Evaluación del desempeño aerodinámico de dos perfiles de ala tipo anular para una aeronave mediante simulaciones de dinámica de fluidos computacional (CFD)
Este proyecto tiene como objetivo evaluar el desempeño aerodinámico de dos perfiles de ala tipo anular para aeronaves mediante simulaciones de Dinámica de Fluidos Computacional (CFD). Se busca abordar las limitaciones de eficiencia aerodinámica y alto consumo de combustible que presentan los diseños...
- Autores:
-
Solano, Daniel Santiago
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Distrital Francisco José de Caldas
- Repositorio:
- RIUD: repositorio U. Distrital
- Idioma:
- spa
- OAI Identifier:
- oai:repository.udistrital.edu.co:11349/93572
- Acceso en línea:
- http://hdl.handle.net/11349/93572
- Palabra clave:
- Alas en forma de anillo
Alas Circulares
Aerodinámica
Dinámica de fluidos computacional (CFD)
Sustentación
Arrastre
Ingeniería Mecánica -- Tesis y disertaciones académicas
Ring-shaped wings
Circular wings
Aerodynamics
Computational Fluid Dynamics (CFD)
Lift
Drag
- Rights
- License
- Abierto (Texto Completo)
id |
UDISTRITA2_70b1e8f5dea703935839acca83ccb682 |
---|---|
oai_identifier_str |
oai:repository.udistrital.edu.co:11349/93572 |
network_acronym_str |
UDISTRITA2 |
network_name_str |
RIUD: repositorio U. Distrital |
repository_id_str |
|
dc.title.none.fl_str_mv |
Evaluación del desempeño aerodinámico de dos perfiles de ala tipo anular para una aeronave mediante simulaciones de dinámica de fluidos computacional (CFD) |
dc.title.titleenglish.none.fl_str_mv |
Aerodynamic Performance Evaluation of Two Annular Wing Profiles for an Aircraft Using Computational Fluid Dynamics (CFD) Simulations |
title |
Evaluación del desempeño aerodinámico de dos perfiles de ala tipo anular para una aeronave mediante simulaciones de dinámica de fluidos computacional (CFD) |
spellingShingle |
Evaluación del desempeño aerodinámico de dos perfiles de ala tipo anular para una aeronave mediante simulaciones de dinámica de fluidos computacional (CFD) Alas en forma de anillo Alas Circulares Aerodinámica Dinámica de fluidos computacional (CFD) Sustentación Arrastre Ingeniería Mecánica -- Tesis y disertaciones académicas Ring-shaped wings Circular wings Aerodynamics Computational Fluid Dynamics (CFD) Lift Drag |
title_short |
Evaluación del desempeño aerodinámico de dos perfiles de ala tipo anular para una aeronave mediante simulaciones de dinámica de fluidos computacional (CFD) |
title_full |
Evaluación del desempeño aerodinámico de dos perfiles de ala tipo anular para una aeronave mediante simulaciones de dinámica de fluidos computacional (CFD) |
title_fullStr |
Evaluación del desempeño aerodinámico de dos perfiles de ala tipo anular para una aeronave mediante simulaciones de dinámica de fluidos computacional (CFD) |
title_full_unstemmed |
Evaluación del desempeño aerodinámico de dos perfiles de ala tipo anular para una aeronave mediante simulaciones de dinámica de fluidos computacional (CFD) |
title_sort |
Evaluación del desempeño aerodinámico de dos perfiles de ala tipo anular para una aeronave mediante simulaciones de dinámica de fluidos computacional (CFD) |
dc.creator.fl_str_mv |
Solano, Daniel Santiago |
dc.contributor.advisor.none.fl_str_mv |
Muñoz Bello, Nicolas Gabriel |
dc.contributor.author.none.fl_str_mv |
Solano, Daniel Santiago |
dc.subject.none.fl_str_mv |
Alas en forma de anillo Alas Circulares Aerodinámica Dinámica de fluidos computacional (CFD) Sustentación Arrastre |
topic |
Alas en forma de anillo Alas Circulares Aerodinámica Dinámica de fluidos computacional (CFD) Sustentación Arrastre Ingeniería Mecánica -- Tesis y disertaciones académicas Ring-shaped wings Circular wings Aerodynamics Computational Fluid Dynamics (CFD) Lift Drag |
dc.subject.lemb.none.fl_str_mv |
Ingeniería Mecánica -- Tesis y disertaciones académicas |
dc.subject.keyword.none.fl_str_mv |
Ring-shaped wings Circular wings Aerodynamics Computational Fluid Dynamics (CFD) Lift Drag |
description |
Este proyecto tiene como objetivo evaluar el desempeño aerodinámico de dos perfiles de ala tipo anular para aeronaves mediante simulaciones de Dinámica de Fluidos Computacional (CFD). Se busca abordar las limitaciones de eficiencia aerodinámica y alto consumo de combustible que presentan los diseños convencionales de alas. La industria aeronáutica enfrenta retos importantes relacionados con mejorar la eficiencia aerodinámica y reducir el consumo de combustible, especialmente con el aumento del tráfico aéreo y los costos operativos. Si bien las alas convencionales han sido optimizadas, aún tienen limitaciones en cuanto a minimizar la resistencia al avance y maximizar la sustentación bajo diferentes condiciones de vuelo. En este escenario, las alas en forma de anillo emergen como un diseño innovador con potencial para superar estas limitaciones. Sin embargo, su comportamiento aerodinámico no ha sido completamente estudiado, lo que restringe el conocimiento sobre su viabilidad y capacidad para mejorar la eficiencia de las aeronaves. Mediante simulaciones CFD, este proyecto analizará y comparará el comportamiento aerodinámico de dos perfiles de ala anular con geometrías diferentes en los bordes de ataque y salida. Se realizarán simulaciones bajo distintas condiciones de altura para evaluar aspectos clave como la sustentación, resistencia al avance, patrones de flujo de aire alrededor de las alas y estabilidad en vuelo. Los resultados podrían contribuir al desarrollo de nuevas tecnologías y conceptos innovadores en el diseño de aeronaves, explorando soluciones alternativas para una aviación más eficiente y sostenible. |
publishDate |
2024 |
dc.date.created.none.fl_str_mv |
2024-10-21 |
dc.date.accessioned.none.fl_str_mv |
2025-03-12T15:29:55Z |
dc.date.available.none.fl_str_mv |
2025-03-12T15:29:55Z |
dc.type.none.fl_str_mv |
bachelorThesis |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.degree.none.fl_str_mv |
Monografía |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/11349/93572 |
url |
http://hdl.handle.net/11349/93572 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.references.none.fl_str_mv |
Sadraey, M. H. (2013). Aircraft design: A system engineering approach. Wiley. Airbus. (2021). Global Market Forecast 2021-2040. https://www.airbus.com/en/products-services/commercial-aircraft/market/global-market-forecast. Khardi, S., De La Croix, S., & Ouladsine, M. (2017). Aircraft noise annoyance modelling in the vicinity of airports. Transportation Research Part D: Transport and Environment, 52, 65-82. https://doi.org/10.1016/j.trd.2017.03.002 Nguyen, T. (2017). Aerodynamic efficiency in modern aircraft design: A review. Journal of Aerospace Engineering, 30(4), 04017011. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000723 Gur, O., Giat, E., & Kushnir, Y. (2014). The design of unconventional wings for enhanced aerodynamic performance. Aerospace Science and Technology, 35, 194-206. https://doi.org/10.1016/j.ast.2014.03.002 Samion, S., Alias, A., & Hadi, M. (2016). A study on the aerodynamic performance of ring wings using computational fluid dynamics. International Journal of Aerospace Engineering, 2016, Article ID 8039047. https://doi.org/10.1155/2016/8039047 Kroo, I. (2005). Innovation in aerodynamic design: The role of CFD. Journal of Aircraft, 42(5), 890-897. https://doi.org/10.2514/1.12345 Roa, R., Reyes, J., & Mendoza, A. (2017). The use of computational fluid dynamics (CFD) in the design of aerospace structures in Latin America. Journal of Latin American Aerospace Engineering, 2(1), 22-35. https://doi.org/10.1016/j.jlae.2017.05.004 Mendoza, A., Roa, R., & Reyes, J. (2017). Aerodynamics of unconventional aircraft in Latin American contexts. Latin American Journal of Aviation, 4(2), 12-29. https://doi.org/10.1016/j.laja.2017.04.002 Anderson, J. D., Jr. (2001). Fundamentals of aerodynamics (3rd ed.). McGraw Hill. ISBN: 0-07-237335-0. Hassan, M., & Mavris, D. (2019). Impact of vehicle technologies and operational improvements on aviation system fuel burn. Journal of Aircraft, 1-10. https://doi.org/10.2514/1.C035401 Jupp, J. (2016). The design of future passenger aircraft–the environmental and fuel price challenges. The Aeronautical Journal, 120(1223), 37-60. https://doi.org/10.1017/aer.2015.5 Schmitt, D. (2018). Challenges for unconventional transport aircraft configurations. In M. Trächtler (Ed.), Advances in Aerospace Guidance, Navigation and Control (pp. 3-24). Springer, Cham. https://doi.org/10.1007/978-3-319-65283-2_1 Singh, R., & Nalianda, D. (2014). Turbo-electric distributed propulsion–opportunities, benefits and challenges. Aircraft Engineering and Aerospace Technology: An International Journal, 86(6), 543-549. https://doi.org/10.1108/AEAT-05-2014-0062 Bijewitz, J., Seitz, A., Hornung, M., & Isikveren, A. T. (2017). Progress in optimizing the propulsive fuselage aircraft concept. Journal of Aircraft, 54(5), 1979-1989. https://doi.org/10.2514/1.C034002 Jansen, R., Bowman, C., Jankovsky, A., Dyson, R., & Felder, J. (2017, July). Overview of NASA electrified aircraft propulsion (EAP) research for large subsonic transports. In 53rd AIAA/SAE/ASEE Joint Propulsion Conference (AIAA 2017-4701). Atlanta, Georgia. https://doi.org/10.2514/6.2017-4701 Hendricks, E. S. (2018). A review of boundary layer ingestion modeling approaches for use in conceptual design (NASA/TM—2018-219926). National Aeronautics and Space Administration, Langley Research Center. https://ntrs.nasa.gov/citations/20180006434 Madonna, V., Giangrande, P., & Galea, M. (2018). Electrical power generation in aircraft: Review, challenges, and opportunities. IEEE Transactions on Transportation Electrification, 4(3), 646-659. https://doi.org/10.1109/TTE.2018.2834142 Gnadt, A. R., Speth, R. L., Sabnis, J. S., & Barrett, S. R. (2019). Technical and environmental assessment of all-electric 180-passenger commercial aircraft. Progress in Aerospace Sciences, 105, 1-30. https://doi.org/10.1016/j.paerosci.2018.11.002 NASA. (2017). X-48B. https://www.nasa.gov/centers/armstrong/multimedia/imagegallery/X-48B/index.html Andrews, S. A., & Perez, R. E. (2018). Comparison of box-wing and conventional aircraft mission performance using multidisciplinary analysis and optimization. Aerospace Science and Technology, 79, 336–351. Buttazzo, G., & Frediani, A. (2009). Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design. Springer Science & Business Media. Cavallaro, R., & Demasi, L. (2016). Challenges, ideas, and innovations of joined-wing configurations: a concept from the past, an opportunity for the future. Progress in Aerospace Sciences, 87, 1–93. Cipolla, V., Frediani, A., Oliviero, F., Rossi, R., Rizzo, E., & Pinucci, M. (2016). Ultralight amphibious Prandtlplane: the final design. Aerotecnica Missili Spazio, 95(3), 125–135. Frediani, A., & Montanari, G. (2009). Best wing system: an exact solution of the Prandtl’s problem. In Variational Analysis and Aerospace Engineering (pp. 183–211). Springer. Frediani, A., Cipolla, V., & Rizzo, E. (2012). The Prandtlplane configuration: overview on possible applications to civil aviation. In Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design (pp. 179–210). Springer. Hicken, J. E., & Zingg, D. W. (2010). Induced-drag minimization of nonplanar geometries based on the Euler equations. AIAA Journal, 48(11), 2564–2575. Kroo, I. (2001). Drag due to lift: concepts for prediction and reduction. Annual Review of Fluid Mechanics, 33(1), 587–617. Lange, R., Cahill, J., Bradley, E., Eudaily, R., Jenness, C., & Macwilkinson, D. (1974). Feasibility Study of the Transonic Biplane Concept for Transport Aircraft Application. Technical Report NASA-CR-132462. NASA Langley Research Center. Prandtl, L. (1924). Induced Drag of Multiplanes. Technical Note NO. 182. National Advisory Committee for Aeronautics. Russo, L., Tognaccini, R., & Demasi, L. (2020). Box wing and induced drag: Compressibility effect in subsonic and transonic regimes. In AIAA Scitech 2020 Forum, AIAA 2020-0447, Orlando, Florida. Salem, K. A., Cipolla, V., Palaia, G., & Binante, V. (2021). A physics-based multidisciplinary approach for the preliminary design and performance analysis of a medium range aircraft with box-wing architecture. Aerospace, 8(10), 292. Scardaoni, M. P., Montemurro, M., & Panettieri, E. (2020). PrandtLplane wing-box least-weight design: a multi-scale optimisation approach. Aerospace Science and Technology, 106, 106156. Wolkovitch, J. (1986). The joined wing-an overview. Journal of Aircraft, 23(3), 161–178. Bhatia, M., Kapania, R. K., & Haftka, R. T. (2012). Structural and aeroelastic characteristics of truss-braced wings: A parametric study. Journal of Aircraft, 49(1), 302-310. Bradley, M. K., & Droney, C. K. (2011). Subsonic Ultra Green Aircraft Research. Tech. Rep. NASA/CR-2011-216847. National Aeronautics and Space Administration Langley Research Center Hampton, VA. Bushnell, D. M. (2018). Enabling Electric Aircraft: Applications and Approaches. Tech. Rep. NASA/TM–2018-220088. National Aeronautics and Space Administration Langley Research Center Hampton, VA. Chau, T., & Zingg, D. W. (2022). Aerodynamic design optimization of a transonic strut-braced-wing regional aircraft. Journal of Aircraft, 59(1), 253-271. Droney, C., Harrison, N., & Gatlin, G. (2018). Subsonic ultra-green aircraft research: transonic truss-braced wing technical maturation. In 31st Congress of the International Council of the Aeronautical Sciences, Belo Horizon, Brazil. Droney, C., Sclafani, A., Harrison, N., Grasch, A., & Michael, B. (2020). Subsonic Ultra Green Aircraft Research: Phase III – Mach 0.75 Transonic Truss-Braced Wing Design. Tech. Rep. NASA/CR–2015-20205005698. National Aeronautics and Space Administration Langley Research Center Hampton, VA. Gagnon, H., & Zingg, D. W. (2016). Euler-equation-based drag minimization of unconventional aircraft configurations. Journal of Aircraft, 53(5), 1361-1371. Grasmeyer, J. (1999). Multidisciplinary design optimization of a transonic strut-braced wing aircraft. In 37th Aerospace Sciences Meeting and Exhibit, AIAA 1999-10, Reno, Nevada. Harrison, N. A., Gatlin, G. M., Viken, S. A., Beyar, M., Dickey, E. D., Hoffman, K., & Reichenbach, E. Y. (2020). Development of an efficient m=0.80 transonic truss-braced wing aircraft. In AIAA Scitech 2020 Forum, AIAA 2020-0011, Orlando, Florida. Jonsson, E., Riso, C., Lupp, C. A., Cesnik, C. E., Martins, J. R., & Epureanu, B. I. (2019). Flutter and post-flutter constraints in aircraft design optimization. Progress in Aerospace Sciences, 109, 100537. Pfenninger, W. (1954). Design Considerations of Large Subsonic Long Range Transport Airplanes with Low Drag Boundary Layer Suction. Report NAI-54-800 (BLC-67). Northrop Aircraft, Inc. Secco, N. R., & Martins, J. R. (2019). RANS-based aerodynamic shape optimization of a strut-braced wing with overset meshes. Journal of Aircraft, 56(1), 217-227. Turriziani, R., Lovell, W., Martin, G., Price, J., Swanson, E., & Washburn, G. (1980). Preliminary Design Characteristics of a Subsonic Business Jet Concept Employing an Aspect Ratio 25 Strut Braced Wing. Tech. Rep. NASA CR-159361. NASA. Ruiz Gutiérrez, Á. (2022). Estudio aerodinámico de perfiles alares NACA con CFD. Aerodynamical study of NACA airfoil profile with CFD. [Trabajo Fin de Grado, Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación, Universidad de Cantabria]. Tutor: Agustín Santisteban Díaz. Selig, M. S., Guglielmo, J. J., Broeren, A. P., & Giguère, P. (1995). Summary of low-speed airfoil data (Vol. 1). SoarTech Publications. Airbus. (2006, March). Flight Deck and Systems Briefing for Pilots A 380-800 (Issue 02). Airbus. (2005, March 30). Aircraft characteristics airport and maintenance planning. Blagnac Cedex, Francia. General Electric Aviation. (2015). The GE90 Engine. Disponible en: http://www.geaviation.com/commercial/engines/ge90/ Federal Aviation Administration (FAA). (2023). Manual del piloto de la FAA - Aviación general. FAA. SimScale. (n.d.). "k-omega SST turbulence model." SimScale Documentation. https://www.simscale.com/docs/simulation-setup/global-settings/k-omega-sst/. Consultado el 21 de abril de 2024. Abbott, I. H., & Von Doenhoff, A. E. (1959). Theory of wing sections: Including a summary of airfoil data. Dover Publications. Anderson, J. D. (2010). Fundamentals of aerodynamics (5th ed.). McGraw-Hill Education. Jacobs, E. N., Ward, K. E., & Pinkerton, R. M. (1935). The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel (NACA Report No. 460). National Advisory Committee for Aeronautics. NASA Glenn Research Center. (n.d.). Lift to drag ratio. Beginners Guide to Aeronautics. Retrieved, from https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/lift-to-drag-ratio/ Moreno García, M. C., & Gil Aguinaliu, M. Á. (2003). Análisis de la siniestralidad aérea por causa meteorológica (Analysis of air accidents due to meteorological causes). Revista de Aeronáutica y Astronáutica, 72(2), 127-134. Hahn, A. S. (2013). Vehicle Sketch Pad: A Parametric Geometry Modeler for Conceptual Aircraft Design. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. https://doi.org/10.2514/6.2013-752 Anderson, J. D. (2017). Fundamentals of Aerodynamics (6th ed.). McGraw-Hill Education. Roskam, J. (2000). Airplane Design Part I: Preliminary Sizing of Airplanes. Roskam Aviation and Engineering Corporation. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.acceso.none.fl_str_mv |
Abierto (Texto Completo) |
rights_invalid_str_mv |
Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.none.fl_str_mv |
pdf |
institution |
Universidad Distrital Francisco José de Caldas |
bitstream.url.fl_str_mv |
https://repository.udistrital.edu.co/bitstreams/15b669bf-eda5-49db-99c1-0c4fc2fd036a/download https://repository.udistrital.edu.co/bitstreams/789f2cdd-5b44-47c0-bfc6-f84f376e0c8f/download https://repository.udistrital.edu.co/bitstreams/b80ba005-360d-4ea2-a8a5-eb011e3030a8/download https://repository.udistrital.edu.co/bitstreams/04f95246-3cde-4ce4-a85e-e2f4ef02214e/download https://repository.udistrital.edu.co/bitstreams/ac1f22b2-f0fd-4f9c-8ad1-e09605b61bb5/download |
bitstream.checksum.fl_str_mv |
284785f4405fe4e7e035ed1418575cc4 29ff5afdfacb22a7452623f2a8dcdf93 997daf6c648c962d566d7b082dac908d ae7241001d1bf0c81e970b8cfd6fe909 0fa11821223d2601c909dd82a2f01d5b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad Distrital |
repository.mail.fl_str_mv |
repositorio@udistrital.edu.co |
_version_ |
1828165916948430848 |
spelling |
Muñoz Bello, Nicolas GabrielSolano, Daniel Santiago2025-03-12T15:29:55Z2025-03-12T15:29:55Z2024-10-21http://hdl.handle.net/11349/93572Este proyecto tiene como objetivo evaluar el desempeño aerodinámico de dos perfiles de ala tipo anular para aeronaves mediante simulaciones de Dinámica de Fluidos Computacional (CFD). Se busca abordar las limitaciones de eficiencia aerodinámica y alto consumo de combustible que presentan los diseños convencionales de alas. La industria aeronáutica enfrenta retos importantes relacionados con mejorar la eficiencia aerodinámica y reducir el consumo de combustible, especialmente con el aumento del tráfico aéreo y los costos operativos. Si bien las alas convencionales han sido optimizadas, aún tienen limitaciones en cuanto a minimizar la resistencia al avance y maximizar la sustentación bajo diferentes condiciones de vuelo. En este escenario, las alas en forma de anillo emergen como un diseño innovador con potencial para superar estas limitaciones. Sin embargo, su comportamiento aerodinámico no ha sido completamente estudiado, lo que restringe el conocimiento sobre su viabilidad y capacidad para mejorar la eficiencia de las aeronaves. Mediante simulaciones CFD, este proyecto analizará y comparará el comportamiento aerodinámico de dos perfiles de ala anular con geometrías diferentes en los bordes de ataque y salida. Se realizarán simulaciones bajo distintas condiciones de altura para evaluar aspectos clave como la sustentación, resistencia al avance, patrones de flujo de aire alrededor de las alas y estabilidad en vuelo. Los resultados podrían contribuir al desarrollo de nuevas tecnologías y conceptos innovadores en el diseño de aeronaves, explorando soluciones alternativas para una aviación más eficiente y sostenible.This project aims to evaluate the aerodynamic performance of two annular wing profiles for aircraft using Computational Fluid Dynamics (CFD) simulations. The goal is to address the limitations in aerodynamic efficiency and high fuel consumption associated with conventional wing designs. The aviation industry faces significant challenges in improving aerodynamic efficiency and reducing fuel consumption, especially with the increase in air traffic and operational costs. Although conventional wings have been optimized, they still present limitations in minimizing drag and maximizing lift under varying flight conditions. In this context, annular wings emerge as an innovative design with the potential to overcome these limitations. However, their aerodynamic behavior has not been fully studied, limiting knowledge about their feasibility and capacity to enhance aircraft efficiency. Through CFD simulations, this project will analyze and compare the aerodynamic behavior of two annular wing profiles with different leading and trailing edge geometries. Simulations will be conducted under various altitude conditions to assess key aspects such as lift, drag, airflow patterns around the wings, and flight stability. The results could contribute to the development of new technologies and innovative concepts in aircraft design, exploring alternative solutions for more efficient and sustainable aviation.pdfspaAlas en forma de anilloAlas CircularesAerodinámicaDinámica de fluidos computacional (CFD)SustentaciónArrastreIngeniería Mecánica -- Tesis y disertaciones académicasRing-shaped wingsCircular wingsAerodynamicsComputational Fluid Dynamics (CFD)LiftDragEvaluación del desempeño aerodinámico de dos perfiles de ala tipo anular para una aeronave mediante simulaciones de dinámica de fluidos computacional (CFD)Aerodynamic Performance Evaluation of Two Annular Wing Profiles for an Aircraft Using Computational Fluid Dynamics (CFD) SimulationsbachelorThesisMonografíainfo:eu-repo/semantics/bachelorThesishttp://purl.org/coar/resource_type/c_7a1fAbierto (Texto Completo)http://purl.org/coar/access_right/c_abf2Sadraey, M. H. (2013). Aircraft design: A system engineering approach. Wiley.Airbus. (2021). Global Market Forecast 2021-2040. https://www.airbus.com/en/products-services/commercial-aircraft/market/global-market-forecast.Khardi, S., De La Croix, S., & Ouladsine, M. (2017). Aircraft noise annoyance modelling in the vicinity of airports. Transportation Research Part D: Transport and Environment, 52, 65-82. https://doi.org/10.1016/j.trd.2017.03.002Nguyen, T. (2017). Aerodynamic efficiency in modern aircraft design: A review. Journal of Aerospace Engineering, 30(4), 04017011. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000723Gur, O., Giat, E., & Kushnir, Y. (2014). The design of unconventional wings for enhanced aerodynamic performance. Aerospace Science and Technology, 35, 194-206. https://doi.org/10.1016/j.ast.2014.03.002Samion, S., Alias, A., & Hadi, M. (2016). A study on the aerodynamic performance of ring wings using computational fluid dynamics. International Journal of Aerospace Engineering, 2016, Article ID 8039047. https://doi.org/10.1155/2016/8039047Kroo, I. (2005). Innovation in aerodynamic design: The role of CFD. Journal of Aircraft, 42(5), 890-897. https://doi.org/10.2514/1.12345Roa, R., Reyes, J., & Mendoza, A. (2017). The use of computational fluid dynamics (CFD) in the design of aerospace structures in Latin America. Journal of Latin American Aerospace Engineering, 2(1), 22-35. https://doi.org/10.1016/j.jlae.2017.05.004Mendoza, A., Roa, R., & Reyes, J. (2017). Aerodynamics of unconventional aircraft in Latin American contexts. Latin American Journal of Aviation, 4(2), 12-29. https://doi.org/10.1016/j.laja.2017.04.002Anderson, J. D., Jr. (2001). Fundamentals of aerodynamics (3rd ed.). McGraw Hill. ISBN: 0-07-237335-0.Hassan, M., & Mavris, D. (2019). Impact of vehicle technologies and operational improvements on aviation system fuel burn. Journal of Aircraft, 1-10. https://doi.org/10.2514/1.C035401Jupp, J. (2016). The design of future passenger aircraft–the environmental and fuel price challenges. The Aeronautical Journal, 120(1223), 37-60. https://doi.org/10.1017/aer.2015.5Schmitt, D. (2018). Challenges for unconventional transport aircraft configurations. In M. Trächtler (Ed.), Advances in Aerospace Guidance, Navigation and Control (pp. 3-24). Springer, Cham. https://doi.org/10.1007/978-3-319-65283-2_1Singh, R., & Nalianda, D. (2014). Turbo-electric distributed propulsion–opportunities, benefits and challenges. Aircraft Engineering and Aerospace Technology: An International Journal, 86(6), 543-549. https://doi.org/10.1108/AEAT-05-2014-0062Bijewitz, J., Seitz, A., Hornung, M., & Isikveren, A. T. (2017). Progress in optimizing the propulsive fuselage aircraft concept. Journal of Aircraft, 54(5), 1979-1989. https://doi.org/10.2514/1.C034002Jansen, R., Bowman, C., Jankovsky, A., Dyson, R., & Felder, J. (2017, July). Overview of NASA electrified aircraft propulsion (EAP) research for large subsonic transports. In 53rd AIAA/SAE/ASEE Joint Propulsion Conference (AIAA 2017-4701). Atlanta, Georgia. https://doi.org/10.2514/6.2017-4701Hendricks, E. S. (2018). A review of boundary layer ingestion modeling approaches for use in conceptual design (NASA/TM—2018-219926). National Aeronautics and Space Administration, Langley Research Center. https://ntrs.nasa.gov/citations/20180006434Madonna, V., Giangrande, P., & Galea, M. (2018). Electrical power generation in aircraft: Review, challenges, and opportunities. IEEE Transactions on Transportation Electrification, 4(3), 646-659. https://doi.org/10.1109/TTE.2018.2834142Gnadt, A. R., Speth, R. L., Sabnis, J. S., & Barrett, S. R. (2019). Technical and environmental assessment of all-electric 180-passenger commercial aircraft. Progress in Aerospace Sciences, 105, 1-30. https://doi.org/10.1016/j.paerosci.2018.11.002NASA. (2017). X-48B. https://www.nasa.gov/centers/armstrong/multimedia/imagegallery/X-48B/index.htmlAndrews, S. A., & Perez, R. E. (2018). Comparison of box-wing and conventional aircraft mission performance using multidisciplinary analysis and optimization. Aerospace Science and Technology, 79, 336–351.Buttazzo, G., & Frediani, A. (2009). Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design. Springer Science & Business Media.Cavallaro, R., & Demasi, L. (2016). Challenges, ideas, and innovations of joined-wing configurations: a concept from the past, an opportunity for the future. Progress in Aerospace Sciences, 87, 1–93.Cipolla, V., Frediani, A., Oliviero, F., Rossi, R., Rizzo, E., & Pinucci, M. (2016). Ultralight amphibious Prandtlplane: the final design. Aerotecnica Missili Spazio, 95(3), 125–135.Frediani, A., & Montanari, G. (2009). Best wing system: an exact solution of the Prandtl’s problem. In Variational Analysis and Aerospace Engineering (pp. 183–211). Springer.Frediani, A., Cipolla, V., & Rizzo, E. (2012). The Prandtlplane configuration: overview on possible applications to civil aviation. In Variational Analysis and Aerospace Engineering: Mathematical Challenges for Aerospace Design (pp. 179–210). Springer.Hicken, J. E., & Zingg, D. W. (2010). Induced-drag minimization of nonplanar geometries based on the Euler equations. AIAA Journal, 48(11), 2564–2575.Kroo, I. (2001). Drag due to lift: concepts for prediction and reduction. Annual Review of Fluid Mechanics, 33(1), 587–617.Lange, R., Cahill, J., Bradley, E., Eudaily, R., Jenness, C., & Macwilkinson, D. (1974). Feasibility Study of the Transonic Biplane Concept for Transport Aircraft Application. Technical Report NASA-CR-132462. NASA Langley Research Center.Prandtl, L. (1924). Induced Drag of Multiplanes. Technical Note NO. 182. National Advisory Committee for Aeronautics.Russo, L., Tognaccini, R., & Demasi, L. (2020). Box wing and induced drag: Compressibility effect in subsonic and transonic regimes. In AIAA Scitech 2020 Forum, AIAA 2020-0447, Orlando, Florida.Salem, K. A., Cipolla, V., Palaia, G., & Binante, V. (2021). A physics-based multidisciplinary approach for the preliminary design and performance analysis of a medium range aircraft with box-wing architecture. Aerospace, 8(10), 292.Scardaoni, M. P., Montemurro, M., & Panettieri, E. (2020). PrandtLplane wing-box least-weight design: a multi-scale optimisation approach. Aerospace Science and Technology, 106, 106156.Wolkovitch, J. (1986). The joined wing-an overview. Journal of Aircraft, 23(3), 161–178.Bhatia, M., Kapania, R. K., & Haftka, R. T. (2012). Structural and aeroelastic characteristics of truss-braced wings: A parametric study. Journal of Aircraft, 49(1), 302-310.Bradley, M. K., & Droney, C. K. (2011). Subsonic Ultra Green Aircraft Research. Tech. Rep. NASA/CR-2011-216847. National Aeronautics and Space Administration Langley Research Center Hampton, VA.Bushnell, D. M. (2018). Enabling Electric Aircraft: Applications and Approaches. Tech. Rep. NASA/TM–2018-220088. National Aeronautics and Space Administration Langley Research Center Hampton, VA.Chau, T., & Zingg, D. W. (2022). Aerodynamic design optimization of a transonic strut-braced-wing regional aircraft. Journal of Aircraft, 59(1), 253-271.Droney, C., Harrison, N., & Gatlin, G. (2018). Subsonic ultra-green aircraft research: transonic truss-braced wing technical maturation. In 31st Congress of the International Council of the Aeronautical Sciences, Belo Horizon, Brazil.Droney, C., Sclafani, A., Harrison, N., Grasch, A., & Michael, B. (2020). Subsonic Ultra Green Aircraft Research: Phase III – Mach 0.75 Transonic Truss-Braced Wing Design. Tech. Rep. NASA/CR–2015-20205005698. National Aeronautics and Space Administration Langley Research Center Hampton, VA.Gagnon, H., & Zingg, D. W. (2016). Euler-equation-based drag minimization of unconventional aircraft configurations. Journal of Aircraft, 53(5), 1361-1371.Grasmeyer, J. (1999). Multidisciplinary design optimization of a transonic strut-braced wing aircraft. In 37th Aerospace Sciences Meeting and Exhibit, AIAA 1999-10, Reno, Nevada.Harrison, N. A., Gatlin, G. M., Viken, S. A., Beyar, M., Dickey, E. D., Hoffman, K., & Reichenbach, E. Y. (2020). Development of an efficient m=0.80 transonic truss-braced wing aircraft. In AIAA Scitech 2020 Forum, AIAA 2020-0011, Orlando, Florida.Jonsson, E., Riso, C., Lupp, C. A., Cesnik, C. E., Martins, J. R., & Epureanu, B. I. (2019). Flutter and post-flutter constraints in aircraft design optimization. Progress in Aerospace Sciences, 109, 100537.Pfenninger, W. (1954). Design Considerations of Large Subsonic Long Range Transport Airplanes with Low Drag Boundary Layer Suction. Report NAI-54-800 (BLC-67). Northrop Aircraft, Inc.Secco, N. R., & Martins, J. R. (2019). RANS-based aerodynamic shape optimization of a strut-braced wing with overset meshes. Journal of Aircraft, 56(1), 217-227.Turriziani, R., Lovell, W., Martin, G., Price, J., Swanson, E., & Washburn, G. (1980). Preliminary Design Characteristics of a Subsonic Business Jet Concept Employing an Aspect Ratio 25 Strut Braced Wing. Tech. Rep. NASA CR-159361. NASA.Ruiz Gutiérrez, Á. (2022). Estudio aerodinámico de perfiles alares NACA con CFD. Aerodynamical study of NACA airfoil profile with CFD. [Trabajo Fin de Grado, Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación, Universidad de Cantabria]. Tutor: Agustín Santisteban Díaz.Selig, M. S., Guglielmo, J. J., Broeren, A. P., & Giguère, P. (1995). Summary of low-speed airfoil data (Vol. 1). SoarTech Publications.Airbus. (2006, March). Flight Deck and Systems Briefing for Pilots A 380-800 (Issue 02).Airbus. (2005, March 30). Aircraft characteristics airport and maintenance planning. Blagnac Cedex, Francia.General Electric Aviation. (2015). The GE90 Engine. Disponible en: http://www.geaviation.com/commercial/engines/ge90/Federal Aviation Administration (FAA). (2023). Manual del piloto de la FAA - Aviación general. FAA.SimScale. (n.d.). "k-omega SST turbulence model." SimScale Documentation. https://www.simscale.com/docs/simulation-setup/global-settings/k-omega-sst/. Consultado el 21 de abril de 2024.Abbott, I. H., & Von Doenhoff, A. E. (1959). Theory of wing sections: Including a summary of airfoil data. Dover Publications.Anderson, J. D. (2010). Fundamentals of aerodynamics (5th ed.). McGraw-Hill Education.Jacobs, E. N., Ward, K. E., & Pinkerton, R. M. (1935). The characteristics of 78 related airfoil sections from tests in the variable-density wind tunnel (NACA Report No. 460). National Advisory Committee for Aeronautics.NASA Glenn Research Center. (n.d.). Lift to drag ratio. Beginners Guide to Aeronautics. Retrieved, from https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/lift-to-drag-ratio/Moreno García, M. C., & Gil Aguinaliu, M. Á. (2003). Análisis de la siniestralidad aérea por causa meteorológica (Analysis of air accidents due to meteorological causes). Revista de Aeronáutica y Astronáutica, 72(2), 127-134.Hahn, A. S. (2013). Vehicle Sketch Pad: A Parametric Geometry Modeler for Conceptual Aircraft Design. 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. https://doi.org/10.2514/6.2013-752Anderson, J. D. (2017). Fundamentals of Aerodynamics (6th ed.). McGraw-Hill Education.Roskam, J. (2000). Airplane Design Part I: Preliminary Sizing of Airplanes. Roskam Aviation and Engineering Corporation.ORIGINALSolanoDanielSantiago2024.pdfSolanoDanielSantiago2024.pdfapplication/pdf3636027https://repository.udistrital.edu.co/bitstreams/15b669bf-eda5-49db-99c1-0c4fc2fd036a/download284785f4405fe4e7e035ed1418575cc4MD51Licencia de uso y publicacion.pdfLicencia de uso y publicacion.pdfapplication/pdf213011https://repository.udistrital.edu.co/bitstreams/789f2cdd-5b44-47c0-bfc6-f84f376e0c8f/download29ff5afdfacb22a7452623f2a8dcdf93MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-87167https://repository.udistrital.edu.co/bitstreams/b80ba005-360d-4ea2-a8a5-eb011e3030a8/download997daf6c648c962d566d7b082dac908dMD52THUMBNAILSolanoDanielSantiago2024.pdf.jpgSolanoDanielSantiago2024.pdf.jpgIM Thumbnailimage/jpeg3233https://repository.udistrital.edu.co/bitstreams/04f95246-3cde-4ce4-a85e-e2f4ef02214e/downloadae7241001d1bf0c81e970b8cfd6fe909MD54Licencia de uso y publicacion.pdf.jpgLicencia de uso y publicacion.pdf.jpgIM Thumbnailimage/jpeg9506https://repository.udistrital.edu.co/bitstreams/ac1f22b2-f0fd-4f9c-8ad1-e09605b61bb5/download0fa11821223d2601c909dd82a2f01d5bMD5511349/93572oai:repository.udistrital.edu.co:11349/935722025-03-14 01:10:07.059open.accesshttps://repository.udistrital.edu.coRepositorio Universidad Distritalrepositorio@udistrital.edu.coTElDRU5DSUEgWSBBVVRPUklaQUNJw5NOIEVTUEVDSUFMIFBBUkEgUFVCTElDQVIgWSBQRVJNSVRJUiBMQSBDT05TVUxUQSBZIFVTTyBERSBDT05URU5JRE9TIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgREUgTEEgVU5JVkVSU0lEQUQgRElTVFJJVEFMCgpUw6lybWlub3MgeSBjb25kaWNpb25lcyBkZSB1c28gcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyAoUklVRCkKCkNvbW8gdGl0dWxhcihlcykgZGVsKG9zKSBkZXJlY2hvKHMpIGRlIGF1dG9yLCBjb25maWVybyAoZXJpbW9zKSBhIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIChlbiBhZGVsYW50ZSwgTEEgVU5JVkVSU0lEQUQpIHVuYSBsaWNlbmNpYSBwYXJhIHVzbyBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgaW50ZWdyYXLDoSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIChlbiBhZGVsYW50ZSwgUklVRCksIGRlIGFjdWVyZG8gYSBsYXMgc2lndWllbnRlcyByZWdsYXMsIGxhcyBjdWFsZXMgZGVjbGFybyAoYW1vcykgY29ub2NlciB5IGFjZXB0YXI6CgphKQlFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWEgZW4gZWwgUklVRCB5IGhhc3RhIHBvciB1biBwbGF6byBkZSBkaWV6ICgxMCkgQcOxb3MsIHByb3Jyb2dhYmxlIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gUGF0cmltb25pYWwgZGVsIGF1dG9yOyBsYSBjdWFsIHBvZHLDoSBkYXJzZSBwb3IgdGVybWluYWRhIHByZXZpYSBzb2xpY2l0dWQgYSBMQSBVTklWRVJTSURBRCBwb3IgZXNjcml0byBjb24gdW5hIGFudGVsYWNpw7NuIGRlIGRvcyAoMikgbWVzZXMgYW50ZXMgZGVsIHZlbmNpbWllbnRvIGRlbCBwbGF6byBpbmljaWFsIG8gZWwgZGUgc3UocykgcHLDs3Jyb2dhKHMpLgoKYikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIHB1YmxpY2FyIGxhIG9icmEgZW4gbGFzIGRpc3RpbnRhcyB2ZXJzaW9uZXMgcmVxdWVyaWRhcyBwb3IgZWwgUklVRCAoZGlnaXRhbCwgaW1wcmVzbywgZWxlY3Ryw7NuaWNvIHUgb3RybyBtZWRpbyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSBMQSBVTklWRVJTSURBRCBubyBzZXLDoSByZXNwb25zYWJsZSBlbiBlbCBldmVudG8gcXVlIGVsIGRvY3VtZW50byBhcGFyZXpjYSByZWZlcmVuY2lhZG8gZW4gbW90b3JlcyBkZSBiw7pzcXVlZGEgbyByZXBvc2l0b3Jpb3MgZGlmZXJlbnRlcyBhbCBSSVVELCB1bmEgdmV6IGVsKG9zKSBhdXRvcihlcykgc29saWNpdGVuIHN1IGVsaW1pbmFjacOzbiBkZWwgUklVRCwgZGFkbyBxdWUgbGEgbWlzbWEgc2Vyw6EgcHVibGljYWRhIGVuIEludGVybmV0LgoKYykJTGEgYXV0b3JpemFjacOzbiBzZSBoYWNlIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCBsb3MgYXV0b3JlcyByZW51bmNpYW4gYSByZWNpYmlyIGJlbmVmaWNpbyBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgZGUgdXNvIGNvbiBxdWUgc2UgcHVibGljYSAoQ3JlYXRpdmUgQ29tbW9ucykuCgpkKQlMb3MgY29udGVuaWRvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQgc29uIG9icmEocykgb3JpZ2luYWwoZXMpIHNvYnJlIGxhIGN1YWwoZXMpIGVsKG9zKSBhdXRvcihlcykgY29tbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCBhc3VtZW4gdG90YWwgcmVzcG9uc2FiaWxpZGFkIHBvciBlbCBjb250ZW5pZG8gZGUgc3Ugb2JyYSBhbnRlIExBIFVOSVZFUlNJREFEIHkgYW50ZSB0ZXJjZXJvcy4gRW4gdG9kbyBjYXNvIExBIFVOSVZFUlNJREFEIHNlIGNvbXByb21ldGUgYSBpbmRpY2FyIHNpZW1wcmUgbGEgYXV0b3LDrWEgaW5jbHV5ZW5kbyBlbCBub21icmUgZGVsIGF1dG9yIHkgbGEgZmVjaGEgZGUgcHVibGljYWNpw7NuLgoKZSkJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3Mgw61uZGljZXMgeSBidXNjYWRvcmVzIHF1ZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBtYXhpbWl6YXIgbGEgdmlzaWJpbGlkYWQgZWwgdXNvIHkgZWwgaW1wYWN0byBkZSBsYSBwcm9kdWNjacOzbiBjaWVudMOtZmljYSwgYXJ0w61zdGljYSB5IGFjYWTDqW1pY2EgZW4gbGEgY29tdW5pZGFkIGxvY2FsLCBuYWNpb25hbCBvIGludGVybmFjaW9uYWwuCgoKZikJTEEgVU5JVkVSU0lEQUQgcG9kcsOhIGNvbnZlcnRpciBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBjb24gZWwgZmluIGRlIHN1IHByZXNlcnZhY2nDs24gZW4gZWwgdGllbXBvIHF1ZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGxhIGRlIHN1cyBwcsOzcnJvZ2FzLgoKCkNvbiBiYXNlIGVuIGxvIGFudGVyaW9yIGF1dG9yaXpvKGFtb3MpLCBhIGZhdm9yIGRlbCBSSVVEIHkgZGUgc3VzIHVzdWFyaW9zLCBsYSBwdWJsaWNhY2nDs24geSBjb25zdWx0YSBkZSBsYSBzaWd1aWVudGUgb2JyYToKClRpdHVsbwoKQXV0b3IgICAgICAgQXBlbGxpZG9zICAgICAgICAgTm9tYnJlcwoKMQoKMgoKMwoKCmcpCUF1dG9yaXpvKGFtb3MpLCBxdWUgbGEgb2JyYSBzZWEgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsb3MgbGl0ZXJhbGVzIGFudGVyaW9yZXMsIGJham8gbG9zIGzDrW1pdGVzIGRlZmluaWRvcyBwb3IgTEEgVU5JVkVSU0lEQUQsIGVuIGxhcyDigJxDb25kaWNpb25lcyBkZSB1c28gZGUgZXN0cmljdG8gY3VtcGxpbWllbnRv4oCdIGRlIGxvcyByZWN1cnNvcyBwdWJsaWNhZG9zIGVuIGVsIFJJVUQsIGN1eW8gdGV4dG8gY29tcGxldG8gc2UgcHVlZGUgY29uc3VsdGFyIGVuIGh0dHA6Ly9yZXBvc2l0b3J5LnVkaXN0cml0YWwuZWR1LmNvLwoKaCkJQ29ub3pjbyhjZW1vcykgeSBhY2VwdG8oYW1vcykgcXVlIG90b3JnbyhhbW9zKSB1bmEgbGljZW5jaWEgZXNwZWNpYWwgcGFyYSBwdWJsaWNhY2nDs24gZGUgb2JyYXMgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcywgbGljZW5jaWEgICBkZSBsYSBjdWFsIGhlIChoZW1vcykgb2J0ZW5pZG8gdW5hIGNvcGlhLgoKaSkJTWFuaWZpZXN0byhhbW9zKSBtaSAobnVlc3RybykgdG90YWwgYWN1ZXJkbyBjb24gbGFzIGNvbmRpY2lvbmVzIGRlIHVzbyB5IHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIHF1ZSBzZSBkZXNjcmliZW4geSBleHBsaWNhbiBlbiBlbCBwcmVzZW50ZSBkb2N1bWVudG8uCgpqKQlDb25vemNvKGNlbW9zKSBsYSBub3JtYXRpdmlkYWQgaW50ZXJuYSBkZSAgTEEgVU5JVkVSU0lEQUQ7IGVuIGNvbmNyZXRvLCBlbCBBY3VlcmRvIDAwNCBkZSAyMDEyIGRlbCBDU1UsIEFjdWVyZG8gMDIzIGRlIDIwMTIgZGVsIENTVSBzb2JyZSBQb2zDrXRpY2EgRWRpdG9yaWFsLCBBY3VlcmRvIDAyNiAgZGVsIDMxIGRlIGp1bGlvIGRlIDIwMTIgc29icmUgZWwgcHJvY2VkaW1pZW50byBwYXJhIGxhIHB1YmxpY2FjacOzbiBkZSB0ZXNpcyBkZSBwb3N0Z3JhZG8gZGUgbG9zIGVzdHVkaWFudGVzIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzLCAgQWN1ZXJkbyAwMzAgZGVsIDAzIGRlIGRpY2llbWJyZSBkZSAyMDEzIHBvciBtZWRpbyBkZWwgY3VhbCBzZSBjcmVhIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgZGUgbGEgVW5pdmVyc2lkYWQgRGlzdHJpdGFsIEZyYW5jaXNjbyBKb3PDqSBkZSBDYWxkYXMsIEFjdWVyZG8gMDM4IGRlIDIwMTUgMjAxNSDigJxwb3IgZWwgY3VhbCBzZSBtb2RpZmljYSBlbCBBY3VlcmRvIDAzMSBkZSAyMDE0IGRlIDIwMTQgcXVlIHJlZ2xhbWVudGEgZWwgdHJhYmFqbyBkZSBncmFkbyBwYXJhIGxvcyBlc3R1ZGlhbnRlcyBkZSBwcmVncmFkbyBkZSBsYSBVbml2ZXJzaWRhZCBEaXN0cml0YWwgRnJhbmNpc2NvIEpvc8OpIGRlIENhbGRhcyB5IHNlIGRpY3RhbiBvdHJhcyBkaXJlY3RyaWNlc+KAnSB5IGxhcyBkZW3DoXMgbm9ybWFzIGNvbmNvcmRhbnRlIHkgY29tcGxlbWVudGFyaWFzIHF1ZSByaWdlbiBhbCByZXNwZWN0bywgZXNwZWNpYWxtZW50ZSBsYSBsZXkgMjMgZGUgMTk4MiwgbGEgbGV5IDQ0IGRlIDE5OTMgeSBsYSBkZWNpc2nDs24gQW5kaW5hIDM1MSBkZSAxOTkzLiBFc3RvcyBkb2N1bWVudG9zIHBvZHLDoW4gc2VyIGNvbnN1bHRhZG9zIHkgZGVzY2FyZ2Fkb3MgZW4gZWwgcG9ydGFsIHdlYiBkZSBsYSBiaWJsaW90ZWNhIGh0dHA6Ly9zaXN0ZW1hZGViaWJsaW90ZWNhcy51ZGlzdHJpdGFsLmVkdS5jby8KCmspCUFjZXB0byhhbW9zKSBxdWUgTEEgVU5JVkVSU0lEQUQgbm8gc2UgcmVzcG9uc2FiaWxpemEgcG9yIGxhcyBpbmZyYWNjaW9uZXMgYSBsYSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBEZXJlY2hvcyBkZSBBdXRvciBjYXVzYWRhcyBwb3IgbG9zIHRpdHVsYXJlcyBkZSBsYSBwcmVzZW50ZSBMaWNlbmNpYSB5IGRlY2xhcmFtb3MgcXVlIG1hbnRlbmRyw6kgKGVtb3MpIGluZGVtbmUgYSBMQSBVTklWRVJTSURBRCBwb3IgbGFzIHJlY2xhbWFjaW9uZXMgbGVnYWxlcyBkZSBjdWFscXVpZXIgdGlwbyBxdWUgbGxlZ2FyZW4gYSBwcmVzZW50YXJzZSBwb3IgdmlvbGFjacOzbiBkZSBkZXJlY2hvcyBhIGxhIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBvIGRlIEF1dG9yIHJlbGFjaW9uYWRvcyBjb24gbG9zIGRvY3VtZW50b3MgcmVnaXN0cmFkb3MgZW4gZWwgUklVRC4KCmwpCUVsIChsb3MpIGF1dG9yKGVzKSBtYW5pZmllc3RhKG1vcykgcXVlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24gZXMgb3JpZ2luYWwsIGRlIGV4Y2x1c2l2YSBhdXRvcsOtYSwgeSBzZSByZWFsaXrDsyBzaW4gdmlvbGFyIG8gdXN1cnBhciBkZXJlY2hvcyBkZSBhdXRvciBkZSB0ZXJjZXJvczsgZGUgdGFsIHN1ZXJ0ZSwgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIG8gYWNjacOzbiBwb3IgcGFydGUgZGUgdW4gdGVyY2VybyBlbiBjdWFudG8gYSBsb3MgZGVyZWNob3MgZGUgYXV0b3Igc29icmUgbGEgb2JyYSwgZWwgKGxvcykgZXN0dWRpYW50ZShzKSDigJMgYXV0b3IoZXMpIGFzdW1pcsOhKG4pIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHkgc2FsZHLDoShuKSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcy4gUGFyYSB0b2RvcyBsb3MgZWZlY3RvcywgTEEgVU5JVkVSU0lEQUQgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZS4KCgptKQlFbCAobG9zKSBhdXRvcihlcykgbWFuaWZpZXN0YShtb3MpIHF1ZSBjb25vemNvKGNlbW9zKSBsYSBhdXRvbm9tw61hIHkgbG9zIGRlcmVjaG9zLCBxdWUgcG9zZWUobW9zKSBzb2JyZSBsYSBvYnJhIHksIGNvbW8gdGFsLCBlcyAoc29tb3MpIHJlc3BvbnNhYmxlKHMpIGRlbCBhbGNhbmNlIGp1csOtZGljbyB5IGxlZ2FsLCBkZSBlc2NvZ2VyIGxhIG9wY2nDs24gZGUgbGEgcHVibGljYWNpw7NuIG8gZGUgcmVzdHJpY2Npw7NuIGRlIGxhIHB1YmxpY2FjacOzbiBkZWwgZG9jdW1lbnRvIHJlZ2lzdHJhZG8gZW4gZWwgUklVRC4KCgoKCgoKU0kgRUwgRE9DVU1FTlRPIFNFIEJBU0EgRU4gVU4gVFJBQkFKTyBRVUUgSEEgU0lETyBQQVRST0NJTkFETyBPIEFQT1lBRE8gUE9SIFVOQSBBR0VOQ0lBIE8gVU5BIE9SR0FOSVpBQ0nDk04sIENPTiBFWENFUENJw5NOIERFIExBIFVOSVZFUlNJREFEIERJU1RSSVRBTCBGUkFOQ0lTQ08gSk9TRSBERSBDQUxEQVMsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MKREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uCgoKCgoKCgoKCgoKCgoKCgoKCgoKCkVuIGNvbnN0YW5jaWEgZGUgbG8gYW50ZXJpb3IsIGZpcm1vKGFtb3MpIGVsIHByZXNlbnRlIGRvY3VtZW50bywgZW4gbGEgY2l1ZGFkIGRlIEJvZ290w6EsIEQuQy4sIGEgbG9zCgoKRklSTUEgREUgTE9TIFRJVFVMQVJFUyBERSBERVJFQ0hPUyBERSBBVVRPUgoKX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fICAgQy5DLiBOby4gX19fX19fX19fX19fX19fX19fCgpfX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX18gICBDLkMuIE5vLiBfX19fX19fX19fX19fX19fX18KCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXyAgIEMuQy4gTm8uIF9fX19fX19fX19fX19fX19fXwoKCgpDb3JyZW8gRWxlY3Ryw7NuaWNvIEluc3RpdHVjaW9uYWwgZGVsIChkZSBsb3MpIEF1dG9yKGVzKToKCkF1dG9yCSAgICAgIENvcnJlbyBFbGVjdHLDs25pY28KCjEKCjIKCjMKCk5vbWJyZSBkZSBEaXJlY3RvcihlcykgZGUgR3JhZG86CgoxCgoyCgozCgpOb21icmUgRmFjdWx0YWQgeSBQcm95ZWN0byBDdXJyaWN1bGFyOgoKRmFjdWx0YWQJUHJveWVjdG8gQ3VycmljdWxhcgoKCgoKCgoKCk5vdGE6IEVuIGNhc28gcXVlIG5vIGVzdMOpIGRlIGFjdWVyZG8gY29uIGxhcyBjb25kaWNpb25lcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSwgeSBtYW5pZmllc3RlIGFsZ3VuYSByZXN0cmljY2nDs24gc29icmUgbGEgb2JyYSwganVzdGlmaXF1ZSBsb3MgbW90aXZvcyBwb3IgbG9zIGN1YWxlcyBlbCBkb2N1bWVudG8geSBzdXMgYW5leG9zIG5vIHB1ZWRlbiBzZXIgcHVibGljYWRvcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIERpc3RyaXRhbCBGcmFuY2lzY28gSm9zw6kgZGUgQ2FsZGFzIFJJVUQuCgoKU2kgcmVxdWllcmUgbcOhcyBlc3BhY2lvLCBwdWVkZSBhbmV4YXIgdW5hIGNvcGlhIHNpbWlsYXIgYSBlc3RhIGhvamEK |