicinal Chemiatry, 8(14), 1787-1710. https://doi.org/10.4155/fmc-2016-0143
Xing, Shuaishuai., Li, Qi., Xiong, Baichen., Chen, Yao., Feng, Feng., Liu, Wenyuan & Sun, Haopeng. (2020). Structure and therapeutic uses of butyrylcholinesterase: Application in detixification, Alzheimer´s disease, and fat metabolism. Medicinal Research Reviews. DOI: 10.1002/med.21745
Yi, H. Jee., Whitcomb, J. Daniel., Park, J. Se., Perez, Celia., Barbati, A. Saviana., Mitchell, J. Scott & Cho, Kwangwook. (2020). M1 muscarinic acetylcholine receptor dysfunction in moderate Alzheimer´s disease phatology. Brain communications. https://doi.org/10.1093/braincomms/fcaa058
Zhang, Zhiyang., Fan, Fangfang., Wen Luo, Yuan Zhao & Wang, Chaojie. (2020). Molecular Dynamixs Revealing a Detour-Forward Release Mechanism of Tacrine: Implication for the Specific Binding Characteristics in Butyrylcholinesterase. Frontiers.
Zhuang, Ru-Wan., Wang, Yi., Cui, Fei Peng., Xing, Lei., Lee, Jaiwoo., Dongyoon, Kim., Jiang, Lin-Hu & Oh, Yu-Kyoung. (2013). Applications of Pi-Pi stacking interactions in the desing of drug-delivery systems. Journal of Controlled Releas
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.acceso.none.fl_str_mv Abierto (Texto Completo)
rights_invalid_str_mv Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.none.fl_str_mv pdf
dc.publisher.none.fl_str_mv Universidad Distrital Francisco José de Caldas
publisher.none.fl_str_mv Universidad Distrital Francisco José de Caldas
institution Universidad Distrital Francisco José de Caldas
bitstream.url.fl_str_mv https://repository.udistrital.edu.co/bitstreams/0290b4de-e6d5-4ae5-ad87-d84401f70052/download
https://repository.udistrital.edu.co/bitstreams/c8bf490f-dc9a-404e-a4b8-a1902d5eb7c4/download
https://repository.udistrital.edu.co/bitstreams/1610b063-1df5-42ef-aa37-3423843da431/download
https://repository.udistrital.edu.co/bitstreams/a107acf5-5076-48d2-8965-cc902d8e5f9b/download
https://repository.udistrital.edu.co/bitstreams/6c23e30b-5683-4691-b068-997924b9e515/download
bitstream.checksum.fl_str_mv 32adca23970292722ac7b7e5a7fcde39
c8499fddbadb172b5ebf5aef1719b236
997daf6c648c962d566d7b082dac908d
e9664b604c142e6d03533d808bd57a16
7d4f6a8a4dbb762bf7cf0cd8faa2cfea
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad Distrital
repository.mail.fl_str_mv repositorio@udistrital.edu.co
_version_ 1828165679656730624
spelling Mahecha Jiménez, Oscar JavierRodríguez López, Edwin AlexanderOsorio Caviedes, Jammie CamilaMahecha Jiménez, Oscar Javier [0000-0002-8682-0020]2025-03-16T21:19:00Z2025-03-16T21:19:00Z2024-08-06http://hdl.handle.net/11349/93710Las enfermedades catalogadas como demencia, entre ellas la enfermedad de Alzheimer, afecta cada vez más a las personas en el mundo, afectando su cognición. Poco se sabe de la fisiopatología de la enfermedad, hasta el momento existen dos hipótesis, la hipótesis amiloide y la hipótesis colinérgica, el desconocimiento de esto ha llevado a que los tratamientos actuales para la enfermedad, sólo sean tratamientos sintomáticos. Esta investigación se centró en el análisis in silico de cuatro flavonoides para evaluar su actividad inhibitoria sobre las enzimas Acetilcolinesterasa y Butirilcolinesterasa, esto se hizo utilizando herramientas computacionales, como AutoDock tools y servidores en línea. Los resultados mostraron que los ligandos tuvieron mayor interacción con la Acetylcolinestera, en cuanto al tipo de interacciones se evidenció la que la mayoría de interacciones fueron de tipo Pi-Pi Stacked.Diseases categorised as dementia, including Alzheimer's disease, increasingly affects people around the world, affecting their cognition. Little is known about the pathophysiology of the disease, so far there are two hypotheses, the amyloid hypothesis and the cholinergic hypothesis, which are amyloid hypothesis and the cholinergic hypothesis current treatments for the disease are only symptomatic treatments. This research focused on the in silico analysis of four flavonoids to evaluate their inhibitory activity on the inhibitory activity on acetylcholinesterase and butyrylcholinesterase enzymes. This was done using computational tools, such as AutoDock tools and online servers. The results showed that the ligands had the strongest interaction with the Acetylcholinesterase, in terms of the type of interactions, it was found that the majority of the interactions were of the Pi-Pi interactions were of the Pi-Pi Stacked type.pdfspaUniversidad Distrital Francisco José de CaldasAcoplamiento molecularTratamientoEnfermedad de AlzheimerHerramientas computacionalesLicenciatura en Biología -- Tesis y disertaciones académicasMolecular docking computational toolsTreatmentAlzheimer's diseaseComputational toolsAnálisis bioinformático de cuatro flavonoides (3,5 dihidroxi-6,7,8-trimetoxiflavona, alpinona-izalpinina y rhamnocitrina) como posible tratamiento para el AlzheimerBioinformatic analysis of four flavonoids (3,5-dihydroxi-6,7,8-timethovyflavone, alpinone-izalpinine and rhamnocitrine) as possible treatment for Alzheimer's diseasebachelorThesisInvestigación-Innovacióninfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Bekdash, A. Rola. (2021). The Cholinergic System, the Adrenergic System and the Neuropathology of Alzhermer´s disease. Int. J. Mol. Sci. 22(3), 1273; https://doi.org/10.3390/ijms22031273Calabrò M, Rinaldi C, Santoro G, Crisafulli C. (2020). The biological pathways of Alzheimer disease: a review. AIMS Neurosci. doi: 10.3934/Neuroscience.2021005. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7815481/#box1Chen, Deliang., Oezguen, Numan., Urvill, Petri., Ferguson, Colin., Dann, M. Sara & Savidge, C. Tor (2016). Regulation of protein-ligand binding affinity by hydrogen bond pairingCox, B. Philip & Grupta Rishi. (2022). Contemporary Computational Applications and Tools in Drug Discovery. ACS Medicinal Chemistry Letters. https://doi.org/10.1021/acsmedchemlett.1c00662.Daina, Antoine., Michielin, Oliver & Zoete, Vicent. (2017). SwissADME: a free web tools to evaluate pharmacokinetiics, druglikeness and medicinal chemistry friendliness of small molecules. Scientific Reports. 7 (1). doi:10.1038/srep42717Dhakal, Ashwin., McKay, Cole., Tanner, J. Jhon & Cheng, Jianlin. (2021). Artificial intelligence in the prediction of protein-ligand interaction: recent advances and future directions. Briefings in Bioinformatics.Darvesh, Suktan., Hopkins, A, David & Geula, Changiz. (2003). Neurobiology of Butyrylcholinesterase. DOI: 10.1038/nrn1035Dwomoh, Louis., Tejada, S. Gonzalo & Tobin, B. Andrew. (2022). Targeting the M1 muscarinic acetylcholine receptor in Alzheimer´s disease. Neuronal Signaling. 6 NS20210004 https://doi.org/10.1042/NS20210004Ferreira-Vieira., Guimaraes, M. Isabella., Silva, R. Flavia & Ribeiro, M. Fabiola. (2016). Alzheimer´s disease: targeting the cholinergic system. Current neuropharmacology 4(1): 101–115. doi: 10.2174/1570159X13666150716165726Fontana, C. Igor., Zimmer, R. Aline., Rocha, S. Andreia., Gossman, Grace., Souza, O. Diogo., Lourenco, V. Mychael., Ferreira, T. Sergio & Zimmer, R. Eduardo. (2020). Amyloid-β oligomers in celular models of Alzheimer´s disease. Journal of Neurochemistry. DOI: 10.1111/jnc.15030Gauthier, Serge., Webster, Claire., Stjjn, Servaes., Morais, A. José & Rosa-Neto, Pedro. (2022). World Alzheimer Report. Life after diagnosis: Navigating treatment, care and support. Alzheimer´s Disease International. https://www.alzint.org/u/World-Alzheimer Report-2022.pdfGonzáles, Eduardo., Ramirez, Jesús., Hernández, Jorge & Carballo, Alna. (2023). Ginkgo biloba: Antioxidant Activity and In Silico Central Nerveus System Potential. Curr. Issues Mol. Bio.Guo, Yanjun., Wang, Qinqiu & Xu, Chengfu. (2020). Functions of amyloid precursor in metabolic disease. Metabolics 154454. DOI: https://doi.org/10.1016/j.metabol.2020.154454Hall, M. Chloe., Moeendarbary, Emad & Sheridan, K. Sheridan. (2020). Mechanobiology of the brain in ageing and Alzheimer´s disease. European Journal of Neuroscience. DOI: 10.1111/ejn.14766Kim, W. Gwang, Park, Kwangsung., Kim, Yun-Hyeon & Jeong, Woo-Gwang. (2023). Increased Hippocampal-Inferior Temporal Gyrus White Matter Connectivity following Donepezil Treatment in Patients with early Alzheimer´s Disease: A difusión Tensor probabilistic Tractography study. Journal of Clinical Medicine. p 2.Knopman, D. S., Amieva, H., Petersen, R. C., Chételat, G., Holtzman, D. M., Hyman, B. T., … Jones, D. T. (2021). Alzheimer disease. Nature Reviews Disease Primers, 7(1). doi:10.1038/s41572-021-00269-y https://sci-hub.se/https://doi.org/10.1038/s41572- 021-00269-yLi, Hong Chun., Luo, Ke-Xue., Wang, Jie-Sheng & Wang, Quin-Xian. (2020). Extrapyramidal side effect of donepezil hydrochloride in an elderly patient. Medicine. doi:10.1097/md.0000000000019443Li, Jiao., Sun, Min & Li, Chen. (2022). Protective Effects of Flavonoids against Alzheimer´s Disease: Pathological Hypothesis, Potential Targets, and Structure-Activity Relationship. Int J Mol Sci. doi: 10.3390/ijms231710020Liu, Jinping., Chang, Lirong.,Song, Yizhi., Li, Hui & Wu, Yan. (2019). The role of NMDA receptor in Alzheimer´s disease. Frintiers in Neuroscience. 13. https://doi.org/10.3389/fnins.2019.00043López, Juana Andrea., Luque, Miriam., Campos, Cynthia., Gutierres, Antonia & Vargas, David. (2023). Agregación y propagación de Aβ en modelos transgénicos de la enfermedad de Alzheimer. Anales Ranm. DOI: 10.32440/ar.2023.140.01.rev05Makarian, Makar., Gonzales, Michael., Salvador, M. Stephanie., Lorzadeh, Shahrok., Hudson, K. Paula & Pecic, Stevan. (2022). Synthesis, kinetic evaluation and molecular docking studies of donepezil-based acetylcholinesterase inhibitor. Journal of Molecular Structure. P 1.Marucci, Gabriella., Buccioni, Michela., Ben, D. Diego., Lambertucci., Volpini, Rosaria & Amenta, Francesco. (2021). Effucacy of acetylcholinesterase inhibitors in Alzheimer´s disease. Neuropharmacology. https://doi.org/10.1016/j.neuropharm.2020.108352McNutt, T. Andrew., Francoeur, Paul., Aggarwal, Rishal., Masuda, Tomohide., Meli, Rocco., Ragoza, Matthew., Sunseri, Jocelyn & Koes, Ryan David. (2021). GNINA 1.0: 36 molecular docking with Deep learning. J Cheminform 13, 43. https://doi.org/10.1186/s13321-021-00522-2Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791.Pardo, Terasa., Gonzales, Anabel., Rivas, Antonio., García, Victoria., García, Francisco., Ramos, Juan & Melguizo, Lucía. (2022). Therapeutic approach to Alzheimer´s Disease: Current Treatments and new perspective. Pharmaceutics. https://doi.org/10.3390/pharmaceutics14061117Parvin Babaei. (2021). NMDA and AMPA receptors dysregulation in Alzheimer´s disease.European Journal of Pharmacology. 174310. https://doi.org/10.1016/j.ejphar.2021.174310Peitzika, Chrysovalanti-Stergiani & Pontiki, Eleni. (2023). A review on recent approaches on molecular docking of novel compounds targeting Acetylcholinesterase in Alzheimer´s disease. Molecules. 1084. https://doi.org/10.3390/molecules28031084Pooladgar, Parham., Sakhabakhsh Mehdi., Taghva, Arsia & Saeed, Soleiman, Meigooni. (2022). Donepezil beyond Alzheimer´s disease? A narrative review of therapeutics potentials of donepezil in different disease. Irian Journal of Pharmaceutical Research.Sadeghi, Morteza., Seyedebrahimi, Seyedehmasoumeth., Ghanadian, Mustafa & Miroliaeli, Mehran. (2024). Identification of cholinesterases inhibitors from flavonoids for posible treatment of Alzheimer´s disease: In silico and in vitro approaches. Current Research in Structural Biology. 2665-928X, https://doi.org/10.1016/j.crstbi.2024.100146Samanta, Sourav., Ramesh, Madhu & Govindaraju, Thimmaiah. (2022). Alzheimer´s is a Multifactorial Disease. Govindaraju Thimmaiah (Ed.). Alzheimer´s Disease. (p. 1). Royal Society of Chemistry.Sarmiento, Juan & Wilches, Leydi. (2021). Estudio in silico de moléculas de origen natural con potencial actividad inhibitoria sobre la enzima acetilcolinesterasa. Universidad de Cartagena.Silman, Israel. (2020). The multiple biological roles of the cholinesterases. Progress in biophysics and molecular biology. 0079-6107, https://doi.org/10.1016/j.pbiomolbio.2020.12.001Sinski, Jakub., Pichlerova, Karoline & Hanes, Josef. (2021). Tau protein interaction partners and their roles in Alzhaimer´s disease and other Tauopathies. International Journal of Molecular Sciences. 22(17), 9207; https://doi.org/10.3390/ijms22179207Stanzione, Francesca., Giangreco, Ilenia & Cole, Jason. (2021). Use of molecular docking computational tools in drug Discovery. Progress in medical chemistry. 273-343. doi:10.1016/bs.pmch.2021.01.004Suprijino, Maria., Sujuti, Hidayat., Kurnia, D. & Widjanarko, Banbang. (2020). Absorption, distribution, metabolism, excretion and toxicity evaluation of Papua red fruit flavonoids through a computational study. IOP Conference Series: Earth and Enviromental Science. 475 012078. DOI 10.1088/1755-1315/475/1/012078Tao, Xuan., Huang, Yukun., Wang, Chong., Chen, Fang., Yang, Lingling., Li, Ling., Che, Zhenming & Chen, Xianggui. (2019). Recent developments in molecular docking technology applied in food science: a review. International Journal of Food Science & Technology. https://doi.org/10.1111/ijfs.14325Terry, V. Alvin., Jones, Keri & Bertrand, Daniel. (2023). Nicotinic acetylcholine receptors in neurological and psychiatric disease. Pharmacological Research. Vol. 191. 1043-6618, https://doi.org/10.1016/j.phrs.2023.106764.The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC.Wang, Guimin & Zhu, Weiliang. (2016). Molecular Docking for drug discobery and development: a widely used approach but far from perfec. Future Medicinal Chemiatry, 8(14), 1787-1710. https://doi.org/10.4155/fmc-2016-0143Xing, Shuaishuai., Li, Qi., Xiong, Baichen., Chen, Yao., Feng, Feng., Liu, Wenyuan & Sun, Haopeng. (2020). Structure and therapeutic uses of butyrylcholinesterase: Application in detixification, Alzheimer´s disease, and fat metabolism. Medicinal Research Reviews. DOI: 10.1002/med.21745Yi, H. Jee., Whitcomb, J. Daniel., Park, J. Se., Perez, Celia., Barbati, A. Saviana., Mitchell, J. Scott & Cho, Kwangwook. (2020). M1 muscarinic acetylcholine receptor dysfunction in moderate Alzheimer´s disease phatology. Brain communications. https://doi.org/10.1093/braincomms/fcaa058Zhang, Zhiyang., Fan, Fangfang., Wen Luo, Yuan Zhao & Wang, Chaojie. (2020). Molecular Dynamixs Revealing a Detour-Forward Release Mechanism of Tacrine: Implication for the Specific Binding Characteristics in Butyrylcholinesterase. Frontiers.Zhuang, Ru-Wan., Wang, Yi., Cui, Fei Peng., Xing, Lei., Lee, Jaiwoo., Dongyoon, Kim., Jiang, Lin-Hu & Oh, Yu-Kyoung. (2013). Applications of Pi-Pi stacking interactions in the desing of drug-delivery systems. Journal of Controlled ReleasORIGINALOsorioCaviedesJammieCamila2024.pdfOsorioCaviedesJammieCamila2024.pdfTrabajo de Gradoapplication/pdf1077252https://repository.udistrital.edu.co/bitstreams/0290b4de-e6d5-4ae5-ad87-d84401f70052/download32adca23970292722ac7b7e5a7fcde39MD51Licencia de uso y autorización.pdfLicencia de uso y autorización.pdfapplication/pdf221849https://repository.udistrital.edu.co/bitstreams/c8bf490f-dc9a-404e-a4b8-a1902d5eb7c4/downloadc8499fddbadb172b5ebf5aef1719b236MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-87167https://repository.udistrital.edu.co/bitstreams/1610b063-1df5-42ef-aa37-3423843da431/download997daf6c648c962d566d7b082dac908dMD54THUMBNAILOsorioCaviedesJammieCamila2024.pdf.jpgOsorioCaviedesJammieCamila2024.pdf.jpgIM Thumbnailimage/jpeg2723https://repository.udistrital.edu.co/bitstreams/a107acf5-5076-48d2-8965-cc902d8e5f9b/downloade9664b604c142e6d03533d808bd57a16MD56Licencia de uso y autorización.pdf.jpgLicencia de uso y autorización.pdf.jpgIM Thumbnailimage/jpeg9515https://repository.udistrital.edu.co/bitstreams/6c23e30b-5683-4691-b068-997924b9e515/download7d4f6a8a4dbb762bf7cf0cd8faa2cfeaMD5711349/93710oai:repository.udistrital.edu.co:11349/937102025-03-17 01:05:37.302restrictedhttps://repository.udistrital.edu.coRepositorio Universidad Distritalrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyBERSBDT05URU5JRE9TIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgREUgTEEgVU5JVkVSU0lEQUQgRElTVFJJVEFMCgpUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyAoUklVRCkKCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCBjb25maWVybyAoZXJpbW9zKSBhIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIChlbiBhZGVsYW50ZSwgTEEgVU5JVkVSU0lEQUQpIHVuYSBsaWNlbmNpYSBwYXJhIHVzbyBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgaW50ZWdyYXLDoSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIChlbiBhZGVsYW50ZSwgUklVRCksIGRlIGFjdWVyZG8gYSBsYXMgc2lndWllbnRlcyByZWdsYXMsIGxhcyBjdWFsZXMgZGVjbGFybyAoYW1vcykgY29ub2NlciB5IGFjZXB0YXI6CgphKQlFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWEgZW4gZWwgUklVRCB5IGhhc3RhIHBvciB1biBwbGF6byBkZSBkaWV6ICgxMCkgQcOxb3MsIHByb3Jyb2dhYmxlIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyBsYSBjdWFsIHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHByZXZpYSBzb2xpY2l0dWQgYSBMQSBVTklWRVJTSURBRCBwb3IgZXNjcml0byBjb24gdW5hIGFudGVsYWNpw7NuIGRlIGRvcyAoMikgbWVzZXMgYW50ZXMgZGVsIHZlbmNpbWllbnRvIGRlbCBwbGF6byBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLgoKYikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyBwb3IgZWwgUklVRCAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBMQSBVTklWRVJTSURBRCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsIGRvY3VtZW50byBhcGFyZXpjYSByZWZlcmVuY2lhZG8gZW4gbW90b3JlcyBkZSBiw7pzcXVlZGEgbyByZXBvc2l0b3Jpb3MgZGlmZXJlbnRlcyBhbCBSSVVELCB1bmEgdmV6IGVsKG9zKSBhdXRvcihlcykgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUklVRCwgZGFkbyBxdWUgbGEgbWlzbWEgc2Vyw6EgcHVibGljYWRhIGVuIEludGVybmV0LgoKYykJTGEgYXV0b3JpemFjacOzbiBzZSBoYWNlIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCBsb3MgYXV0b3JlcyByZW51bmNpYW4gYSByZWNpYmlyIGJlbmVmaWNpbyBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKQlMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQgc29uIG9icmEocykgb3JpZ2luYWwoZXMpIHNvYnJlIGxhIGN1YWwoZXMpIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBhc3VtZW4gdG90YWwgcmVzcG9uc2FiaWxpZGFkIHBvciBlbCBjb250ZW5pZG8gZGUgc3Ugb2JyYSBhbnRlIExBIFVOSVZFUlNJREFEIHkgYW50ZSB0ZXJjZXJvcy4gRW4gdG9kbyBjYXNvIExBIFVOSVZFUlNJREFEIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3Mgw61uZGljZXMgeSBidXNjYWRvcmVzIHF1ZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBtYXhpbWl6YXIgbGEgdmlzaWJpbGlkYWQgZWwgdXNvIHkgZWwgaW1wYWN0byBkZSBsYSBwcm9kdWNjacOzbiBjaWVudMOtZmljYSwgYXJ0w61zdGljYSB5IGFjYWTDqW1pY2EgZW4gbGEgY29tdW5pZGFkIGxvY2FsLCBuYWNpb25hbCBvIGludGVybmFjaW9uYWwuCgoKZikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGNvbnZlcnRpciBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluIGRlIHN1IHByZXNlcnZhY2nDs24gZW4gZWwgdGllbXBvIHF1ZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGxhIGRlIHN1cyBwcsOzcnJvZ2FzLgoKCkNvbiBiYXNlIGVuIGxvIGFudGVyaW9yIGF1dG9yaXpvKGFtb3MpLCBhIGZhdm9yIGRlbCBSSVVEIHkgZGUgc3VzIHVzdWFyaW9zLCBsYSBwdWJsaWNhY2nDs24geSBjb25zdWx0YSBkZSBsYSBzaWd1aWVudGUgb2JyYToKClRpdHVsbwoKQXV0b3IgICAgICAgQXBlbGxpZG9zICAgICAgICAgTm9tYnJlcwoKMQoKMgoKMwoKCmcpCUF1dG9yaXpvKGFtb3MpLCBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsb3MgbGl0ZXJhbGVzIGFudGVyaW9yZXMsIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgTEEgVU5JVkVSU0lEQUQsIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQsIGN1eW8gdGV4dG8gY29tcGxldG8gc2UgcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9yZXBvc2l0b3J5LnVkaXN0cml0YWwuZWR1LmNvLwoKaCkJQ29ub3pjbyhjZW1vcykgeSBhY2VwdG8oYW1vcykgcXVlIG90b3JnbyhhbW9zKSB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIChoZW1vcykgb2J0ZW5pZG8gdW5hIGNvcGlhLgoKaSkJTWFuaWZpZXN0byhhbW9zKSBtaSAobnVlc3RybykgdG90YWwgYWN1ZXJkbyBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIHVzbyB5IHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHF1ZSBzZSBkZXNjcmliZW4geSBleHBsaWNhbiBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8uCgpqKQlDb25vemNvKGNlbW9zKSBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSAgTEEgVU5JVkVSU0lEQUQ7IGVuIGNvbmNyZXRvLCBlbCBBY3VlcmRvIDAwNCBkZSAyMDEyIGRlbCBDU1UsIEFjdWVyZG8gMDIzIGRlIDIwMTIgZGVsIENTVSBzb2JyZSBQb2zDrXRpY2EgRWRpdG9yaWFsLCBBY3VlcmRvIDAyNiAgZGVsIDMxIGRlIGp1bGlvIGRlIDIwMTIgc29icmUgZWwgcHJvY2VkaW1pZW50byBwYXJhIGxhIHB1YmxpY2FjacOzbiBkZSB0ZXNpcyBkZSBwb3N0Z3JhZG8gZGUgbG9zIGVzdHVkaWFudGVzIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzLCAgQWN1ZXJkbyAwMzAgZGVsIDAzIGRlIGRpY2llbWJyZSBkZSAyMDEzIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBjcmVhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsIEFjdWVyZG8gMDM4IGRlIDIwMTUgMjAxNSDigJxwb3IgZWwgY3VhbCBzZSBtb2RpZmljYSBlbCBBY3VlcmRvIDAzMSBkZSAyMDE0IGRlIDIwMTQgcXVlIHJlZ2xhbWVudGEgZWwgdHJhYmFqbyBkZSBncmFkbyBwYXJhIGxvcyBlc3R1ZGlhbnRlcyBkZSBwcmVncmFkbyBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IHNlIGRpY3RhbiBvdHJhcyBkaXJlY3RyaWNlc+KAnSB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0bywgZXNwZWNpYWxtZW50ZSBsYSBsZXkgMjMgZGUgMTk4MiwgbGEgbGV5IDQ0IGRlIDE5OTMgeSBsYSBkZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLiBFc3RvcyBkb2N1bWVudG9zIHBvZHLDoW4gc2VyIGNvbnN1bHRhZG9zIHkgZGVzY2FyZ2Fkb3MgZW4gZWwgcG9ydGFsIHdlYiBkZSBsYSBiaWJsaW90ZWNhIGh0dHA6Ly9zaXN0ZW1hZGViaWJsaW90ZWNhcy51ZGlzdHJpdGFsLmVkdS5jby8KCmspCUFjZXB0byhhbW9zKSBxdWUgTEEgVU5JVkVSU0lEQUQgbm8gc2UgcmVzcG9uc2FiaWxpemEgcG9yIGxhcyBpbmZyYWNjaW9uZXMgYSBsYSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBEZXJlY2hvcyBkZSBBdXRvciBjYXVzYWRhcyBwb3IgbG9zIHRpdHVsYXJlcyBkZSBsYSBwcmVzZW50ZSBMaWNlbmNpYSB5IGRlY2xhcmFtb3MgcXVlIG1hbnRlbmRyw6kgKGVtb3MpIGluZGVtbmUgYSBMQSBVTklWRVJTSURBRCBwb3IgbGFzIHJlY2xhbWFjaW9uZXMgbGVnYWxlcyBkZSBjdWFscXVpZXIgdGlwbyBxdWUgbGxlZ2FyZW4gYSBwcmVzZW50YXJzZSBwb3IgdmlvbGFjacOzbiBkZSBkZXJlY2hvcyBhIGxhIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBvIGRlIEF1dG9yIHJlbGFjaW9uYWRvcyBjb24gbG9zIGRvY3VtZW50b3MgcmVnaXN0cmFkb3MgZW4gZWwgUklVRC4KCmwpCUVsIChsb3MpIGF1dG9yKGVzKSBtYW5pZmllc3RhKG1vcykgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwsIGRlIGV4Y2x1c2l2YSBhdXRvcsOtYSwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvczsgZGUgdGFsIHN1ZXJ0ZSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgZWwgKGxvcykgZXN0dWRpYW50ZShzKSDigJMgYXV0b3IoZXMpIGFzdW1pcsOhKG4pIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHkgc2FsZHLDoShuKSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcy4gUGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgTEEgVU5JVkVSU0lEQUQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCgptKQlFbCAobG9zKSBhdXRvcihlcykgbWFuaWZpZXN0YShtb3MpIHF1ZSBjb25vemNvKGNlbW9zKSBsYSBhdXRvbm9tw61hIHkgbG9zIGRlcmVjaG9zLCBxdWUgcG9zZWUobW9zKSBzb2JyZSBsYSBvYnJhIHksIGNvbW8gdGFsLCBlcyAoc29tb3MpIHJlc3BvbnNhYmxlKHMpIGRlbCBhbGNhbmNlIGp1csOtZGljbyB5IGxlZ2FsLCBkZSBlc2NvZ2VyIGxhIG9wY2nDs24gZGUgbGEgcHVibGljYWNpw7NuIG8gZGUgcmVzdHJpY2Npw7NuIGRlIGxhIHB1YmxpY2FjacOzbiBkZWwgZG9jdW1lbnRvIHJlZ2lzdHJhZG8gZW4gZWwgUklVRC4KCgoKCgoKU0kgRUwgRE9DVU1FTlRPIFNFIEJBU0EgRU4gVU4gVFJBQkFKTyBRVUUgSEEgU0lETyBQQVRST0NJTkFETyBPIEFQT1lBRE8gUE9SIFVOQSBBR0VOQ0lBIE8gVU5BIE9SR0FOSVpBQ0nDk04sIENPTiBFWENFUENJw5NOIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTCBGUkFOQ0lTQ08gSk9TRSBERSBDQUxEQVMsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MKREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uCgoKCgoKCgoKCgoKCgoKCgoKCgoKCkVuIGNvbnN0YW5jaWEgZGUgbG8gYW50ZXJpb3IsIGZpcm1vKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50bywgZW4gbGEgY2l1ZGFkIGRlIEJvZ290w6EsIEQuQy4sIGEgbG9zCgoKRklSTUEgREUgTE9TIFRJVFVMQVJFUyBERSBERVJFQ0hPUyBERSBBVVRPUgoKX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwoKCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIChkZSBsb3MpIEF1dG9yKGVzKToKCkF1dG9yCSAgICAgIENvcnJlbyBFbGVjdHLDs25pY28KCjEKCjIKCjMKCk5vbWJyZSBkZSBEaXJlY3RvcihlcykgZGUgR3JhZG86CgoxCgoyCgozCgpOb21icmUgRmFjdWx0YWQgeSBQcm95ZWN0byBDdXJyaWN1bGFyOgoKRmFjdWx0YWQJUHJveWVjdG8gQ3VycmljdWxhcgoKCgoKCgoKCk5vdGE6IEVuIGNhc28gcXVlIG5vIGVzdMOpIGRlIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgeSBtYW5pZmllc3RlIGFsZ3VuYSByZXN0cmljY2nDs24gc29icmUgbGEgb2JyYSwganVzdGlmaXF1ZSBsb3MgbW90aXZvcyBwb3IgbG9zIGN1YWxlcyBlbCBkb2N1bWVudG8geSBzdXMgYW5leG9zIG5vIHB1ZWRlbiBzZXIgcHVibGljYWRvcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIFJJVUQuCgoKU2kgcmVxdWllcmUgbcOhcyBlc3BhY2lvLCBwdWVkZSBhbmV4YXIgdW5hIGNvcGlhIHNpbWlsYXIgYSBlc3RhIGhvamEK